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Abstract:- The power system's operating point fluctuates 

constantly due to its extremely nonlinear nature. As a 

result, both actual and reactive power are impacted by the 

extremely low system performance. Real power shifts 

mostly impact the Changes in voltage magnitude are the 

primary determinant of changes in reactive power and 

system frequency. Reactive and real capabilities can 

therefore be managed independently. The Automatic 

Voltage Regulator (AVR) regulates the voltage magnitude 

and, therefore, the reactive power, whereas the Load 

Frequency Control (LFC) controls the actual power. The 

regulating of generator power output is known as load 

frequency control, or LFC, in an interconnected system. 

Generally speaking, fixed gain controllers are made for 

nominal operating settings and don't offer the optimal 

control performance under a variety of operating 

circumstances. Therefore, it is preferable to monitor 

operating circumstances and compute the control using 

updated parameters in order to maintain system 

performance close to optimal. Using the "Boundary Locus 

Method," a novel approach to identifying stabilising PID 

controllers for the LFC control system loop has been put 

forth in this study.  

 

I. INTRODUCTION 

 

Unusual circumstances like generating failures and load 

variations lead to the system frequency degrading from the 
intended level. With an appropriate LFC design, the generator 

loads must be controlled based on the ideal frequency value 

in order to guarantee the power supply's quality. Several 

strategies have been used in the past to account for parametric 

uncertainty and nonlinear limitations while maintaining 

system performance close to its ideal operating state [1].  

 

A controller is a device that has the ability to rectify 

deviations by comparing regulated values with intended 

values. Achieving system stability is the primary goal of 

every controller. By reducing steady state errors, controllers 

increase steady state accuracy. Stability increases together 
with the precision of the steady state. Additionally, they aid 

in lowering the offsets generated inside the system. With 

these controllers, the system's maximum overrun may be 

managed. Additionally, they aid in lowering the system's 

noise signals. With these controls, the over-damped system's 

slow reaction may be accelerated. This study uses a novel 

approach to calculate all stabilising PI controllers [2]. and [3] 

is provided. Plotting the stability boundary locus in the (kp; 

ki) plane and then determining the stabilising values of a PI 

controller's parameters form the basis of the suggested 

approach. By solving a series of inequalities without the use 

of linear programming, the method does not need sweeping 
over the parameters or the Pade approximation. As a result, it 

provides a number of significant benefits above the current 

findings in this area. In addition to stabilisation, stabilising PI 

controllers that meet predetermined gain and phase margins 

are calculated using this technique.  PID controllers for 

control systems with and without time delay are also designed 

using the suggested methodology. The (kp; ki), (kp; kd), and 

(ki; kd) planes yield the limiting values of a PID controller 

that stabilise a particular system with time delay. 

 

II. BOUNDARY LOCUS METHOD 

 
A. Design of Pi Controller 

Examine Figure 1's single-input single-output (SISO) 

control system.  

 

 
Fig 1: A SISO Control System 

 

Where 𝐺(𝑆)
𝑁(𝑆)

𝐷(𝑆)
             (1) 

 

Is the plant that has to be managed, and C(s) is the form's PI 

controller. 

 

𝐺(𝑆) = 𝐾𝑝 +
𝐾𝑖

𝑆
=

(𝐾𝑝𝑆+𝐾𝑖)

𝑆
          (2) 

 

The challenge is to calculate the PI controller's settings 

using Eq. (2), which stabilises the system in Fig. 1.  

Substituting s = jω after breaking down the numerator and 

denominator polynomials of Eq. (3) into their even and odd 

components yields  

 

𝐺(𝑗𝜔) =
𝑁𝑒 (−𝜔2)+𝑗𝜔𝑁𝑜(−𝜔2)

𝐷𝑒 (−𝜔2)+𝑗𝜔𝐷𝑜(−𝜔2)
          (3) 
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The system's characteristic polynomial ∆(s) is shown in 
Fig. 

