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Abstract:- This paper introduces a methodology for 

advanced project duration estimation, integrating the 

Program Evaluation and Review Technique (PERT) with 

Monte Carlo simulation. It employs various distributions 

— normal and beta — to enhance the accuracy of task 

duration modeling based on initial three-point estimates. 

This aproach refines these distributions, establishing a 

robust mode while maintaining a consistent 90th-

percentile confidence level. The study illustrates the 

feasibility of the implementation using accessible tools i.e., 

Google Sheets and Power BI, ensuring practicality in 

project management. The conclusion underscores 

improved accuracy and reliability in project duration 

estimates, enhancing risk management and decision-

making throughout project execution. 
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I. INTRODUCTION 
 

Technical Program Managers (TPMs) often rely on 

Subject Matter Experts (SMEs) to provide duration estimates 

in planning timelines and levels of effort. It is crucial to 

statistically mitigate the subjectivity of these estimates to 

arrive at a probabilistic project completion duration. Accurate 

project duration estimation is the bedrock of effective project 

management. Traditionally, practitioners have relied on 

deterministic single-point estimates, which often fail to 

account for the uncertainties inherent in complex projects. 

 
Integrating PERT and Monte Carlo simulations offers a 

sophisticated, probabilistic approach to project duration 

estimation that simplifies the recommendation process while 

increasing accuracy and reliability. (Ballesteros-Pérez et al., 

2020) This methodology effectively transforms subjective 

expert judgments into robust data points, capturing project 

timelines' inherent variability and uncertainty. For instance, 

empowering a project manager to quickly and easily assert: 

 

“Simulations indicate that a specific task is most likely 

to take around 29.68 days, which is 97.87% longer than the 

initial estimate of 15.00 days. The recommended value is 

between 29.68 days (66.60% confidence) and 31.69 days 

(90% confidence). “ 

 

This is a valuable outcome when under the duress of 

planning. This combined approach elevates project duration 

estimation to a new level of precision and realism. It is highly 

relevant for project managers, as the ability to accurately 

forecast project duration provides a strategic advantage, 

enabling cost savings and quicker project completion. 

Transitioning from using single-point estimates or even 

employing PERT and Monte Carlo independently to now 

fusing PERT and Monte Carlo affords a probabilistic model 
that marks a significant step forward in project management 

rigor and ease. 

 

This methodology is accessible, especially for projects 

that can be readily captured in Google Sheets as a simple task 

list. Adopting this paper’s novel methodology offers a more 

sophisticated and realistic framework for project duration 

estimation. 

 

 Why Start with the Three-Point Estimates? 

Starting with three-point estimates — optimistic, most 

likely, and pessimistic — provides a structured way to 
capture the range of possible outcomes for project tasks. This 

method addresses the inherent uncertainty and variability in 

project estimation, offering a more comprehensive 

understanding than single-point estimates. Depending on the 

estimator's subjective view, these estimates can be overly 

optimistic or pessimistic. 

 

In contrast, using three-point estimates allows for a 

more balanced and realistic assessment of potential 

outcomes. This approach incorporates the best-case scenario 

(O), the most likely scenario (M), and the worst-case scenario 
(P), providing a broader perspective on possible durations. 

 

 Triangular Distribution Overview 

Research suggests that a triangular distribution is 

defined by the following three parameters, which are used in 

distributions where there is a “lack of knowledge” of 

distribution (Kissell & Poserina, 2017). 

 

 O: Optimistic (best-case) estimate 

 M: Most likely estimate 

 P: Pessimistic (worst-case) estimate 
 

The probability density function (PDF) of a triangular 

distribution is piecewise linear and forms a triangle with a 

peak at M. (P. Bertsekas & N. Tsitsiklis., 2002, p. 140) 
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 Variance of the Triangular Distribution 

The variance of a distribution is a measure of the spread 

of its values. For a triangular distribution, the variance (σ2) 

is given by: 

 

σ2 =
(P − O)2

24
 

 

This formula can be derived by calculating the second 

moment about the mean. The following is a step-by-step 

explanation: 

 

