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Abstract:- In the work presented in this article, we 

highlight the interest of choosing low-frequency 

ultrasound for the calculation of Mel cepstral coefficients 

combined with a singular restructuring of the study data. 

These coefficients were used as descriptors in the 

classification of sound samples produced by chainsaws in 

forest environments in order to combat the destruction of 

Ivorian fauna and flora. Three restructuring methods 

were compared, namely: the Time Domain Channel 

Fusion method, the cepstral Domain Channel Fusion 

method and the one channel method. To do this, we first 

calculated the MFCC on different frequency bands in the 

acoustic band [170 Hz-22000 Hz]. The different frequency 

bands selected range from 1 kHz to 21 kHz, increasing by 

2 kHz at each new calculation phase. Low-frequency 

ultrasound produced better classification rates than the 

other acoustic bands. The best rate of 98.40% was obtained 

for the 3 kHz bandwidth on the acoustic band [21170 Hz-

24170 Hz] combined with the 'Time Domain Channel 

Fusion' method. A study of the ultrasounds deduced from 

the central frequencies of the octave bands was then 

carried out. A comparative approach of the sample 

classification rates led to selecting the band [11313 Hz - 

22627 Hz] deduced from the central frequency of the 16 

KHz octave band as the best ultrasonic band for the 

calculation of the MFCCs. 
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I. INTRODUCTION 

 

The use of Mel’s frequency cepstral coefficients in pattern 

recognition is a commonly used approach due to the better 

results obtained [1]. However, as the results obtained in the 

article [2] show, the effectiveness of a classification algorithm 

intrinsically depends on the appropriate choice of classifier and 

descriptor parameters. The results of this work show a very 

large variability in classification rates depending on the choice 

of these parameters. 

 

In this sense, although offering better results, the choice 

of MFCCs should only be made in the light of the nature of the 
acoustic band defined to obtain them. Such a study is all the 

more important when the work concerns the classification of 

wide-band acoustic samples of great diversity, as is the case 

with forest environments. 

 

In their work [2], the authors highlighted the interaction 

that existed between the choice of descriptors and that of 

classifiers with a view to defining an optimal algorithm for 

identifying the sounds emitted by chainsaws in a forest 

environment with a view to designing an effective system for 

combating the destruction of the forest cover in Cote d’Ivoire. 
This study was based on a comparative approach between KNN 

and SVM coupled with MEL frequency cepstral coefficients 

(MFCC). 

 

The classification rates of the samples obtained were 

40.51% and 53.16% for KNN and SVM respectively. The 

frequency bands used to obtain these rates were [8170 Hz-9170 

Hz] and [7170 Hz-8170 Hz] and are located in the very high 

frequency range with a bandwidth of 1 kHz. Increasing the 

frequencies used to obtain MFCCs seems to provide a clear 

advantage in terms of sample classification. We are therefore 

interested in much higher frequencies, namely ultrasound. 
 

Ultrasound is used in a variety of fields: In obstacle 

detection [3][4], in industry [5][6], and also for the study of 

communications in animals [7][8][9], to name but a few 

examples. 

 

We will look at this in another new context, namely the 

extraction of relevant characteristics from the sound samples 

under study to facilitate their classification. 
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 Three (03) Criteria will be of Particular Interest: 

 

 The acoustic band width, 

 The nature of the acoustic bands, and more precisely the 

frequencies that define them 

 Data structure for MFCC calculation 

 

The objective of this study is to analyze the results 
obtained by studying the possibilities that could be offered by 

the calculation of MFCC by taking into account ultrasound and 

the restructuring of acoustic signals. The presentation of this 

work is as follows: Section 2 presents the methodology of our 

study. Section 3 is devoted to the results and their 

interpretation, followed by a discussion phase in 4 and then the 

conclusion in 5 

 

II. METHODOLOGY 

 

A. Description of Data from the Training and Test Phases 
Since the object of study is acoustic signals, we need to 

build a database that will be used both to train our classifiers 

and to test them. Our study is based on two (2) labelling 

classes. The training phase consists of two classes: The class 

of chainsaw sounds that we refer to as the chainsaw class and 

the class of other sounds referred to as the forest class. The 

chainsaw class is made up of sounds recorded in the 

Armainvilliers Sunday forest (Gretz-Armainvilliers, France) 

and chainsaw sounds from an online database. The forest class 

is made up of the sounds of various animals and birds, vehicle 

sounds and meteorological sounds (rain). These sounds all 

come from online databases [1]. 