 

 

Hurwitz stability is 1. The characteristic equation from 
Fig. 1 may be expressed as ∆(s)=1+G(s).C(s)  

The system's closed loop characteristic polynomial may be 

expressed as 

 
Δ(S) =  [KiNe(−ω 2 )–  Kpω 2N0(−ω 2 )–  ω 2D0(−ω 2 )] +  j[KpωNe(−ω 2 ) +  KiωN0(−ω 2 ) +  ωD0(−ω 2 )] =  0  (4) 

 

The real and imaginary components of ∆(s) are thus equal to zero, yielding 

 

[Kpω Ne(−ω 2 ) +  KiωN0(−ω 2 ) +  ωD0(−ω 2 )]  =  0          (5)  

 

And  

 

KpωNe(−ω 2 ) +  KiωN0(−ω 2 )  =  − ωD0(−ω 2 )          (6) 

  

Let  

Q(ω) = -ω 2N0(-ω 2 ), R(ω) = Ne(-ω 2 )   

S(ω) = ωNe(-ω 2 ), U(ω) = ωN0(-ω 2 )   

X(ω) = ωD0(-ω 2 ), Y(ω) = -ωDe(-ω 2 )                      (7) 

    

Equations (5) and (6) may therefore be expressed as  

 

𝐾𝑝𝑄(𝜔) + 𝐾𝑖𝑅(𝜔) = 𝑋(𝜔)  

 

𝐾𝑝𝑆(𝜔) + 𝐾𝑖𝑈(𝜔) = 𝑌(𝜔)                       (8) 

 

From these equations  

 

𝐾𝑝 =
𝑋(𝜔)𝑈(𝜔)−𝑌(𝜔)𝑅(𝜔)

𝑄(𝜔)𝑈(𝜔)−𝑅(𝜔)𝑆(𝜔)
                        (9) 

 

And 

 

𝐾𝑖 =
𝑌(𝜔)𝑄(𝜔)−𝐾(𝜔)𝑆(𝜔)

𝑄(𝜔)𝑈(𝜔)−𝑅(𝜔)𝑆(𝜔)
                      (10) 

 

The stability boundary locus, l(kp,ki,w), in the (k,.ki)-

plane may be found by concurrently solving these two 
equations. The parameter plane ((kp,ki)-plane) is separated 

into stable and unstable areas by the stability boundary locus. 

 

The stable zone containing the stabilising kp and ki 

parameter values may be identified by selecting a test point 

within each region. 

 

B. Design of Pid Controllers: 

Assume that Fig. 1's C(s) is a PID controller of type 

 

𝐶(𝑆) = 𝐾𝑝
𝐾𝑖

𝑆
𝐾𝑑𝑆                                (11) 

 

The stability boundary locus in the (Kp, Ki) plane can 

be found by following the steps in Section 1. be readily 

produced in the (kp, kd)-plane for a fixed value of ki, or it can 

be acquired for a fixed value of Kd. For a given value of kp, 

however, the stability boundary locus in the (ki, kd)-plane 

cannot be obtained because will, in this instance, equal zero. 

While the stability area in the (ki,kd) plane for a fixed value 
of Kp is a convex polygon, it is not a convex polygon and 

might not even be a convex set in the (kp, li)-plane for a fixed 

value of kd or in the (kp,kd)-plane for a fixed value of ki. 

However, by employing the stability region found in the (kp, 

ki) plane and (kp, kd)-plane as follows, the stability region in 

the (ki, kd)-plane may be determined for a fixed value of kp.  

