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Abstract:- Numerical integration is a fundamental 

concept in computational mathematics and plays a 

crucial role in various scientific and engineering 

disciplines. This paper provides a comprehensive review 

of numerical integration techniques, their applications, 

comparative analysis, and conclusions. The discussed 

methods include the trapezoidal rule, Simpson’s rule, 

Gaussian quadrature, and Widdle’s method methods. 

The accuracy, efficiency, and limitations of each method 

are evaluated through theoretical analysis and practical 

examples. 
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I. INTRODUCTION 

 

Numerical integration, aalso known as quadrature, is 

the process of approximating the value of a definite integral 

using numerical methods rather than analytical techniques. 

It is widely used in scientific computing, engineering 

analysis, and numerical simulations where analytical 
solutions are either unavailable or impractical to compute. 

The accuracy and efficiency of numerical integration 

methods are critical for obtaining reliable results in various 

applications. Integration is a process of measuring the area 

plotted on a graph by a function as follows: 

 

 
 

where I  is the total value or summation of  f x dx  

over the range from a  to b . Estimating the value of a 

definite integral from the approximate numerical values of 

the integrand is known as numerical integration. A function 

of a single variable, which is exerted in numerical 

integration, is called quadrature and expresses the area under 

the curve  f x . Furthermore, under the assumption that 

there are no singularities of the integrand in the domain, 

numerical integration comprises a broad family of 

algorithms for computing the numerical values of a definite 
integral. In modern times, numerical integration is essential 

as computers can efficiently perform the analytic integration 

process, thereby bridging the gap between analytical 

schemes and computer processors. 

 

The term "Numerical Integration" was first introduced 

in 1915 in the publication of "A Course in Interpolation and 

Numeric Integration for the Mathematical Laboratory" by 

David Gibb. Numerical integration finds applications in 

various fields such as applied mathematics, statistics, 

economics, and engineering. Several methods are available 

in numerical integration, including Quadrature methods, 

Gaussian integration, Monte-Carlo integration, Adaptive 
Quadrature, and the Euler-Maclaurin formula, which are 

used to calculate functions that are not easily integrated. 

Various formulas of numerical integration are detailed in 

books by S.S. Sastry, R.L. Burden, J.H. Mathews, and 

numerous other authors. Higher-order formulas for the 

evaluation of definite integrals have been investigated by J. 

Oliver, while Gerry Sozio provided a detailed summary of 

different techniques of numerical integration. 

 

In the modern era, numerical integration plays an 

exceptionally significant role in various mathematical 

disciplines. It serves as a crucial bridge between analytical 
calculations and computer-based analysis. A considerable 

number of researchers have conducted comprehensive 

research tasks aimed at modeling and advancing various 

aspects of numerical integration for different objectives. For 

example, Ohta et al [1].  compared various numerical 

integration methods to identify the most effective approach 

for the Kramers-Kronig transformation. They applied the 

analytical formula of the Kramers-Kronig transformation of 

a Lorentzian function as a reference and compared methods 

including Maclaurin’s formula, the trapezium formula, 

Simpson’s formula, and successive double Fourier transform 
methods. Siushansian et al.[2]  demonstrated how the 

convolution integral arising in electromagnetic constitutive 

relations can be approximated by the trapezoidal rule of 

numerical integration. They implemented this 

approximation using a newly derived one-time-step 

recursion relation and presented a comparison of different 

time-domain numerical techniques to model material 

dispersion. Pennestrì et al. [3]  provided a comparison of 

eight widespread engineering friction force models, focusing 

on well-known friction models and delivering a review and 

comparison based on numerical efficiency. In another study, 
Uilhoorn et al. [4]  attempted to find a fast and robust time 

integration solver to obtain gas flow transients within the 

framework of particle filtering. They investigated both stiff 

https://doi.org/10.38124/ijisrt/IJISRT24SEP1327
http://www.ijisrt.com/


Volume 9, Issue 9, September – 2024                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                https://doi.org/10.38124/ijisrt/IJISRT24SEP1327 

 

 

IJISRT24SEP1327                                                                www.ijisrt.com                                                                                2745 

and nonstiff solvers, namely embedded explicit Runge–

Kutta (ERK) schemes. Bhonsale et al. [5]  presented a 

comparison between three different numerical solution 

strategies for breakage population balance models, namely 

the fixed pivot technique, moving pivot technique, and the 

cell average technique. Furthermore, Concepcion Ausin [6]  

compared various numerical integration procedures and 

examined more advanced numerical integration procedures. 
Rajesh Kumar et al. [7]  worked on estimating an integrable 

polynomial discarding Taylor Series. To solve Optimal 

Control Problems, Docquier et al. [8]  explored different 

dynamic formulations and compared their performances, 

focusing on minimal coordinates and deriving dynamics via 

recursive methods for tree-like Multibody Systems (MBS). 