 

The test phase is as follows: The chainsaw class: this 

consists of sounds recorded at two forestry sites in Côte 
d’Ivoire: the Yapo-Abbe classified forest (Agboville, Côte 

d’Ivoire) and the national floristic center (Abidjan, Côte 

d’Ivoire). 

 

The forest classroom: here we find a variety of animal 

and bird sounds, motorbike sounds and storm sounds. All these 

sounds come from online databases. 

 

The recordings we made in the forestry centers were 

made using the DR-05 Dictaphone with a sampling rate of 44.1 

kHz. The recording distances were between 10 m and 100 m 
between the transmission source and the Dictaphone. 

 

We have a total of 2530 sound samples for the training 

phase and 1172 sound samples for the test phase. All the sound 

samples are stereo in WAV format and 5 seconds long. The 

distribution of sound samples by phase and class is given in 

Table 1. 

 

Table 1 Breakdown of Sound Samples by Phase and Class 

Training phase Test phase 

Forest class Chainsaw class Chainsaw class 

2173 357 565 

 

B. Description of the Calculation of Mel’s Frequency 

Cepstral Coefficients 
 

 MEL Frequency Cepstral Coefficients 

MEL frequency cepstral coefficients (MFCC) are the 

most efficient descriptors used in speech-related applications 

[12]. The speech signal is represented as a short-term power 

spectrum of sound, based on the discrete cosine transform of a 

logarithmic power spectrum over a non-linear frequency scale 

of Mel. MEL frequency cepstral coefficients give better 

frequency resolution of low-frequency study samples. As a 

result, it can be applied to all types of signal and is not affected 

by noise. Mel’s cepstral coefficients are obtained by the DCT 

(Discrete Cosine Transform) of Mel’s frequency spectrum: 
 

𝑴𝑭𝑭𝑪𝒌 = ∑ (𝐥𝐨𝐠𝟏𝟎(𝑷𝒑)
𝐜𝐨𝐬(𝒌(𝟐𝒋−𝟏))𝝅

𝟐𝑴
)𝒋=𝟏                         (1) 

 

The frequency spectrum of Mel  𝑃𝑝  is : 

 

𝑷𝒑 = ∑ (𝒅(𝒑,𝝂)𝑭𝝂)
𝑵

𝟐
−𝟏

𝝂 ,   𝒑 = 𝟎, 𝟏, … , 𝑴                        (2) 

 

Where, N is the number of samples in a speech frame, 

𝑑(𝑝,𝜈)is the amplitude of the band-pass filter of index 𝑝 for 

frequency 𝜈 and 𝐹𝜈 the Fourier transform of the signal [13]. 

The first thirteen (13) coefficients are retained to serve as 
relevant signal characteristics, as the lower order coefficients 

contain most of the information such as the average power of 

the input signal and the distribution of spectral energy between 

low and high frequencies. Selecting a larger number of 
cepstral coefficients leads to greater complexity in the [14] 

system. 

 

 MEL Frequency Cepstral Coefficients Calculation 

Three (03) methods of obtaining MFCCs depending on 

the structure of the signals are presented: Time Domain 

Channel Fusion (TDCF); cepstral Domain Channel Fusion 

(CDCF); One Channel 

 

 Time Domaine Channel Fusion'(TDCF) 

The acoustic signal employed to obtain Mel's frequency 

cepstral coefficients is the result of merging the two channels 
of the stereo signal obtained after recording. This approach is 

analogous to that developed in [1]. This method of 

restructuring the study signal will be compared with the case 

where a single channel is used to obtain the MFCCs. This 

comparison will enable us to assess its impact on the results 

obtained. 