 Piecewise PDF: The triangular distribution’s PDF can 

be split into two linear segments: 
 

 From O to M: 

 

𝑓(𝑥) =
2(𝑥 − 𝑂)

(𝑃 − 𝑂)(𝑀 − 𝑂)
 

 

 From M to P: 

 

𝑓(𝑥) =
2(𝑃 − 𝑥)

(𝑃 − 𝑂)(𝑃 − 𝑀)
 

 

 Mean Calculation: The mean (expected value, or the ‘μ’) 

of the triangular distribution is: 

 

μ =
𝑂 + 𝑀 + 𝑃

3
 

 

 Variance Calculation: The variance is the expected value 

of the squared deviations from the mean: 
 

σ2 = 𝐸[(𝑋 − μ)2] = ∫ (𝑥 − μ)2𝑓(𝑥)
𝑃

𝑂

 𝑑𝑥 

 

We need to compute this integral in two parts, 

corresponding to the two segments of the PDF. 

 

 First Segment (from O to M): 

 

∫ (𝑥 − μ)2
𝑀

𝑂

⋅
2(𝑥 − 𝑂)

(𝑃 − 𝑂)(𝑀 − 𝑂)
 𝑑𝑥 

 

 Second Segment (from M to P): 

 

∫ (𝑥 − μ)2
𝑃

𝑀

⋅
2(𝑃 − 𝑥)

(𝑃 − 𝑂)(𝑃 − 𝑀)
 𝑑𝑥 

 

 Combining the Integrals: After computing the integrals 

separately, we sum them up, leading to the triangle 

distribution’s variance as below: 

 

σ2 =
(𝑃 − 𝑂)2

24
 

 

 

 

 Explanation of the Factor of 24 

The factor of 24 in the denominator comes from the 

integration process and normalization for the variance. (P. 

Bertsekas & N. Tsitsiklis., 2002, p. 140) 

 

 Here is why: 

 

 Normalization:  

The triangular distribution’s PDF is normalized so that 

the total area under the curve equals 1. This normalization 

involves factors of (P−O), (M−O), and (P−M). 

 

 Integration and Squaring:  

When calculating the second moment about the mean, 

we integrate the squared deviations over the entire range [O, 

P], where OOO is the optimistic estimate, and MMM is the 

most likely estimate, and PPP is the pessimistic estimate. The 

process involves squaring the terms (x−μ) and integrating the 

resulting polynomial expressions. 
 

 Combination of Terms:  

The combined effect of these integrations and the 

structure of the triangular distribution’s PDF leads to the 

specific factor of 1/24 in the variance formula. 

 

This captures the spread of the distribution and is 

derived from the properties of the triangular distribution, 

specifically the piecewise linear PDF and the range (P−O). 

The factor of 24 results from the integration and 

normalization processes involved in computing the variance 
for this particular distribution. This detailed mathematical 

derivation ensures that the variability and uncertainty in task 

durations are accurately represented. Using three-point 

estimates and the triangular distribution allows project 

managers to make more informed decisions and better 

manage risks in project timelines. 

 

 Why PERT? 

Transitioning from three-point estimates to the Program 

Evaluation and Review Technique (PERT) builds on the 

foundation of capturing variability. It provides a more 

structured and probabilistic approach to project duration 
estimation. PERT refines the three-point estimate by applying 

a weighted average that emphasizes the most likely estimate 

while still considering the optimistic and pessimistic 

outcomes. 

 

PERT is an essential tool for project management, 

particularly in task planning and scheduling. (Hernandez, 

2021) It provides a weighted average that reflects a more 

realistic scenario by utilizing three estimates for each task—

the best case, the most likely, and the worst case. This 

technique recognizes the inherent uncertainties in project 
timelines and helps mitigate risk. 

 

PERT’s strength lies in its ability to capture the most 

likely scenario while considering optimistic and pessimistic 

outcomes. This balanced approach helps project managers 

identify potential delays and allocate resources more 

effectively. Managers can better understand the variability 

and probability of completing the project within a given 
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timeframe by calculating the PERT mean and standard 

deviation. 