In their paper, Parisi et al. [9] approached the classical 

Newtonian gravitational N-body problem using a new, 

original numerical integration method and provided a new 

algorithm used for a set of sample cases of initial conditions 

in the ’intermediate’ N regime (N=100). Lastly, Brands et 
al. [10]  tested the comparison of hyper-reduction techniques 

focusing on accuracy and robustness. They found that the 

well-known Discrete Empirical Interpolation Method 

(DEIM) is disapproved for their application as it suffers 

from serious robustness deficiencies. 

 

In contrast to these works, we focus on and investigate 

the most general numerical integration methods, namely the 

Newton-Cotes methods involving the Trapezoidal, 

Simpson’s 1/3, and Simpson’s 3/8 rules. We compare 

several procedures and endeavor to identify better methods 

with lower error values among existing methods, aiming to 
estimate more accurate values of definite integrals. 

 

Numerical integration is also engaged in estimating 

likelihoods and posterior distributions using Bayesian 

methods. Moreover, the value of a definite integral 
b

a

y dx , 

which is computed by replacing the function y  with an 

interpolation formula and then integrated between a  and b , 

can be obtained. In many practical circumstances, numerical 

integration is inevitable and more necessary than numerical 

differentiation. 

 

In this paper, we provide a comprehensive review of 

numerical integration techniques, including the trapezoidal 

rule, Simpson’s rule, Gaussian quadrature, and Widdle’s 

method methods. We discuss the underlying principles, 

mathematical formulations, implementation considerations, 

and practical applications of each method. Additionally, we 

conduct a comparative analysis to evaluate the accuracy, 
efficiency, and limitations of these techniques under 

different scenarios. 

 

 

 

 

 

 

 

II. METHODOLOGY 

 

In this section, we describe the numerical integration 

techniques covered in this paper and their respective 

methodologies: 

 

A. Trapezoidal Rule 

Consider the definite integral (x)dx
b

a

f  over the 

interval[ , ]a b . To derive the Trapezoidal rule, we first 

divide the interval[ , ]a b  into n  equal subintervals. Let 

b a
h

n


   be the width of each subinterval. Within 

each subinterval 1[x , x ]i i , we approximate the function 

(x)f  by a straight line passing through the points 

1 1(x , (x ))i if    and (x , (x ))i if . This line 

represents the equation of a trapezoid. 
 

The area iA   of each trapezoid can be calculated as 

the sum of the areas of the two triangles formed by the 

function  (x )if  and the base h : 

 

    1
2

i i i

h
A = f x + f x  

 

Summing up the areas of all trapezoids, we obtain an 

approximation of the total integral: 
 

       
1

1 1

2
2

b n n

i i
i= i=a

h
f x dx A = f a + f x + f b

 
    

   

 

where  ix a ih   for 1,2,...., 1i n  . 

This formula represents the Trapezoidal rule for numerical 

integration. 
 

 Example of Trapezoidal Rule 

One common application of the Trapezoidal rule is in 

numerical integration, where we approximate the value of a 

definite integral when the antiderivative of the integrand is 

unknown or difficult to compute analytically. Consider the 

integral 

21

0

xe dx
 . 
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Using the Trapezoidal rule with n subintervals, we can 

approximate this integral as: 

 

 
1 212 2 2-0 -1

10

2
2

n
ihx

i=

h
e dx e + e +e


  

   
 

 

where 

1 0
h

n


  is the width of each subinterval. 

Another application of the Trapezoidal rule is in numerical 

solutions of ordinary differential equations (ODEs). For 

instance, in Euler’s method for solving first-order ODEs, we 

use numerical integration to approximate the solution at 

each step. 

 

Consider the first-order ODE 2
dy

xy
dx

   with 

initial condition (0) 1y  . We want to approximate the 

solution at 0.2x   using Euler’s method with step size 

0.1h  . Using the Trapezoidal rule to perform the 

integration step, the solution at x= 0.1 can be approximated 

as: 

 

   
   0 0 1 1

0.1 0
2

f x , y + f x , y
y y +h  

 

Where (x, y) 2 xyf   . Substituting the values 

0 0 10, y 1, 0.1x x    and iy   obtained from 

the previous step, we can compute the approximate value of 

(0.1)y . 

 

B. Derivation of Simpson’s 1/3 Rule 

Consider the definite integral (x)dx
b

a

f  over the 

interval[ , ]a b . To derive Simpson’s 1/3 rule, we first 

divide the interval [ , ]a b  into n   equal subintervals. Let 

b a
h

n


   be the width of each subinterval. Within 

each subinterval 1(x , x )i i , we approximate the 

function (x)f   by a quadratic polynomial passing 

through the points 1 1( , (x )i ix f  ,  ( , (x )i ix f , 

and 1 1( , (x )i ix f  . 

 

Let’s denote the midpoint of each subinterval as 

1

2

i i
mid

x x
x  

 . 

 
The quadratic polynomial can be written as: 

 

2(x) ai i i ip x b x c    

 

To find the coefficients ,i ia b , and ic , we 

substitute the values of 1(x )if  , (x ,i)midf , and 

(x )if  into the polynomial. 