 

 The Resulting Signal is as Follows: 

 

 
 

 𝐶𝐿𝑖
 left channel component 

 𝐶𝑅𝑖
: left channel component 

 𝑚: number of samples in the signal frame. 

https://doi.org/10.38124/ijisrt/IJISRT24NOV1194
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This restructuring of the acoustic signal is applicable to 

both the test phase and the training phase samples. 

 

 

The resulting signal, designated as 𝑠𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡(𝑛), is then 

segmented into a one-second signal, as illustrated in Fig. 1, 

with no overlap between the sub-frames 𝒔𝒓𝒆𝒔𝒖𝒕𝒂𝒏𝒕𝒊
(𝒏)). 

 
Fig 1 Segmentation of the Signal Resulting from Merging the Left and Right Channels 

 

We compute the MFCCs for each of the 10 "subframes" 

𝒔𝒓𝒆𝒔𝒖𝒕𝒂𝒏𝒕𝒊
(𝒏), for which we keep the first N MFCCs. We use 

the 10 ×  𝑁 coefficients obtained to construct the descriptor 

vector of the signal. This vector descriptor is of type 1 ×
 10𝑁. 

 

 Cepstral Domaine Channel Fusion(CDCF) 

In this approach, the calculation of cepstral coefficients 

is performed on the left channel and the right channel taken 

separately ((4) and (5). 
 

 
 

 
 

And then the results are combined according to the 

approach defined in (1), this time in the cepstral domain. we 
obtain the values of the MFCC as defined in (6) 

 

 
 

 One Channel 

The calculation of cepstral coefficients is carried out by 

considering a single channel: either the left or the right 

channel. 

 

The steps of this calculation are given in (7) and (8) 

 

𝒓𝒆𝒄𝒐𝒓𝒅𝒊𝒏𝒈𝒄𝒉𝒂𝒏𝒏𝒆𝒍−𝒍𝒆𝒇𝒕  =  [𝑳𝟏; 𝑳𝟐; … ; 𝑳𝒎−𝟏; 𝑳𝒎]            (7) 

 

 
 

C. The Mel Frequency Cepstral Coefficients 

Mel’s frequency cepstral coefficients are calculated over 

the following frequency band: [170 Hz-21000 Hz]. The choice 

of 170Hz as the lower frequency is justified by the observation 

of a spike in the vicinity of this frequency in the amplitude 

spectrum of the acoustic signal from our chainsaw. And the 

upper limit of 22 kHz is taken to be equal to half the sampling 

rate of our DR-5 Dictaphone. The different bandwidths used 

range from 3 kHz to 21 kHz, increasing by 2 kHz for each new 

calculation phase. The number of Mel filters chosen is 35 [2] 

and the duration of the ”sub-frames” si(n) is fixed at 1s. 

 

D. k- Neighborhoods Algorithm (KNN) 

The objective of this study not being to assess the 

effectiveness of the classifiers, we made the choice of the 

KNN whose results were demonstrated to be satisfactory in 

[1]. 
 

KNN is a fundamental training algorithm that is often 

used for categorization, pattern recognition, and prediction 

[10]. The Distance measure between datasets is used by KNN 

to discover data neighbors. This approach is then used to 

address classification and regression problems. Furthermore, 

the k value (where k is an application variable) will detect all 

initial feature cases that are suitable for the new case and will 

surround all occurrences in order to obtain the incident for a 

similar place [11]. As a result, the Value of k is important and 

should be carefully planned, as a low k value could result in 
over-fitting. The value of k will be 3 [2]. 

 

III. RESULTS 

 

A. Nature Et Largeur De La Bande De Frequence Acoustique 

First, we consider only the TDCF restructuring model. 