 

𝐾𝑝 =
𝜔3𝑁0𝐷0 + 𝜔𝑁𝑒𝐷0

−𝜔2𝑁0
2 − 𝑁𝑒

2
 

 

𝐾𝑖 =
𝜔2𝑁0𝐷𝑒 − 𝜔2𝑁𝑒𝐷0

−𝜔2𝑁0
2 − 𝑁𝑒

2
 

 

Substituting Ki in terms of Kd 

 

𝐾𝑖 =
𝜔2𝑁0𝐷𝑒 − 𝑘𝑑𝜔4𝑁0

2 − 𝜔2𝑁𝑒𝐷0 − 𝐾𝑑𝜔2𝑁𝑒
2

−𝜔2𝑁0
2 − 𝑁𝑒

2
 

 

𝐾𝑖 =
(𝜔2𝑁0𝐷0 − 𝜔2𝑁𝑒𝐷0) − 𝐾𝑑𝜔2(−𝜔2𝑁0

2 − 𝑁𝑒
2)

−𝜔2𝑁0
2 − 𝑁𝑒

2
 

 

𝐾𝑑 =
−(𝜔2𝑁0𝐷𝑒 − 𝜔2𝑁𝑒𝐷0) − 𝐾𝑖(−𝜔2𝑁0

2 − 𝑁𝑒
2)

𝜔2(−𝜔2𝑁0
2 − 𝑁𝑒

2)
 

 

Thus, the stability areas in the (kp, ki) and (kp, kd) planes may be found using these equations.  
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III. BASIC GENERATION CONTROL LOOPS 
 

Each generator in an integrated power system has its 

own LFC and AVR control loop. Fig. 2 shows the schematic 

representation of the voltage and frequency control loop. The 

frequency and voltage magnitude are kept within the 

designated bounds by the controllers, which are configured 

for a certain operating state and handle slight variations in 

load demand. Variations in the rotor angle δ and, 

consequently, the frequency f, are the primary determinants 

of slight variations in actual power. The magnitude of the 

voltage, or the generator excitation, is the primary 
determinant of reactive power [4]. A brief variation in 

generator speed results in a change in angle . For minor 

variations, load frequency and excitation voltage controls are 

therefore non-interactive and amenable to separate modelling 

and analysis. Additionally, because the generating field's time 

constant is significantly less than the turbine's and generator's 

moment of inertia-time constant, the power frequency control 
is slow acting and the excitation control is rapid acting. As a 

result, the load frequency and excitation voltage control are 

examined separately, and there is very little cross coupling 

between the LFC loop and the AVR. Active and reactive 

power demands in a power system are never constant; they 

fluctuate constantly in response to growing or dropping 

trends.  

 

While reactive power is primarily dependent on changes 

in voltage magnitude and less sensitive to frequency 

variations, changes in actual power have an impact on the 
system frequency. System generation control's primary goal 

is to maintain the intended frequency and power exchanges 

across adjacent systems by balancing system generation 

against load and losses. The Automatic Voltage Regulator 

(AVR) and the Load Frequency Controller (LFC) are a 

generation's two primary control loops.  

 

 
Fig 2: Schematic Diagram of LFC and AVR of a Synchronous Generator 

 

IV. LOAD FREQUENCY CONTROL 

 

In the design and operation of electrical power systems, 

load frequency management is crucial. 

 

Furthermore, an LFC system that controls generator 

loading based on frequency must be designed in order to 

guarantee the quality of the power supply. For the following 

reasons, conventional controllers are frequently impractical 

for implementation. All of the system's states influence the 

ideal control. In reality, not every state could be accessible. It 
is necessary to assess the states that are unavailable or absent.  

 

 

 

 

It could not be cost-effective to send all of the data over 

great distances. The control, which depends on load demand, 

is a function of the states. Realising the ideal controller may 

depend on an accurate load demand prediction.  

 

By controlling the system frequency, LFC seeks to 

preserve the system's actual power balance. There is a 

frequency variation whenever the actual power demand 

varies. The turbine governor receives this frequency error 

after it has been amplified, combined, and converted into a 

command signal. By altering the turbine's output, the 
governor works to bring the input and output back into 

balance.  