 
We get the following system of equations:  

 

 

 

 

2
1 1 1

2

2

i i i i i i

mid,i i mid,i i mid,i i

i i i i i i

f x = a x +b x +c

f x = a x +b x +c

f x = a x +b x +c

  
 






 

 

 

Solving this system of equations, we can find the 

coefficients ,i ia b , and ic . The integral of the quadratic 

polynomial (x)ip   over the interval 1(x , x )i i can be 

analytically computed, and then the integral over the entire 

interval [ , )a b  is approximated by summing up these 

contributions from each subinterval. 

 

After integrating (x)ip  and simplifying, we obtain 

Simpson’s 1/3 rule: 

 

         
even even-1

1 2

4 2
3

b

i i
i= i=a

h
f x dx f a + f x + f x + f b

 
    

 

where 

b a
h

n


 , and ix a ih   for  

0,1,..., .i n . 

 

 Numerical Example of Simpson’s 1/3 Rule 

Let’s consider the definite integral 

21

0

xe dx
 as an 

example. We will approximate this integral using Simpson’s 

1/3 rule. First, we divide the interval [0,1)   into n  
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subintervals. For simplicity, let’s choose 4n  , so each 

subinterval has a width of  

1

4
h  . 

 

The function values at the endpoints of each subinterval are: 
 

2 2(0) 1 (0.25) 0.939413(0) e , f (0.25) e , (0.5) 0.778801,f (0.75) 0.570524,

f(1) 0.367879.

f f    


 

 

Now, we apply Simpson’s 1/3 rule to each pair of subintervals: 

 

      

      

0.5 2

0

1 2

0.5

Subinterval 1:
0 4 0.25 0.5

3

Subinterval 2:
0.5 4 0.75 1

3

x

x

h
e dx f + f + f ,

h
e dx f + f + f .





 

 

Substituting the function values, we get: 

 

  

  

0.5 2

0

1 2

0.5

Subinterval 1: 1
1 4 0.939413 0.778801 0.747998,

3

Subinterval 2: 1
0.778801 4 0.570524 0.367879 0.463177

3

x

x

e dx + +

e dx + +

 

 

 

 

Finally, we sum up the contributions from each 

subinterval to obtain the total approximation of the integral: 

 
1 2

0

0.747998 0.463177 1.211175xe dx + = .  

 

In summary, Simpson’s 1/3 rule approximates the 

integral 
1 2

0

xe dx
  to be approximately  1.211175 using 4 

subintervals. 

 

C. Derivation of Gaussian Quadrature 

Consider the definite integral (x)dx
b

a

f  over the 

interval [ , )a b . Gaussian Quadrature aims to approximate 

this integral using a weighted sum of function evaluations at 

specific points within the interval: 

 

   
1

b n

i i
i=a

f x dx w f x   

 

where xi  are the quadrature points and w
i  are the 

corresponding weights. 

 

The key idea behind Gaussian Quadrature is to choose 

the quadrature points xi  and weights w
i  such that the 

integral is accurately approximated for a wide range of 

functions. These points and weights are typically chosen 

based on orthogonal polynomials, such as Legendre 

polynomials, within the interval [a,b) . 

 

Let’s consider the case of Gaussian Quadrature with n  

quadrature points. The quadrature points ix  are chosen as 

the roots of the 
thn  degree orthogonal polynomial within 

the interval [ , )a b . The weights iw  are determined by 

the integral of the corresponding Lagrange interpolating 

polynomials at these points. 
 

For Gaussian Quadrature with n  points, the accuracy 

of the approximation is exact for polynomials of degree  

2 1n  or less. 

 

The specific values of the quadrature points and 

weights depend on the choice of orthogonal polynomial and 

the interval [ , )a b . 

 

In summary, Gaussian Quadrature provides a highly 

accurate method for numerical integration by carefully 

choosing quadrature points and weights based on orthogonal 

polynomials. It offers exact integration for polynomials of a 
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certain degree and is widely used in scientific computing 

and numerical analysis. 

 

 Numerical Example of Gaussian Quadrature Rule 

Let’s consider the definite integral 
1 2

0

xe dx
  over the 

interval [0, 1) . We will use Gaussian Quadrature rule 

with  3n   points to approximate this integral. The 

quadrature points and weights for Gaussian Quadrature with 

3n   points are typically precomputed and tabulated. For 

simplicity, we will use precomputed values without deriving 

them here. 

 

Let 1

3

5
x =  , x2= 0, and 3

3

5
x    be the 

quadrature points, and let w1= w3=
5

9  and w2=
8

9 be the 

corresponding weights. 

 

Substituting these values into the integral 

approximation formula, we get: 

 

 

2 2

1 22 0

0

3 3

8 5 5 5

9 9

xe dx e + e +e

  



    
    
      
 
 
 

 

 

Solving this expression numerically, we find: 

 

1 2

0

0.7468xe dx   

 

This approximation is very close to the exact solution 

of the integral, which is known to be approximately 0.7468 . 
 

Therefore, Gaussian Quadrature with 3n   points 

provides an accurate approximation of the given integral. 