Based on this approach, we study the parameters related to the 

nature of the acoustic frequency band and its width. Once these 

two parameters have been highlighted, they will serve as a 

basis for comparing the different signal restructuring 

approaches 
 

 Analysis of the Impact of the Width of the Acoustic Band 

on the Classification Rate 

The classification results for the chainsaw samples from 

the test phase are shown in Fig. 3 to 7.We can see that the 

classification rate depends on the width of the acoustic band: 

the best classification rates are obtained for acoustic 

https://doi.org/10.38124/ijisrt/IJISRT24NOV1194
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bandwidths greater than 1 kHz. However, these classification 

rates do not necessarily increase with the increase in the width 

of the acoustic band used to calculate the MFCCs. The best 

classification rates 97.69% is obtained for a bandwidth of 3 

kHz over the acoustic band [21170 Hz-24170 Hz].Arranging 

the 35 Mel filters over the entire study spectrum is not an 

approach that is likely to improve the classification rate: for 

the widest acoustic bandwidth (21 kHz) the best classification 

rates is 92.92%. This value rates is 4.76% lower. 

 

 
Fig 2 Classification Rates for Step 3000 Hz and Step 5000 Hz 

 

 
Fig 3 Classification Rates for Step 7000 Hz and Step 9000 Hz 

 

 
Fig 4 Classification Rates for Step 11000 Hz and Step 13000 Hz 
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Fig 5 Classification Rates for Step 15000 Hz and Step 17000 Hz 

 

 
Fig 6 Classification Rates for Step 19000 Hz and Step 21000 Hz 

 

 Analysis of the Influence of the Nature of the Acoustic Band 
on the Classification Rate 

The acoustic bands over which the MFCCs are calculated 

range from low frequencies ([100 Hz-300 Hz]) to ultrasound 

(16 kHz).The best classification rates for all acoustic 

bandwidths are obtained either for ultrasound (Fig. 3 to 5 and 

Fig 7) or for bandwidths including ultrasound (Fig 6).The 

ultrasound concerned is power ultrasound ([16 kHz-1 MHz]), 

and more specifically low-frequency ultrasound ([16 kHz-100 

kHz]); These results for this acoustic band can be explained by 

the fact that many animal species do not ’communicate’ over 

long periods of time using ultrasound. Fig. 8, where we see the 

spectrogram of a bird (the canary) and a frog, illustrates this 
fact. Studies on animal ”communications” on ultrasonic bands 

have been carried out by various authors   [12] [13] [14]. On 

the other hand, motorized machines, because of their 

mechanical make-up, are able to maintain the same cadence, 

and therefore the same energy, over longer periods of time. 

In the case of chainsaw sounds, we found an energy of 
over-50dB for ultrasound over longer recording times (12s), in 

contrast to the sounds of animal species. For some samples, 

constant values close to - 40dB over more than 5s of recording 

exist (Fig. 9).This energy distribution contrasts well with that 

of animal sounds. This property is all the more important as 

the calculation of MFCCs is based on the recovery of energy 

by Mel filter banks, which makes classification easier. On the 

basis of this observation, we understand the better 

classification results obtained for ultrasound. The 

classification rates for chainsaws should therefore be error-

free, given this energy difference. However, this is not the 

case. It is important to consider the acoustic samples from 
motor vehicles and aircraft. These samples have an energy 

density in the ultrasound with certain similarities to the energy 

distribution observed for chainsaw sounds (Fig. 10). 

https://doi.org/10.38124/ijisrt/IJISRT24NOV1194
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Fig 7 Spectrogram of Acoustic Samples of some Animal Species 

 

 
Fig 8 Spectrogram of Sound Samples from Chainsaws 

 

 
Fig 9 Spectrogram of Samples of a Tractor and a Motorbike 
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This similarity inevitably affects the classifiers’ ability to 

carry out error-free labelling. Taking account of this energy 

distribution over the recording time is very important. 

 

The calculation of Mel frequency cepstral coefficients is 

essentially based on the recovery of energy by Mel frequency 

banks. As a result, the energy recovered over the 5s will be 

extremely different depending on the spectrogram. 
 

 Study of the Calculation of MFCCs on Octave Band Center 

Frequencies 

The results obtained in the previous sections were based 

on a random approach to the choice of acoustic bandwidth. A 

more detailed study should be carried out on predefined 

bandwidths whose study properties relate to the acoustic 

perception that humans have of their environment, following 

the example of the MFCC calculation. 

 

In this sense, we analyze octave band center frequencies. 
We therefore consider the entire range of octave band center 

frequencies from 31.5 Hz to 16 kHz. 

 

Fig. 11 shows the classification rates of chainsaw sounds 

for each classifier as a function of the chosen octave band 

center frequency. The best classification rates for the two 

classifiers are obtained for the central frequency of 16 kHz for 

the acoustic band of [11313 Hz-22627 Hz]. The values of these 

identification rates is respectively 98.40% . 

 

In order to fix the best acoustic band, either the [11313 

Hz-22627 Hz] band (center frequency 16 kHz) or the [21170 
Hz-24170 Hz] band (bandwidth 3 kHz), we study the 

classification rates of the forest class warning samples from 

the test phase. 

 

Table 2 gives the best classification rates for the 

chainsaw class and forest class samples in the test phase. And 

table 3 highlights the overall classification rate of the test 

phase samples. This overall classification rate relates to the 

percentage of samples from the test phase correctly classified 

out of the 1172 sounds. 

 

 
Fig 10 Classification Rate for Chainsaws in the Test 

 

We retain as the best ultrasonic tape and best classifier, 

the ultrasonic tape and the classifier for which the 

classification rates are ≥ 98% whether we are talking about the 

overall classification rate. Once the above criteria have been 

met, this approach should have the highest classification rate 
for chainsaw samples. 

 

The best approach is obtained over the ultrasonic band 

[11313 Hz - 22627 Hz] deduced from the use of the central 

octave band frequency of 16 kHz. 

 

Table 2 Comparison of Classification Rates Obtained on Acoustic Bands 

[11313 - 22627] Hz [21170 - 24170] Hz 

chainsaw class Forest  class chainsaw class Forest   class 

98.40% 98.68% 97.7% 88.13% 

 

Table 3 Comparison of Acoustic Bands: Overall Classification Rate Values 

[11313 - 22627] Hz [21170 - 24170] Hz 

overall rate overall rate 

98.54% 92.74% 

 

B. Change in Classification Rate due to Data Structure 

We consider at preset the impact of the data restructuring 

mode on the classification rate. We keep the two central octave 

band frequencies for which the classification rates were the 

most important namely 8000Hz and 16000 Hz. 

 

Fig. 12 and 13 show the evolution of the chainsaw 

classification rates according to the signal structuring method 

for obtaining Mel's frequency cepstral coefficients. For both 
study frequencies, the TDCF method offers better 

classification rates compared to the CDCF method and the one 

channel method. Of the three signal restoration methods, the 

one channel approach has the lowest classification rates. 

 Compared to the TDFC Method, 

 

 For the 16000Hz frequency: We have a decrease of 14.87% 

for the CDCF and 16.46% for the one channel. 

 For the 8000 Hz frequency: We have a decrease of 43.89% 

for the CDCF and 50.09% for the one channel. 
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Fig 11 Classification Rate for 16000Hz 

 

 
Fig 12 Classification Rate for 8000 Hz 

 

IV. DISCUSSION 
 

The nature and width of the acoustic frequency bands in 

the calculation of the Mel frequency cepstral coefficients is a 

determining factor for the optimization of the results obtained. 

The values presented in the articles [15] [16] [17] although 

indicating good classification rates in the use of MFCC, leave 

no information on these two notions. Also, the internal 

structure of the signals must be indicated, but in the articles 

[18][19], just as in the above-mentioned articles, this 

information does not appear. 

 

Some results obtained in these articles that could be 
judged insufficient, could experience a revaluation with the 

optimal combination between nature and width of the acoustic 

frequency bandwidth and internal structure of the signal. 

 

Therefore, the judgement of the effectiveness or not of an 

algorithm and/or the quality of the descriptors depends on a 

large number of parameters with regard to our results obtained 

and that of the articles [18] [1] 

V. CONCLUSION 

 

The study highlighted the interest of choosing low-

frequency ultrasound as the band for obtaining MFCCs. This 

choice, combined with a restructuring of the acoustic signal, 

made it possible to better exploit the description properties of 

MFCCs for the classification of chainsaw noise samples. This 

judicious choice allowed us to obtain a classification rate of 
98.40% for chainsaw noise samples. 
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