 

Megawatt frequency or power-frequency (P-f) control 

are other names for this technique. Take into account the 

following LFC Loop Parameters for the analysis: 
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Table 1: LFC 

S.No Block Gain Time Constant 

1 Governor Kg=1 Tg=0.2 Sec 

2 Turbine Kt=1 Tt=0.5 Sec 

3 Generator Inertia Constant H=5 Sec  

4 Governor Speed Regulation R=0.05 Per Unit  

5 The load varies by 0.8 percent for a 1 percent change in frequency, i.e D=0.8   

 

A. Design of Pi Controller 

Single Area Load Frequency Control's analogous transfer function is provided by 

 

𝐺(𝑆) =
△ 𝜴(𝑆)

△ 𝑷𝑳(𝑺)
=

(1 + 𝑇𝑔𝑠)(1 + 𝑇𝑡 𝑠)

(2𝐻𝑠 + 𝐷)(1 + 𝑇𝑔𝑆)(1 + 𝑇𝑡 𝑆) +
1
𝑅

 

 

Changing the parameter values shown in Table 1 now  
 

𝐺(𝑆) =
(1 + 0.2𝑠)(1 + 0.5𝑠)

(2 ∗ 5𝑠 + 0.8)(1 + 0.2𝑆)(1 + 0.5𝑆) +
1

0.05

 

 

𝐺(𝑆) =
0.1𝑆2 + 0.7𝑆 + 1

𝑆3 + 7.08𝑆2 + 10.56𝑆 + 20.8
 

 
Substituting S = j ω; 

 

𝐺(𝑆) =
(−0.1𝜔2 + 1) + 𝑗𝜔(0.7)

(−7.08𝜔3 + 20.8) + 𝑗𝜔(−𝜔2 + 10.56)
 

 

From above equation, we have  

 

R(ω) = −0.1𝜔2 + 1, 𝑈(𝜔) = 0.7𝜔 
 

Q(ω) = −0.7𝜔2, 𝑆(𝜔) = −0.1𝜔3 + 𝜔 
 

Y(ω) = 7.08𝜔3 − 20.8𝜔, 𝑋(𝜔) = −𝜔4 + 10.56𝜔2 

 

𝐾𝑝 =
0.008𝜔5−1.768𝜔3+20.8𝜔

−0.01𝜔5−0.29𝜔3− 𝜔
       (12) 

 

𝐾𝑖 =
−0.1𝜔7−2.9𝜔5+4.396𝜔3

−0.01𝜔5−0.29𝜔3−𝜔3
        (13) 

 

Shifting all of the poles of a control system's 

characteristic equation to a desired area in the complex 

plane—for instance, to a shifted half plane that ensures a 

given response settling time—is crucial for control system 

analysis and design.  

 

This section's goal is to identify all values of S=ρ, where 

(ρ= constant). 

 
Using s+ρ instead of s in quation 1 & 2. 

 

Next, determine the Kp and Ki planes' relative 

stabilisation and ρ =0.5. By repeating the previous step, we 

determine Kp and Ki. 

 

𝐾𝑝 =
0.058𝜔5−0.117𝜔3+38.465𝜔

−0.01𝜔5−0.365𝜔3−1.8906𝜔
        (14) 

 

𝐾𝑖 =
−0.1𝜔7−3.65𝜔5+2.9𝜔3

−0.01𝜔5−0.365𝜔3−1.8906𝜔
        (15) 

 

From the equations 12, 13, 14 and 15, the stability 

region is shown in Fig 3. 
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Fig 3: Stability Regions for ρ=0 and ρ=0.5 

 
B. Design of Pid Controller For Lfc 

Now Consider Kd. Step 1: Let us consider Ki, 

 

𝐾𝑖 =
𝑎1𝜔7 + 𝑎2𝜔5 + 𝑎3𝜔3

−0.01𝜔5−0.29𝜔3 − 𝜔
 

 

Where 𝑎1 = −0.1 − 0.01𝐾𝑑 , 𝑎2 = −2.9 − 0.29𝐾𝑑 , 𝑎3 = 4 − 𝐾𝑑 , 
 

Stability region for 𝐾𝑑 = 0 

 

𝐾𝑖 =
−0.1𝜔7−2.9𝜔5 + 4𝜔3

−0.01𝜔5−0.29𝜔3 − 𝜔
 

 

Stability region for 𝐾𝑑 = 1 

 

𝐾𝑖 =
−0.11𝜔7−3.19𝜔5 + 4𝜔3

−0.01𝜔5−0.29𝜔3 − 𝜔
 

 

Now the plots are obtained for 𝐾𝑝 𝑎𝑛𝑑 𝐾𝑖 

 

 
Fig 4: Stability Region in the (Kp, Ki) plane for Kd=0 and Kd=1 
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 Step 2:  
 

Obtain equation 𝐾𝑑 om terms of 𝐾𝑖 

 

𝐾𝑖= 
0.1𝜔7+𝑏1𝜔5+𝑏2𝜔3+𝑏3𝜔

−0.01𝜔7−0.29𝜔5−𝜔3  

 

Where 𝑏1=2.9-0.01 𝐾𝑖,𝑏2= -4-0.29𝐾𝑖,𝑏3 = 𝐾𝑖 

 

Stability regions for 𝐾𝑖 = 0 

 

𝐾𝑑 =
0.1𝜔7 + 2.9𝜔5 − 4𝜔3

−0.1𝜔7 − 2.9𝜔5 − 𝜔3
 

 

Stability region for 𝐾𝑖 = 1 

 

𝐾𝑑 =
0.1𝜔7 + 2.89𝜔5 − 4.29𝜔3

−0.1𝜔7 − 2.9𝜔5 − 𝜔3
 

 

Now the plots are obtained for 𝐾𝑝𝑎𝑛𝑑 𝐾𝑑 

 
Fig 5: Stability Region in the (Kp, Ki) Plane for Ki=0 and Ki=1 

 
From the above two graphs we obtain 8 points for Kp= 

0 are (36.57, 0), (42.97, 1), (0, 0), (0, 1), (0, - 5.71), (1, -5.55), 

(0, 0), (1, 0)  

 

From these we obtain 4 straight lines 

 

 

𝐾𝑑 = 0.015𝐾𝑖 c -5.71, 𝐾𝑑 =0 

 

𝐾𝑑 = 0.016𝐾𝑖 c -5.71, 𝐾𝑑 =0 

 

Now, sketch these lines' patch shape. Plots for Kp, Ki, 

and Kd are now available. 

 

 
Fig 6(a): Stabilizing Kp, Ki, and Kd Region 

 

http://www.ijisrt.com/


Volume 9, Issue 11, November – 2024                               International Journal of Innovative Science and Research Technology 

  ISSN No:-2456-2165                                                                                                  
 

 
IJISRT24NOV841                                                                 www.ijisrt.com                                                                                 1747 

 
Fig 6(b): Stabilizing Kp, Ki, and Kd Region 

 

 
Fig 7: Simulink LFC Block 

 

 
Fig 8: Plot for Change in Frequency for a Step Load Change of 0.1 p.u 
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Fig 9: Plot for Change in Frequency for a Step Load Change of 0.1 p.u 

 

V. CONCLUSION 

 

The quality of the power supply is defined by the 

stability of its frequency and voltage. In this context, the 
stabilizing PID control parameters for the Load Frequency 

Control (LFC) system, which manages real power and 

frequency, are determined using the "Stability Boundary 

Locus Method." Simulation results indicate that the proposed 

PID controller, based on this method, efficiently and rapidly 

achieves optimal LFC parameters. The results further show 

that the PID controllers offer satisfactory stability by 

balancing frequency overshoot and transient oscillations, 

while maintaining zero steady-state error. Overall, the 

simulations demonstrate the effectiveness of the control 

response. 
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