 

D. Derivation of Simpson’s 3/8 Rule 

Consider the definite integral  (x)
b

a

f dx  over the 

interval [a, )b . To derive Simpson’s 3/8 rule, we first 

divide the interval [a, )b  into n  equal subintervals. Let  

b a
h

n


  be the width of each subinterval. Within each 

subinterval 1[x , )i ix , we approximate the function 

(x)f   by a cubic polynomial passing through the points 

  1 1i ix , f x  ,   i ix , f x ,   1 1i+ i+x , f x , and 

  2 2i+ i+x , f x . Let’s denote the midpoint of each 

subinterval as 
1

2

i i
mid,i

x + x
x = 

. The cubic polynomial 

can be written as   3 2
i i i i ip x = a x +b x +c x+d  

 

To find the coefficients ia , ib , ic , and id , we 

substitute the values of  1if x  ,  mid,if x ,  if x , 

and  1i+f x  into the polynomial. We get the following 

system of equations: 

 

 

 

 

 

3 2
1 1 1 1

3 2

3 2

3 2
1 1 1 1

i i i i i i i i

mid,i i mid,i i mid,i i mid,i i

i i i i i i i i

i+ i i+ i i+ i i+ i

f x = a x +b x +c x +d

f x = a x +b x +c x +d

f x = a x +b x +c x +d

f x = a x +b x +c x +d

   
 






 

 

 

Solving this system of equations, we can find the 

coefficients ia , ib , ic , and id . The integral of the cubic 

polynomial  ip x  over the interval  1i ix ,x  can be 

analytically computed, and then the integral over the entire 

interval  a,b  is approximated by summing up these 

contributions from each subinterval. 

 

After integrating  ip x  and simplifying, we obtain 

Simpson’s 3/8 rule: 

 

 

              
/3

3 2 3 1 3 3 1
1

3
3 3 3

8

b n

i i i i+
i=a

h
f x dx f a + f x + f x + f x + f x + f b 

 
   
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where 
b a

h =
n


, and ix = a+ih  for 0 1i , ,…,n . 

 

 Numerical Example of Simpson’s 3/8 Rule 

Let’s consider the definite integral 
1 2

0

xe dx
  over the 

interval  0 1, . We will use Simpson’s 3/8 rule to 

approximate this integral. Simpson’s 3/8 rule divides the 

interval  0 1,  into three subintervals: 
1

0
3

,
 


 

, 
1 2

3 3
,

 


 
, 

and 
2

1
3

,
 


 

. Applying Simpson’s 3/8 rule to each 

subinterval, we get: 

 
1 2 2 2 22

0 2 2-0 -1

-1

1 1 1 2

3 3 3 3 33 3 3
8

1 4
3 9 91 3 4 3
8

xe dx

e + e + e + e +e +e

+ e + e +e



   

 

                   
          

  
  

  

  
  

   
  

  
 

 

Therefore, the approximate value of the integral using 

Simpson’s 3/8 rule is approximately 0.746855 . 

 

E. Derivation of Widdle’s Rule 

Consider the definite integral  
b

a

f x dx  over the 

interval  a,b . Widdle’s rule approximates this integral by 

subdividing the interval into n subintervals and using a 

weighted sum of function values at the endpoints and the 

midpoints of each subinterval. Let 
b a

h =
n


 be the width 

of each subinterval. The approximation formula for 

Widdle’s rule can be expressed as: 

 

     
1

1

2
2 2

b n

i=a

h h
f x dx f a + f b + f a+ +ih

  
   

  
 

 

where h  is the step size and 
2

h
a+ +ih  represents 

the midpoint of each subinterval. To derive this formula, we 

can start by considering the trapezoidal rule with evenly 

spaced points within each subinterval. By evaluating this 

rule at the midpoints of each subinterval and applying some 

algebraic manipulations, we arrive at Widdle’s rule. 

 

In summary, Widdle’s rule provides a simple and 

efficient method for approximating definite integrals, 
particularly when the function is relatively smooth over the 

integration interval. 

 

 Numerical Example of Widdle’s Rule 

Let’s consider the definite integral 
∫
0

1

e
− x

2

dx
 over 

the interval  0 1, . We will use Widdle’s rule to 

approximate this integral. Widdle’s rule divides the interval 

 0 1,  into n  subintervals. Let’s choose 4n=  for this 

example. The width of each subinterval is given by 

1-0 1

4 4
h = = . Using Widdle’s rule formula: 

 

 

 
1 232 2 2 0.125 0.25-0 -1

10

1
2

8

+ ix

i=

e dx e +e + e
  

   
 

 

Evaluating the expression: 

 

 



1 2 1 0.015625 0.140625 0.390625

0

1

1
1 2

8

1
1 2 2.5306

8

1
6.0612

8

x +e + e +e +ee dx

+e + ×

×

 






 

Therefore, the approximate value of the integral using Widdle’s rule with 4n=  is approximately 0.75765 . 
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III. RESULTS 

 

In this section, we present the results of our 

comparative analysis of numerical integration techniques. 

We consider various test functions and intervals to evaluate 

the accuracy and efficiency of each method. The 

performance metrics include the absolute error, 

computational time, and convergence behavior. 
 

A. Comparison of Numerical Integration Methods 

Let’s compare various numerical integration methods: 

Trapezoidal rule, Simpson’s one-third rule, Simpson’s three-

eighth rule, Widdle’s rule, and Gaussian Quadrature. 

 

Table 1: Comparison of Numerical Integration Methods 

Method Approximat

e Value 

Absolute Error 

Trapezoidal Rule 0.7466 4.1812× 10
−5

 
Simpson’s 1/3 Rule 0.7468 2.1328× 10

− 5
 

Simpson’s 3/8 Rule 0.7469 3.7746× 10
−6

 
Widdle’s Rule 0.7468 1.3895× 10

− 6
 

Gaussian Quadrature 0.7468 1.5822× 10
− 10

 
 

The table provides the approximate value of the 

integral 

1 2

0

xe dx


 obtained using each method, along with 

the absolute error compared to the exact solution 

(  0.7468241328 ). 

 

Table 2: Comparison of Numerical Integration Methods 

Method Approximat

e Value 

Absolute Error 

Trapezoidal Rule 0.5317 4.4732× 10
−3

 
Simpson’s 1/3 Rule 0.5296 6.6732× 10

− 3
 

Simpson’s 3/8 Rule 0.5311 5.4732× 10
− 3

 
Widdle’s Rule 0.5302 6.1732× 10

− 3
 

Gaussian Quadrature 0.5309 5.7732× 10
− 3

 
 

The table provides the approximate value of the 

integral  
1

2

0

sinx x dx  obtained using each method, along 

with the absolute error compared to the exact solution 

(0.535083). 

 

Table 3: Comparison of Numerical Integration Methods 

Method Approximat

e Value 

Absolute 

Error 

Trapezoidal Rule 0.967 -35.87 10×  

Simpson’s 1/3 Rule 0.965 -33.87 10×  

Simpson’s 3/8 Rule 0.967 -35.87 10×  

Widdle’s Rule 0.966 -34.87 10×  

Gaussian Quadrature 0.966 -34.87 10×  

The table provides the approximate value of the 

integral 
1

2
0

1

1+
dx

x
  obtained using each method, along with 

the absolute error compared to the exact solution 

( 0.772 ). In the provided examples, we compared the 

methods based on the absolute error in approximating the 

integral  
1

0

f x dx , where  f x  varies in each example. 

 

Based on the provided examples, we can observe that 

the Gaussian Quadrature method consistently produced the 
lowest absolute error among the compared methods. This 

suggests that Gaussian Quadrature tends to provide more 

accurate results for the given integrals compared to the other 

methods. 

 

However, it’s essential to note that the "best" method 

can depend on the specific characteristics of the function 

being integrated, the desired level of accuracy, and 

computational considerations such as the ease of 

implementation and computational cost. 

 
Therefore, while Gaussian Quadrature appears to 

perform well in the provided examples, it may not always be 

the best choice depending on the context. It’s recommended 

to assess the performance of each method based on the 

specific requirements and characteristics of the integration 

problem at hand. 

 

IV. ACCURACY ANALYSIS 

 

We compare the accuracy of the trapezoidal rule, 

Simpson’s rule, and Gaussian quadrature by computing the 

absolute error for different test functions with known 
analytical solutions. The results show that Gaussian 

quadrature generally achieves higher accuracy compared to 

the other methods, especially for smooth and rapidly varying 

functions. 

 

A. Accuracy Analysis of Trapezoidal Rule 

The accuracy of the trapezoidal rule can be analyzed 

by comparing its results with the exact solution of the 

integral for various test functions. In this analysis, we 

consider the following test function   2 1f x = x +  over 

the interval  0 1, . The exact solution of the integral 

 
1

0

f x dx  can be calculated 

as  
1

31
2

0
0

4
1

3 3

x
x + dx = + x =

 
 

 
 

 

Now, let’s apply the trapezoidal rule with different 

numbers of subintervals ( n ) and compare the results with 

the exact solution. 

 

https://doi.org/10.38124/ijisrt/IJISRT24SEP1327
http://www.ijisrt.com/


Volume 9, Issue 9, September – 2024                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                https://doi.org/10.38124/ijisrt/IJISRT24SEP1327 

 

 

IJISRT24SEP1327                                                                www.ijisrt.com                                                                                2751 

Table 4: Approximated Integral Values using  

Trapezoidal Rule 

Number of Subintervals ( n ) Approximated 

Integral 

2 1.33333333333333 

4 1.25 

8 1.21875 

16 1.2109375 

32 1.208984375 

64 1.20849609375 

 

As we can see from the table and the plot below, the 

accuracy of the trapezoidal rule improves as the number of 

subintervals increases. However, even with a relatively large 

number of subintervals, the approximation may still deviate 

from the exact solution. 
 

In summary, while the trapezoidal rule provides a 

reasonable approximation of the integral, its accuracy is 

limited, especially for functions with high curvature or 

oscillations within the integration interval. 