 

Moreover, PERT aids decision-making by offering 

insights into the expected project duration and associated 

risks. This predictive capability ensures that project plans are 

grounded in realistic expectations, facilitating more accurate 

scheduling and efficient risk management. 
 

PERT uses three estimates to capture a range of possible 

outcomes: the optimistic (O), pessimistic (P), and most likely 

(M) times. The following estimates are used to calculate the 

expected time (T.E.) for project tasks using the formula: 

 

 The Formula for PERT Mean (𝜇): 

 

𝜇 =
O + 4M + P

6
 

 

 The Formula for PERT Standard Deviation (𝜎): 

 

𝜎 =
P − O

6
 

 

This approach allows PERT to account for variability by 

considering the potential spread of outcomes. Additionally, 

PERT calculates the task durations’ standard deviation (σ) to 
quantify the uncertainty. By doing so, PERT provides a 

probabilistic estimate incorporating a range of possible 

durations, reducing the reliance on a single-point estimate and 

thereby addressing uncertainty through variability. 

 

The PERT method can be understood through two types 

of distributions: the triangular distribution and the beta 

distribution. The PERT is based on a beta distribution but is 

often simplified into a triangular distribution for ease of use. 

(Broadleaf Capital International Pty Ltd, 2014) When 

simplified into a triangular distribution, PERT presents a 

simple shape that is easy to visualize and understand. 
 

To understand this, let us consider an analogy of a 

triangle with three key points: the best case (optimistic), the 

worst case (pessimistic), and the most likely time for a task. 

The triangular shape makes it straightforward, as the triangle 

peak represents the most likely time, and the sides slope down 

to the best and worst-case times. This approach is practical 

for rough, quick estimates because you draw straight lines 

connecting these points. 

 

Thus, in the triangular distribution, the mode is nothing 
more than the “most likely” time. Its core benefits pertain to 

practical estimation due to its simplicity and realistic 

evaluation. PERT is useful in project management and risk 

assessment because it considers best-case, most likely, and 

worst-case scenarios. Calculating the mean and standard 

deviation makes this distribution method easy to understand 

and implement. 

 

Lastly, it can also provide more realistic estimates for 

project durations and costs because it incorporates expert 

judgment about uncertainty and variability. The drawbacks 

are mainly related to subjectivity and non-normality. The 

fundamental reason is that the accuracy of the PERT 

distribution depends on the subjective estimates of the 

optimistic, most likely, and pessimistic values. 

 

The limitation in flexibility is due to its nature, which 

assumes a specific beta distribution form. This form may not 

be the right fit for all types of data, making some distributions 
less accurate. In such a case, the data may be unreliable since 

the PERT distribution may not approximate a normal 

distribution well, especially if the real distribution is heavily 

skewed or has fat tails. In contrast, the beta distribution offers 

a more flexible and accurate shape. 

 

Instead of a simple triangle, imagine a curve that can 

bend and flex to fit real-world data better. This curve still 

relies on the best, worst, and most likely times, but it can 

model more complex situations. The beta distribution is more 

accurate because it can show that most tasks are likely to 
finish within the most likely time while also accounting for 

the possibility of delays. 

 

It uses sophisticated calculations to give more weight to 

the most likely time but also considers the best and worst 

cases nuancedly. The mode in the beta distribution is derived 

from its parameters and is not necessarily the same as the 

“most likely” time, which is used in the triangular 

distribution. The critical difference between these two 

distributions lies in their shape and calculation. The triangular 

distribution is more straightforward to calculate and 

visualize, making it suitable for quick, rough estimates. It is 
practical for initial planning and simple projects. On the other 

hand, the beta distribution provides a detailed and accurate 

model by using advanced calculations. It is better suited for 

detailed planning when it is crucial to understand the 

variability and risks. 

 

The PERT method is considered to be based on a beta 

distribution due to its flexibility and characteristics, which 

make it well-suited for modeling uncertainty and variability 

in project durations. The beta distribution is highly flexible 

and can take on various shapes depending on its parameters, 
allowing it to accurately model different possible 

distributions of project completion times. This is defined over 

a finite interval, typically between the optimistic and 

pessimistic estimates, making it ideal for modeling activities 

with clear minimum and maximum duration limits. 

 

PERT calculates the expected duration using a weighted 

average, giving more weight to the most likely estimate, 

similar to the mean of a beta distribution. Additionally, the 

beta distribution allows for calculating variance and standard 

deviation, which is essential for understanding the dispersion 

or spread of possible project completion times. These 
characteristics make the beta distribution a realistic choice for 

representing project timelines. 

 

The mean and variance are calculated similarly in both 

the triangular and beta distributions. However, the mode 

calculation differs. For the triangular distribution, the mode 

is simply the “most likely" time —  𝒎. For the beta 
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distribution, the mode is derived from its parameters 𝜶 and 

𝜷, which are calculated based on the mean and variance. 

 

This difference highlights why the beta distribution can 

provide a more nuanced and accurate representation of 

project durations, as it accounts for the probability 
distribution more flexibly and realistically than the triangular 

distribution. The mode is a critical statistical measure 

representing a distribution's most frequently occurring value. 

While the mean gives an average estimate and the median 

provides a middle value, the mode pinpoints the exact 

duration most likely to occur based on historical data or 

expert judgment. 

 

If the mode significantly differs from the mean, it may 

indicate higher variability or risk in the project duration. 

Additionally, if the mode is closer to the optimistic or 

pessimistic estimates, it suggests a skewed distribution, 
indicating potential biases or risks in the estimates. 

 

 PERT Triangular Distribution 

 

 Mean (Expected Value): The mean of the Triangular 

Distribution in PERT is Calculated as: 

 

Mean =
𝑎 + 4𝑚 + 𝑏

6
 

 

Where: 

 
a is the optimistic estimate (best case), 

 

𝑚 is the most likely estimate, 

 

b is the pessimistic estimate (worst case). 

 

 Standard Deviation: The standard deviation for the 

triangular distribution is: 

 

Standard Deviation =
𝑏 − 𝑎

6
 

 

 Mode: The mode for the triangular distribution is simply 

the most likely estimate m. 

 

 90th Percentile 

To determine the 90th percentile for a PERT 

distribution, you can use both linear interpolation and the z-

score method. However, it's important to note that the z-score 

method assumes a normal distribution, which might not be as 

accurate for a PERT distribution, as it is actually a form of 

the Beta distribution. The linear interpolation method, on the 

other hand, leverages the nature of the Beta distribution while 
simplifying the process by assuming a piecewise linear 

cumulative distribution function (CDF) based on the best-

case, most likely, and worst-case estimates. (P. Bertsekas & 

N. Tsitsiklis., 2002, p. 140)  Here are the main steps: 

 

 

 

 Calculate Cumulative Probabilities at Critical Points: 

 

 Cumulative probability at the best case (C.D.F. best_case) = 

0 

 Cumulative probability at the most likely case (C.D.F. 

most_case) = 0.5 

 Cumulative probability at the worst case (C.D.F. worst_case) 

= 1 
 

 Identify the Range where the Cumulative Probability 

Surpasses 0.9 (90%) 

 

 The range of interest is between the most likely and worst 

case, where the cumulative probability goes from 0.5 to 1. 

 Use linear interpolation within this range: 

 Linear interpolation is used to estimate values within a 

range based on known values at the endpoints. 

 

We often use linear interpolation to find the 90th 
percentile in a triangular distribution. This involves solving 

for x, where the cumulative distribution function (CDF) 

equals 0.9. The CDF for a triangular distribution is piecewise 

and involves the following steps: 

 

 For x between a and m: 

 

𝐹(𝑥) =
(𝑥 − 𝑎)2

(𝑏 − 𝑎)(𝑚 − 𝑎)
 

 

 For x between m and b: 

 

𝐹(𝑥) = 1 −
(𝑏 − 𝑥)2

(𝑏 − 𝑎)(𝑏 − 𝑚)
 

 

This approach provides a practical way to estimate the 

90th percentile for a PERT distribution. It acknowledges its 

basis in the Beta distribution while utilizing a simpler, 
piecewise linear approximation. 

 

 PERT Beta Distribution 

The transition from PERT to the beta distribution 

represents a move towards even greater precision and 

flexibility in modeling project durations. While PERT often 

simplifies its calculations using the triangular distribution, it 

conceptually aligns with the beta distribution, which offers a 

more sophisticated representation of uncertainty and 

variability. 

 
The beta distribution is defined over a finite interval, 

typically between the optimistic and pessimistic estimates, 

making it ideal for modeling activities with clear duration 

limits. It is highly flexible and can take on various shapes 

depending on its parameters, accurately reflecting different 

possible distributions of project completion times. 

 

 Mean (Expected Value): The mean for the beta 

distribution in PERT is the same as the triangular 

distribution: 
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Mean =
𝑎 + 4𝑚 + 𝑏

6
 

 

 Standard Deviation: The standard deviation for the beta 

distribution in PERT is: 

 

Standard Deviation =
𝑏 − 𝑎

6
 

 

 Mode: The beta distribution's mode is calculated 
differently and is more complex than the triangular 

distribution. However, for the sake of PERT 

simplification, the most likely estimate m is often used 

similarly to the triangular distribution. 

 

M𝑒𝑎𝑛(𝜇)  𝑎𝑛𝑑. 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜎2) 𝑓𝑜𝑟 𝑃𝐸𝑅𝑇 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

𝜇 =
𝑎 + 4𝑚 + 𝑏

6
 

 

𝜎2 = (
𝑏 − 𝑎

6
)

2

 

 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠(𝛼 𝑎𝑛𝑑 𝛽)𝑓𝑜𝑟 𝐵𝑒𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

𝛼 = (
𝜇 − 𝑎

𝑏 − 𝑎
) ((

𝜇 − 𝑎

𝑏 − 𝑎
) (1 −

𝜇 − 𝑎

𝑏 − 𝑎
) /𝜎2 − 1) 

 

𝛽 = (1 −
𝜇 − 𝑎

𝑏 − 𝑎
) ((

𝜇 − 𝑎

𝑏 − 𝑎
) (1 −

𝜇 − 𝑎

𝑏 − 𝑎
) /𝜎2 − 1) 

 

Where: 

 

a is the optimistic estimate, 

 

m is the most likely estimate, 

 

b is the pessimistic estimate. 
 

Mode =
𝛼 − 1

𝛼 + 𝛽 − 2
 for 𝛼 > 1 and 𝛽 > 1 

 

 90th Percentile: The 90th percentile for the beta 

distribution in PERT requires numerical methods or 
simulation because the beta distribution CDF does not 

have a simple closed form. Typically, this is achieved 

through: 

 

P(𝑋 ≤ 𝑥) = 0.90 
 

The beta distribution’s strength lies in its ability to 

model the probability distribution more flexibly and 

realistically than the triangular distribution, capturing the 

inherent uncertainty in project durations more accurately. 

This sophisticated modeling gives project managers a deeper 
understanding of potential risks and variability, enabling 

better decision-making and more effective project 

management. 

 

 Acknowledging Prior Work Around PERT 

Significant prior work has demonstrated the 

effectiveness of PERT in estimating project durations and 

managing project risks. One notable example is Malcolm, 

Roseboom, Clark, and Fazar’s (1959) work, which 

introduced the PERT methodology for planning and 

controlling the Polaris missile project. This seminal work 

underscored the importance of incorporating uncertainties in 
project planning, leading to more realistic and achievable 

project schedules. 

 

Acknowledging that projects rarely follow a single 

deterministic path, PERT provides a nuanced understanding 

of ambiguities by incorporating three-point estimates 

(optimistic, most likely, and pessimistic) for each task. This 

method yields a weighted average and a standard deviation, 

offering a balanced approach to estimating project durations. 

By doing so, PERT enhances the precision of project 

timelines and helps project managers identify potential delays 
early in the planning phase. 

 

Kerzner (2017) and Meredith and Mantel (2019) 

explore PERT’s application in various fields. These authors 

highlight how PERT, combined with other project 

management techniques, can improve the accuracy and 

reliability of project schedules. They emphasize that PERT’s 

structured approach to uncertainty is invaluable in managing 

complex projects with multiple interdependent tasks. 

 

The practicality of PERT, supported by extensive 

literature, makes it a fundamental tool in project 
management. Its ability to accommodate uncertainties and 

provide realistic estimates has been proven effective across 

various industries, from construction to software 

development. As we refine and integrate PERT with 

advanced simulation techniques, its relevance and 

applicability in project management remain robust and 

indispensable. 

 

 Why Monte Carlo Simulation? 

Monte Carlo Simulation is a powerful tool that mirrors 

the randomness inherent in real-world events. From the 
probability distributions defined by PERT’s mean and 

standard deviation, Monte Carlo simulation generates many 

possible project durations. Each simulation represents a 

distinct realization, capturing the project task’s 

unpredictability and risk. This computational prowess allows 

project managers to explore the full spectrum of outcomes, 

from best-case scenarios to worst-case contingencies. Project 

managers can use Monte Carlo simulation to make informed 

decisions based on a comprehensive view of potential 

outcomes. The method provides a rich backdrop of potential 

project trajectories, accounting for the improbabilities that 

pervade complex endeavors. Simulating thousands or even 
millions of scenarios reveals various outcomes’ likelihood. 

 

 Acknowledging Prior Work Around Monte Carlo 

Significant prior work has demonstrated the 

effectiveness of Monte Carlo simulation in estimating project 

durations. One notable example is the study by Musa and 

Okumoto (1989), which pioneered Monte Carlo simulation 
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for software reliability. This study underscored the versatility 

of Monte Carlo simulation, extending its application beyond 

software to broader project management contexts. 

 

Acknowledging that projects rarely unfold along a 

single deterministic path, PERT provides a nuanced 

understanding of ambiguities. However, the integration of 

Monte Carlo simulation propels this approach into a new 
echelon of precision, harnessing the power of computational 

algorithms to forecast a spectrum of possible outcomes. 

 

Montgomery and Runger (2018) further explore 

statistical methods, including Monte Carlo simulation, 

offering practical examples adaptable to project management. 

Their work highlights how Monte Carlo simulation 

transforms subjective expert estimates into a robust statistical 

distribution. This method significantly diminishes human 

bias by generating thousands of potential outcomes through a 

Gaussian distribution, offering a granular perspective on 
project duration uncertainties. 

 

Other literature further supports Monte Carlo’s 

practicality. Karabulut’s (2017) investigation of construction 

project planning exemplifies the effectiveness of using Monte 

Carlo simulation over the Critical Path Methodology (CPM). 

The study illustrates the relevance and significance of Monte 

Carlo in planning construction projects. Karabulut’s study 

reveals that while CPM optimistically estimated completion 

within 186 working days, the Monte Carlo simulation 

suggested a 50% chance of completion within 205 days, 

highlighting the balanced perspective provided by the Monte 
Carlo simulation. 

 

Our approach does not consider CPM at the moment, as 

we aim for a more generic solution that does not require the 

identification of task dependencies. This makes our method 

applicable even in cases where the initial project tasks are 

presented in a simple table with no dependencies outlined. 

This is particularly useful for straightforward initial 

estimations or smaller projects or even initial discovery 

efforts for larger projects, where dependencies are not yet 

necessary to outline. 
 

Shaping Different Distributions with PERT and then 

Sampling with Monte Carlo to Get the 90th Percentile and 

Mode PERT provides a structured method to account for 

uncertainty using three-point estimates, yielding a weighted 

average and a realistic standard deviation. Monte Carlo 

simulation, on the other hand, leverages computational power 

to generate thousands of possible outcomes based on these 

PERT-derived parameters. This fusion allows project 

managers to visualize various potential project durations, 

offering a more comprehensive understanding of risks and 

uncertainties. 
 

By integrating these two methodologies, we can predict 

not just the most likely outcomes but also the full spectrum of 

possibilities, thereby enabling more informed decision-

making and robust risk management. Let us begin by 

examining the use of PERT (Program Evaluation Review 

Technique) as a starting point for obtaining 90% confidence 

levels in project duration estimation. We will explore PERT 

in the following contexts: 

 

 PERT as a Standalone Method and 90th Percentile 

 PERT with a Box-Muller Transform and 90th Percentile 

 PERT-Informed Gaussian Distribution and 90th Percentile 

 PERT-Informed Gaussian for Monte Carlo Simulation 
and 90th Percentile 

 PERT-Informed Beta Distribution and 90th Percentile 

 PERT-Informed Beta Distribution for Monte Carlo 

Simulation and 90th Percentile 

 

By evaluating these methods, we aim to understand their 

individual strengths and weaknesses, which will help us 

achieve reliable confidence levels in project management. 

 

II. SHAPING DIFFERENT DISTRIBUTIONS 

 

This section delves into using PERT to shape various 
distributions. Then, it progresses to how Monte Carlo 

sampling generates a refined model while maintaining the 

90th percentile confidence level. By leveraging different 

distributions, we can better capture project tasks' inherent 

variability and complexity, leading to more accurate and 

reliable project duration estimates. 

 

 PERT as a Standalone Method and 90th Percentile 

PERT (Program Evaluation Review Technique) uses 

optimistic, most likely, and pessimistic estimates to calculate 

the mean and standard deviation for project tasks. As a 
standalone method, PERT provides a straightforward 

calculation of the 90th percentile, offering a deterministic 

output. The mean and standard deviation derived from PERT 

remain the same because they are directly calculated from the 

three estimates, and the 90th percentile is determined through 

these fixed values. 

 

The mode is simply the most likely estimate. Consider 

the following example scenario that has been given as 

follows, as part of a project management case to assess the 

estimated duration required for the project to be complete: 

 

 Optimistic (a) = 10 days 

 Most likely (m) = 20 days 

 Pessimistic (b) = 40 days 

 

 PERT Formulae 

 

Mean (𝜇): 𝜇 =  
O+4M+P

6
 

 

Standard Deviation (𝜎): 𝜎 =
P−O

6
 

 

90th Percentile (𝑌): 𝑌 = Y1 +
(Y2−Y1)

(𝑋2−𝑋1)
× (X − X1) 

 

Where; 

 

Y is the value at the target percentile. 
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Y1 is the value at the lower bound of the range containing the 

target percentile. 

 

Y2 is the value at the upper bound of the range containing the 

target percentile. 

 

X is the target percentile. 

 
X1 is the cumulative probability at the lower bound. 

 

X2 is the cumulative probability at the upper bound. 

 

 Applying PERT Formulae 

 

Mean (u): 

 

𝜇 =  
a + 4m + b

6
 

 

𝜇 =  
10 + 4 × (20 + 40)

6
 

 

𝜇 =  
10 + 4 × (20 + 40)

6
 

 

≈ 21.67 days 
 

Standard Deviation (σ): 

 

𝜎 =
b − a

6
 

 

𝜎 =
40 − 10

6
 

 

𝜎 = 5 Days 

 

 Linear Interpolation for the 90th Percentile 

 

𝑉𝑎𝑙𝑢𝑒 𝑎𝑡 90𝑡ℎ 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 = m +
(b − m)

(1 − 0.5)
× (0.9 − 0.5) 

 

= 20 +
(40 − 20)

(1 − 0.5)
× (0.4) 

 

= 20 +
(40 − 20)

(0.5)
× (0.4) 

 

= 20 +
(20)

(0.5)
× (0.4) 

 

= 20 +  40 ×  0.4 
 

= 20 +  16 
 

= 36 
 

The Box-Muller transform, as explained above through 

the formulae, is used to generate normal distribution samples 

efficiently. When combined with PERT, it transforms 

uniformly distributed random numbers into normally 

distributed ones, aligning the PERT mean and standard 

deviation with the generated samples, as explained by the 

usage of the formulae below. This method maintains the same 

90th percentile confidence level from the initial PERT 

estimates to the transformed distribution because the Box-

Muller transform retains the underlying statistical properties 

(mean, standard deviation) of the PERT estimates, ensuring 
that the transformed distribution reflects the same overall data 

characteristics. 

 

The Box Muller transformation generates random pairs 

of independent, standard, normally distributed (zero mean, 

unit variance) random numbers given a source of uniformly 

distributed numbers. Box Muller Formulas use two means, 

‘𝜇1’and ‘𝜇2’, in the interval (0,1), in which the Standard 

Deviation and Normal Variables are ‘Z0’ and ‘Z1’,  

 

Where: 
 

Zo = √−2 ln  (𝜇1)   ×  cos(2. 𝜋. 𝜇2) 

 

Z1 = √−2 ln  (𝜇1)  ×  sin(2. 𝜋. 𝜇2) 

 

To scale these to the formula to a normal distribution, 

we scale the PERT mean and Standard Deviation to those of 

the Box Muller Approach: 

 

Xo = Z0  × 𝜎 + 𝜇 

 

X1 = Z1 × 𝜎 + 𝜇 

 
 The following Methods should be Followed to Conduct 

the Box Muller Method: 

 

 Generate ‘𝜇1’and ‘𝜇2’two uniformly distributed random 

numbers: ‘𝜇1’ and ‘𝜇2’ are generated using 

‘Math.random()’, which produces values between 0 

(inclusive) and 1 (exclusive). 

 Apply the Box-Muller Transform to Calculate z0 and z1, 

where the formula for the Box-Muller transform is as 

follows: 

 

Zo = √−2 ln(𝜇1)  ×  cos(2. 𝜋. 𝜇2) 

 

Z1 = √−2 ln(𝜇1)  ×  sin(2. 𝜋. 𝜇2) 

 

This formula shows that the values (‘z0’ and ‘z1’) are 
normally distributed with a mean of 0 and a standard 

deviation of 1. Scale Z0 (𝜇)and Z1 (𝜎) to shift to the desired 

distribution using the PERT mean and standard deviation. 

‘𝜇1’ and ‘𝜇2’ are the uniform random numbers. To transform 

`z0` to have the desired mean (𝜇) and standard deviation (𝜎), 

we use: 

 

Xo = Z0  × 𝜎 + 𝜇 

 

X1 = Z1 × 𝜎 + 𝜇 
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randomValue = z0 × stddev + mean 
 

‘0’ is the normally distributed random number with a 

mean of 0 and a standard deviation of 1. 

 

‘Z0’ * stddev + mean’ scales ‘Z0’ to have the desired 

mean and standard deviation. 
 

𝑓(𝑥) =
1

σ√2π
× 𝑒

−
(𝑥−μ)2

2σ2  

 

 Example: 

Assume we have 𝜇1 = 0.5 and 𝜇2 = 0.7. To calculate 

the z values, we will use the formula above from the Box-

Muller transform method. First, we calculate Zo and Z1: 

 

Zo = √−2 ln 0.5  ×  cos(2. 𝜋. 0.5) ≈ -0.30 

 

Z1 = √−2 ln(0.7)  ×  sin(2. 𝜋. 0.7) ) ≈ 1.11 

 
Next, we will transform Zo and Z1 to match our mean 

and standard deviation: 

 

X0 = 21.67 + 5 X (-0.364) ≈ 21.67-1.82 ≈ 19.85 days 

 

X1 = 21.67 +5x (-1.119) ≈ 21.67-5.595 ≈ 16.075 days 

 

To find the 90th percentile using Box-Muller, we need 

to find the value of X such that 90% of the values are below 

it. The 90th percentile of the standard normal distribution is 

approximately 1.28 (Z-value). Transforming this to our 
distribution: 

 

X90 = μ+σ × Z90 

 

X90 = 21.67 +5 X 1.28 21.67 +6.4 

 

X90 = 28.07 days 

 

Using Box-Muller, we transformed uniformly 

distributed random numbers into normally distributed ones 

and found the 90th percentile by transforming the Z-value 

1.28 to our distribution. The example values are 19.85 days, 
16.075 days, and 28.07 days (90th percentile). Using the 

Gaussian Formula, we calculated the probability density for 

a specific value and found the 90th percentile similarly by 

transforming the Z-value 1.28 to our distribution. 

 

Our probability density examples were 25 days: 0.0637 

and 90th percentile: 28.07 days. