
Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24NOV1658 www.ijisrt.com 2464

Text to Web Application Using LLM

Aishwarya G1

Department of ISE

RNS Institute of Technology

Sathwik C M2

Department of ISE

RNS Institute of Technology

Shashank V H3

Department of ISE
RNS Institute of Technology

Subham Mohanty4

Department of ISE
RNS Institute of Technology

Sudeep D5

Department of ISE

RNS Institute of Technology

Abstract:- This paper provides an extensive survey on

the application of large language models (LLMs) in

automating web application development, specifically

by translating natural language descriptions into

functional code. By examining recent advancements,

core challenges, and future directions, this survey

outlines the capabilities and transformative potential

of LLMs in software engineering. Special emphasis is

placed on their role in reducing the technical barriers

of web development through text-to-web app

transformations, bridging the gap between user-friendly

requirements and operational implementation. This

survey also identifies key areas for improvement,

offering insights into the advancement of LLM-driven

web automation.

Keywords:- Large Language Models (LLMs),Text-to-Web

Application Generation, Automated Code Generation,

Machine Learning in Web Development, Natural Language

Processing (NLP),Static Web Application Generator,

Web Development Automation, Frontend Code

Generation HTML/CSS/JavaScript Code Generation,

Web App Scaffolding, NLP-Driven Software Engineering

I. INTRODUCTION

In recent years, web applications have become

ubiquitous across domains, serving as essential platforms
for communication, commerce, education, and data

management. The development of these applications,

however, remains a complex, multi-step process that

requires technical expertise, considerable time, and

significant resources. Traditional software engineering

workflows involve translating requirements into code,

managing version control, testing, and deploying

applications. This approach, while effective, can be

costly, particularly for non-technical users who must rely

on developers to convert ideas into functional products.

The emergence of large language models (LLMs)
introduces a promising alternative, enabling the direct

transformation of natural language prompts into

functional code. LLMs such as GPT-4, Codex, and Bard

are trained on vast datasets and equipped with the

capability to understand and generate human-like

language. These models leverage natural language

processing (NLP) techniques to parse user input, identify

the intended functionality, and create code that aligns with

established programming conventions. Through LLMs,

developers and non-technical users alike can describe the
intended features and receive near- instantaneous output

in the form of executable code, Streamlining the

development pipeline.

II. LITERATURE SURVEY

The literature on text-to-code transformation and the

deployment of LLMs in software development reveals

both promising advances and persistent obstacles. Here,

we explore notable studies on program synthesis, the

application of LLMs in model-driven engineering, and
the limitations in natural language processing for

software development.

 Program Synthesis and LLMs:

Chen et al. (2021) conducted one of the most

foundational studies on using LLMs for program synthesis,

showcasing the potential of models like Codex to generate

code from natural language prompts. In program

synthesis, LLMs are tasked with understanding user

inputs that describe specific software functionalities and

generating code accordingly. This study reveals that

LLMs trained on large datasets can effectively emulate
programming structures, syntax, and patterns, providing

solutions to basic programming problems. Codex, for

example, can translate the prompt “create a login page”

into a combination of HTML, CSS, and JavaScript code

that enables user authentication. However, while LLMs

perform well with short, precise prompts, their

effectiveness diminishes as tasks become more complex

or require extensive contextual understanding.

 Model-Driven Engineering (MDE):

Schröder (2023) explored the integration of LLMs
in Model-Driven Engineering (MDE), a method where

applications are represented through models that serve as

templates for code generation. This approach is

particularly effective in automating repetitive tasks, such

as generating CRUD (Create, Read, Update, Delete)

http://www.ijisrt.com/

Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24NOV1658 www.ijisrt.com 2465

operations in web applications. By filling in predefined

templates based on user instructions, LLMs reduce

development time and simplify the process of creating

standard web components. Schröder also identified some

challenges in applying MDE with LLMs, particularly

around handling complex logic, dependencies, and

ensuring that the generated code aligns with the broader

application architecture. Despite these limitations, the
study emphasizes the potential of LLMs to revolutionize

MDE by reducing manual coding efforts.

 Challenges in NLP for Development:

El Asri et al. (2024) discussed critical challenges

that arise when LLMs are tasked with interpreting abstract

or incomplete user requirements. Unlike traditional

programming, where code specifications are explicit,

natural language prompts can be vague or ambiguous,

often lacking the precision needed for accurate code

generation. For example, a prompt like “create a

responsive dashboard” provides minimal guidance on
what data the dashboard should display or how it should be

organized. To address this, El Asri et al. proposed a

multi-turn dialogue approach, where LLMs iteratively

ask clarifying questions to refine their understanding.

This study highlights that, for LLMs to be effective in

complex projects, they must be able to retain context over

multiple exchanges and refine outputs based on evolving

instructions.

 Security Concerns in LLM-Generated Code:

In a study by Patel et al. (2024), security issues
inherent to LLM- generated code are explored.

Automated code generation can inadvertently introduce

security vulnerabilities, such as insufficient input

validation, improper data handling, and inadequate

authentication mechanisms. For instance, if an LLM

generates a login page but does not enforce secure

password requirements or include data encryption, the

resulting application could be susceptible to attacks. Patel

et al. recommend that LLMs incorporate a security-aware

layer that scans generated code for common vulnerabilities.

They suggest that incorporating cybersecurity standards

directly into the LLM training datasets could reduce the risk
of generating insecure code, making these tools safer for

widespread use in application development.

 Improving Web Element Localization by Using a Large

Language Model:

This study assesses the VON Similo LLM against a

baseline with 804 web element pairs, focusing on

identification accuracy and execution times. The

approach improves accuracy in identifying web elements

and reduces false positives, potentially lowering

maintenance costs. However, it notes slower execution
times and increased costs with the GPT-4 model.

VON Similo leverages GPT-4’s human-like reasoning for

better web element localization.

 Requirements are All You Need:

From Requirements to Code with LLMs: Bingyang

(2024) discusses an LLM that interprets requirements to

create functional specifications, object-oriented models,

and unit tests, illustrated through a web project case study.

This method enhances software development efficiency

by automating code generation from structured

requirements. However, the LLM struggles with

ambiguous inputs and requires well-structured

requirements to operate effectively. The paper presents a

tailored LLM that uses a "Progressive Prompting"
method for incremental guidance.

 Development of Web Application for Practicing

Finnish Language Writing Skills:

Dmitrii Bacherikov (2024) explores using ChatGPT

for interactive Finnish exercises with instant feedback,

supported by Sanakirja.fi for word explanations. This

approach aids YKI test preparation but needs refinement

for accuracy and consistency due to evolving language

models. The study introduces a taxonomy for integrating

LLMs in software development, addressing key

applications and challenges.

 Web App for Retrieval-Augmented Generation:

Implementation and Testing:

Radeva et al. (2024) present PaSSER, a tool that

combines retrieval- augmented generation (RAG) with

LLMs to enhance testing in smart agriculture. While it

improves performance evaluation using ROUGE and

BLEU metrics, high computational demands and

integration challenges may limit scalability. The tool also

enhances transparency and security via blockchain

integration.

 Large Language Models as Software Components:

Irene Weber (2024) creates a taxonomy for

categorizing LLM-integrated applications, emphasizing

their architectural interactions. The study highlights how

LLMs improve software development through natural

language interaction and task automation but notes ethical

concerns and integration complexities as potential

obstacles.

 When LLM-based Code Generation Meets the

Software Development Process:
Feng Lin and Dong Jae Kim (2024) introduce LCG,

an agent-based code generation technique that uses LLM

agents and self- refinement to improve output quality.

LCG enhances code generation and reduces code smells

through collaboration among agents across software

process models. However, integrating multiple LLM

agents can lead to miscommunication and limit flexibility

in varied development contexts. The framework focuses

on accuracy and stability through software process models

and prompt engineering techniques.

 Objectives

 Assess how well LLMs interpret natural language

requirements and generate functional web code.

 Identify obstacles that prevent full automation in web

development, such as ambiguous inputs and context

understanding.

http://www.ijisrt.com/

Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24NOV1658 www.ijisrt.com 2466

 Propose strategies to enhance accuracy, robustness,

and user-friendliness of LLM-driven applications.

 Collect user feedback to evaluate the quality and

usability of LLM-generated code.

 Investigate how context affects code generation

accuracy and adaptability.

 Explore the potential for LLMs to assist in

collaborative coding tasks like brainstorming and
debugging.

 Measure LLM performance across various

programming languages to identify strengths and

weaknesses.

 Proposed System

The proposed system uses a decentralized blockchain-

based approach to enhance shipment tracking across the

supply chain. By employing smart contracts, it automates

updates to shipment status and verifies ownership records

at each stage, providing real-time, immutable updates
accessible to authorized participants. This decentralized

structure ensures data integrity and security, as records

cannot be altered once added, and removes reliance on a

single point of failure.This Decentralized Application

(DApp) overcomes limitations of traditional systems that

rely on intermediaries, which can slow processes and

increase costs. Instead, authorized takeholders can track

shipments at every stage directly through the blockchain,

enhancing transparency and reducing the need for third

parties. This system fosters trust and enables more

efficient, cost-effective supply chain management.

 Advantages of Proposed System

 Significantly reduce the time required to create

functional prototypes, allowing developers to quickly

gather user feedback and iterate on designs.

 Improve accessibility for non-technical users by

enabling them to articulate requirements in plain

language, reducing the need for specialized coding

knowledge.

 Ensure framework adaptability by producing code

compatible with multiple frameworks like React,

Angular, and Flask, allowing developers to choose the

best fit for their projects.

 Enhance workflow efficiency by automating repetitive

coding tasks, freeing developers to focus on higher-

level design and architecture.

III. METHODOLOGY

 System Architecture Design:

The system is structured into modules, with each

module handling distinct aspects of the development

process, such as frontend code synthesis, backend

integration, and user interface design. This modular

design allows for updates or improvements to specific

components without impacting the entire system,

enhancing scalability and flexibility.

 Security and Quality Assurance Protocols:

Given the risks associated with automated code

generation, the system includes a security-focused quality

assurance protocol. This protocol incorporates libraries

for secure input validation, authentication, and encryption,

ensuring that sensitive data is handled responsibly. The

security layer also performs vulnerability checks on

generated code to prevent common security issues such

as SQL injection and cross-site scripting (XSS).

 Performance Benchmarking:
Performance assessments are conducted to verify that

generated applications meet industry standards for

functionality, efficiency, and reliability. Benchmarking

tools simulate real-world scenarios to evaluate code

quality in terms of latency, load handling, and resource

consumption, providing valuable feedback for model

refinement.

 System Architecture

Fig 1 System Architecture

http://www.ijisrt.com/

Volume 9, Issue 11, November – 2024 International Journal of Innovative Science and Research Technology

 ISSN No:-2456-2165

IJISRT24NOV1658 www.ijisrt.com 2467

 The diagram shows an interactive webpage generation

system using a Large Language Model (LLM). The

process begins with the user entering a plain-text

prompt on an interactive webpage, which is then sent

to the system for processing.

 Within the system, the LLM first validates the prompt

to ensure it meets required standards. Once validated,

it generates the corresponding webpage code. This
code then goes through a validation step to check for

functionality and accuracy. If validation fails, the LLM

refines the prompt and repeats the process until valid

code is generated.

 After validation, the code is sent to a server, which can

operate locally or globally. The server processes the

code, initially displaying a loading page and then

rendering the final interactive webpage for the user.

 This iterative cycle of prompt refinement and

validation ensures that the user receives an accurate and

functional webpage based on their input.

IV. CONCLUSION

The fusion of natural language processing and code

generation through LLMs offers transformative

possibilities for web development. By automating the

generation of web applications from textual inputs, LLMs

provide an intuitive and accessible environment for a

broad range of users, from novice developers to non-

technical stakeholders. Despite current limitations in

handling complex logic and ensuring robust security,

LLM-based systems show significant promise. As models
evolve to handle contextual awareness, user feedback,

and enhanced security features, LLMs are poised to

become integral components of the software engineering

process, promoting efficiency and innovation in web

application development.

REFERENCES

[1]. Weber, I. "Large Language Models as Software

Components: A Taxonomy for LLM-Integrated

Applications." Submitted on 13 Jun 2024.
[2]. Lin, F., Kim, D. J., Chen, T. H. "When LLM-

based Code Generation Meets the Software

Development Process." 2024.

[3]. Bacherikov, D. "Development of Web Application

for Practicing Finnish Language Writing Skills

with the Help of LLMs." 2024.

[4]. Cui, Y. "Insights from Benchmarking Frontier

Language Models on Web App Code Generation."

Submitted on 8 Sep 2024.

[5]. Wei, B. "Requirements are All You Need: From

Requirements to Code with LLMs." Submitted on

14 Jun 2024, last revised 17 Jun 2024.
[6]. Nass, M., Alégroth, E., Feldt, R. "Improving Web

Element Localization by Using a Large Language

Model." 2024.

[7]. Radeva, I., Popchev, I., Doukovska, L., Dimitrova,

M. "Web Application for Retrieval-Augmented

Generation: Implementation and Testing."

Electronics 2024.

[8]. Thippeswamy, B. M., Ramachandra, H. V.,

Rohan, S., Salam, R., Pai, M. "TextVerse: A

Streamlit Web Application for Advanced Analysis

of PDF and Image Files with and without Language

Models." IEEE, 2024.

[9]. Ethape, P., Kane, R., Gadekar, G., Chimane, S.

"Smart Automation Using LLM." International

Research Journal of Innovations in Engineering
and Technology, Dharmapuri, Vol. 7, Iss. 11, Nov

2023.

[10]. Schröder, C. "From Natural Language to Web

Applications: Using Large Language Models for

Model- Driven Software Engineering." 2023.

[11]. Voronin, D. N. "Development and Evaluation of

an LLM- Based Tool for Automatically Building

Web Applications." S.B. Electrical Engineering and

Computer Science, Massachusetts Institute of

Technology, 2023.

[12]. Austin, J., Odena, A., Nye, M., Bosma, M.,

Michalewski, H., Dohan, D., Jiang, E., Cai, C.,
Terry, M., Le, Q., Sutton, C. "Program Synthesis

with Large Language Models." Google Research,

2023.

http://www.ijisrt.com/

	I. INTRODUCTION
	II. LITERATURE SURVEY
	 Objectives
	 Proposed System
	 Advantages of Proposed System
	III. METHODOLOGY
	 System Architecture
	Fig 1 System Architecture
	IV. CONCLUSION
	REFERENCES