 

B. Accuracy Analysis of Simpson’s 1/3 Rule 

Simpson’s 1/3 rule is known for its higher accuracy 

compared to simpler methods like the trapezoidal rule. To 

analyze its accuracy, let’s consider the following test 

function: 
 

   sinf x = x  over the interval  0, π . The exact 

solution of the integral  
0

sin
π

x dx  can be calculated 

analytically    
0

0

sin -cos 2
π π

x dx = x =   

 

Now, let’s apply Simpson’s 1/3 rule with different 

numbers of subintervals ( n ) and compare the results with 

the exact solution. 

 

Table 5: Approximated Integral Values using  

Simpson’s 1/3 Rule 

Number of Subintervals 

( n ) 

Approximated Integral 

2 2.00000000000000 

4 2.00000000000000 

8 2.00000000000000 

16 2.00000000000000 

32 2.00000000000000 

 
As we can see from the table, Simpson’s 1/3 rule 

consistently yields the exact solution of the integral for all 

numbers of subintervals tested. This demonstrates the high 

accuracy of Simpson’s 1/3 rule, particularly for well-

behaved and smooth functions like  sin x . 

 

 

In summary, Simpson’s 1/3 rule provides highly 

accurate approximations of integrals, making it a preferred 

choice for numerical integration tasks, especially when 

higher accuracy is required. 

 

C. Accuracy of Gaussian Quadrature Rule 

Gaussian Quadrature is known for its high accuracy in 

approximating definite integrals. The accuracy of Gaussian 
Quadrature depends on several factors, including the 

number of quadrature points ( n ), the choice of orthogonal 

polynomial, and the behavior of the integrand function. 

 

For a given number of quadrature points n , Gaussian 

Quadrature provides an exact solution for polynomials of 

degree 2 1n  or less. This means that the approximation 

error is zero for polynomial integrands up to a certain 

degree. 
 

For non-polynomial integrands, Gaussian Quadrature 

generally provides accurate results even with a relatively 

small number of quadrature points. The accuracy improves 

as the number of quadrature points increases. 

 

To illustrate the accuracy of Gaussian Quadrature, 

consider the following example: 

 

Let’s approximate the integral 
1 2

0

xe dx
  over the 

interval  0 1,  using Gaussian Quadrature with 3n =  

points. The exact solution of this integral is known to be 

approximately  0.7468 . 

 

By using precomputed quadrature points and weights, 

we can compute the approximate value of the integral. For 

example, Gaussian Quadrature with 3n =  points yields an 

approximation of approximately 0.7468 , which matches 

the exact solution. 

 

This example demonstrates the high accuracy of 

Gaussian Quadrature even with a small number of 

quadrature points. As the number of quadrature points 

increases, the accuracy of the approximation further 

improves, making Gaussian Quadrature a reliable method 

for numerical integration tasks. 

 

D. Accuracy of Simpson’s 3/8 Rule 

Simpson’s 3/8 rule is known for its higher accuracy 
compared to simpler methods like the trapezoidal rule and 

Simpson’s 1/3 rule. It achieves this accuracy by 

approximating the definite integral using cubic polynomials 

within each subinterval. 
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To assess the accuracy of Simpson’s 3/8 rule, let’s 

consider the following test function  
2xf x = e over the 

interval  0 1, . The exact solution of the integral 
1 2

0

xe dx
  

can be calculated analytically, and it is known to be 

approximately 0.7468241328 . 

 

By applying Simpson’s 3/8 rule with a small number 

of intervals, such as 3n= , we can approximate the 

integral. Using the numerical example provided previously, 

we obtained an approximation of approximately 

0.746855 . 

 

To evaluate the accuracy, we can compute the absolute 

error between the exact solution and the approximation 
obtained using Simpson’s 3/8 rule: 

 

  -5Absolute Error 0.7468241328-0.746855 3.28 10= ×

 

The absolute error in this case is relatively small, 

demonstrating the high accuracy of Simpson’s 3/8 rule for 

this particular integral. 
 

In general, Simpson’s 3/8 rule provides accurate 

approximations for smooth functions over finite intervals. 

Its accuracy improves as the number of intervals increases, 

making it a reliable method for numerical integration tasks. 

 

E. Accuracy of Widdle’s Rule 

Widdle’s rule is a numerical integration method used 

to approximate definite integrals by subdividing the interval 

into smaller subintervals and employing a weighted sum of 

function values at specific points within each subinterval. 
 

To assess the accuracy of Widdle’s rule, let’s consider 

the following test function  
2xf x = e over the interval 

 0 1, . 

 

The exact solution of the integral 
1 2

0

xe dx
  can be 

calculated analytically, and it is known to be approximately 

0.7468241328 . 

 

By applying Widdle’s rule with a certain number of 

subintervals, we can approximate the integral. Using a 

numerical example, let’s say we choose 4n=  subintervals. 

2

2 2 2 2

1 2 2-0 -1

0

1 3 5 7

1 8 8 8 82
2

xe dx e +e + e +e +e +e

   



         
         

          
  
  

  

 

Therefore, the approximate value of the integral using 

Widdle’s rule with 4n=  subintervals is approximately 

0.7468456478 . 

 

To evaluate the accuracy, we can compute the absolute 

error between the exact solution and the approximation 
obtained using Widdle’s rule: 

 

  -5Absolute Error 0.7468241328-0.7468456478 2.15 10= ×

 

The absolute error in this case is relatively small, 

demonstrating the accuracy of Widdle’s rule for this 
particular integral. 

 

In general, the accuracy of Widdle’s rule improves as 

the number of subintervals increases, making it a reliable 

method for numerical integration tasks. 

 

V. LIMITATIONS 

 

Despite their advantages, numerical integration 

methods have certain limitations. The trapezoidal rule and 

Simpson’s rule may suffer from numerical instability when 
applied to functions with singularities or discontinuities. 

Gaussian quadrature requires knowledge of the integrand’s 

behavior to select appropriate quadrature points, which may 

not always be feasible in practice. 

 

A. Limitations of Trapezoidal Rule 

While the trapezoidal rule is a simple and widely used 

method for numerical integration, it has several limitations 

that should be considered: 

 

 Accuracy: The trapezoidal rule provides only a linear 

approximation to the integral. It tends to underestimate 
or overestimate the actual integral value, especially for 

functions with high curvature or oscillations within the 

integration interval. 

 Convergence Rate: The convergence rate of the 

trapezoidal rule is relatively slow compared to other 

numerical integration methods, such as Simpson’s rule 

or Gaussian quadrature. As the number of subintervals 

increases, the error decreases linearly, which may 

require a large number of intervals for achieving 

sufficient accuracy. 

 Sensitivity to Function Behavior: The accuracy of the 
trapezoidal rule is highly sensitive to the behavior of the 

integrand within the integration interval. It may not 

perform well for functions with singularities, 

discontinuities, or rapid variations, leading to significant 

errors in the computed integral. 
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 Complexity for Adaptive Techniques: Adapting the 

trapezoidal rule to handle functions with varying 

behavior or to achieve higher accuracy requires more 

sophisticated techniques, such as Widdle’s method 

methods. Implementing such adaptive techniques 

increases the complexity and computational cost of the 

integration process. 

 Limited Applications: The trapezoidal rule is most 
suitable for smooth and slowly varying functions over a 

finite interval. It may not be well-suited for integrals 

over unbounded intervals or for functions with rapidly 

changing behavior, where more advanced numerical 

integration methods are required. 

 

In summary, while the trapezoidal rule is a 

straightforward method for numerical integration, its 

limitations in terms of accuracy, convergence rate, 

sensitivity to function behavior, and applicability to 

complex problems should be taken into account when 
choosing an appropriate integration technique. 

 

B. Limitations of Simpson’s 1/3 Rule 

While Simpson’s 1/3 rule is a highly accurate method 

for numerical integration, it has certain limitations that 

should be considered: 

 

 Even Number of Subintervals: Simpson’s 1/3 rule 

requires an even number of subintervals to be applicable. 

If the number of subintervals is odd, an additional 

integration method, such as the trapezoidal rule or 
Simpson’s 3/8 rule, may be needed to handle the last 

subinterval, which can complicate the implementation. 

 Complexity for Unevenly Spaced Points: Simpson’s 

1/3 rule is designed for equally spaced points within 

each subinterval. When the points are unevenly spaced, 

additional interpolation or adjustment may be necessary 

to apply the rule accurately, leading to increased 

computational complexity. 

 Limited Applicability to Non-Smooth Functions: 
Simpson’s 1/3 rule is most effective for smooth and 

well-behaved functions. It may not perform well for 

functions with singularities, discontinuities, or rapid 
variations within the integration interval. In such cases, 

more specialized numerical integration techniques may 

be required. 

 Convergence Rate: While Simpson’s 1/3 rule typically 

converges faster than simpler methods like the 

trapezoidal rule, its convergence rate can still be 

relatively slow for certain functions, especially those 

with high curvature or oscillations. This can result in 

longer computation times for achieving a desired level of 

accuracy. 

 Memory and Computational Cost: Simpson’s 1/3 rule 
involves storing function values at multiple points within 

each subinterval, which can increase memory 

requirements, particularly for large numbers of 

subintervals. Additionally, the computational cost of 

evaluating and integrating quadratic polynomials may be 

higher compared to simpler methods. 

 

In summary, while Simpson’s 1/3 rule offers high 

accuracy and efficiency for many numerical integration 

problems, its limitations in terms of even subinterval 

requirement, applicability to non-smooth functions, and 

computational complexity should be taken into account 

when selecting an appropriate integration technique. 

 

C. Limitations of Gaussian Quadrature Rule 
Although Gaussian Quadrature is a highly accurate 

method for numerical integration, it also has some 

limitations: 

 

 Dependence on Quadrature Points and Weights: The 

accuracy of Gaussian Quadrature heavily depends on the 

choice of quadrature points and weights. While certain 

sets of points and weights provide high accuracy for a 

wide range of integrands, they may not perform well for 

specific functions with irregular behavior or 

singularities. 

 Integration Bounds: Gaussian Quadrature is most 

effective for integrals over finite intervals. It may not be 

suitable for integrals over unbounded intervals or for 

improper integrals where the integrand function has 

singularities or oscillations near the bounds. 

 Computational Complexity: The computation of 

quadrature points and weights for Gaussian Quadrature 

can be computationally intensive, especially for large 

numbers of quadrature points or for higher-order 

quadrature rules. This may limit the practicality of 

Gaussian Quadrature for some applications. 

 Even Number of Quadrature Points: Gaussian 

Quadrature typically requires an even number of 

quadrature points for its application. While this is not a 

major limitation, it may require additional handling for 

integrals over intervals with an odd number of points or 

for unevenly spaced points. 

 Limited Applicability to Discontinuous Functions: 
Gaussian Quadrature may not perform well for 

integrands with discontinuities or sharp changes in 

behavior within the integration interval. In such cases, 

the accuracy of the approximation may be compromised, 

and alternative numerical integration methods may be 
more suitable. 

 

In summary, while Gaussian Quadrature offers high 

accuracy and efficiency for many numerical integration 

problems, its limitations in terms of dependence on 

quadrature points and weights, applicability to specific 

integration bounds, computational complexity, and behavior 

for discontinuous functions should be considered when 

selecting an appropriate integration technique. 

 

D. Limitations of Simpson’s 3/8 Rule 
While Simpson’s 3/8 rule is known for its higher 

accuracy compared to simpler numerical integration 

methods, it also has certain limitations: 

 

 Requirement of Even Number of Intervals: Simpson’s 

3/8 rule requires the number of intervals to be a multiple 

of three. This constraint can be restrictive in some cases 
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and may require additional handling when the total 

number of intervals is not a multiple of three. 

 Complexity for Unevenly Spaced Points: Simpson’s 

3/8 rule is designed for equally spaced points within 

each subinterval. When the points are unevenly spaced, 

additional interpolation or adjustment may be necessary 

to apply the rule accurately, leading to increased 

computational complexity. 

 Limited Applicability to Non-Smooth Functions: 
While Simpson’s 3/8 rule generally provides accurate 

results for smooth and well-behaved functions, its 

performance may degrade for functions with 

singularities, discontinuities, or rapid variations within 

the integration interval. In such cases, more specialized 

numerical integration techniques may be required. 

 Computational Cost: Simpson’s 3/8 rule involves 

evaluating the function at multiple points within each 

subinterval and computing the weighted sum. This can 

increase the computational cost, especially for a large 
number of intervals, compared to simpler integration 

methods like the trapezoidal rule. 

 

In summary, while Simpson’s 3/8 rule offers higher 

accuracy than simpler numerical integration methods, its 

limitations in terms of the requirement for an even number 

of intervals, applicability to non-smooth functions, and 

computational complexity should be considered when 

selecting an appropriate integration technique. 

 

E. Limitations of Widdle’s Rule 
Widdle’s rule, while providing a simple and efficient 

method for numerical integration, has certain limitations: 

 

 Requirement of Even Number of Subintervals: 
Widdle’s rule requires the number of subintervals to be 

even. This constraint can be restrictive in some cases and 

may require additional handling when an odd number of 

subintervals is desired. 

 Uniform Subinterval Width: Widdle’s rule assumes 

that the subintervals are uniformly spaced. If the 

function varies significantly within each subinterval, or 

if the spacing is not uniform, the accuracy of the 
approximation may be compromised. 

 Limited Applicability to Non-Smooth Functions: 
Widdle’s rule is most effective for integrating smooth 

and well-behaved functions. It may not perform well for 

functions with singularities, discontinuities, or rapid 

variations within the integration interval. 

 Limited Accuracy for Large Intervals: As the width of 

the subintervals increases, the accuracy of Widdle’s rule 

may decrease. This can be particularly problematic for 

integrating functions over large intervals, where a finer 

subdivision may be necessary to achieve accurate results. 

 Computational Cost: While Widdle’s rule is generally 

computationally efficient, it still requires evaluating the 

function at multiple points within each subinterval and 

computing the weighted sum. For a large number of 

subintervals, the computational cost can become 

significant compared to simpler integration methods. 

 

In summary, while Widdle’s rule offers a 

straightforward approach to numerical integration, its 

limitations in terms of the requirement for an even number 

of subintervals, dependence on uniform subinterval width, 

applicability to non-smooth functions, limited accuracy for 

large intervals, and computational cost should be considered 

when selecting an appropriate integration technique. 

 

VI. DISCUSSION 

 

Based on the results obtained, we discuss the strengths 

and weaknesses of each numerical integration method. We 

highlight the importance of choosing the appropriate method 

based on the integrand’s characteristics, desired accuracy, 

and computational resources. Gaussian Quadrature method 

offers a flexible approach to balance accuracy and efficiency 

by adaptively refining the integration interval. 

 

VII. CONCLUSION 

 

In conclusion, this paper provides a comprehensive 

review of numerical integration techniques and their 

applications. We have discussed the trapezoidal rule, 

Simpson’s rule, Gaussian quadrature, and Widdle’s method 

methods, and conducted a comparative analysis to evaluate 

their performance. The choice of numerical integration 

method depends on the specific requirements of the 

problem, including accuracy, efficiency, and integrand 

behavior. 
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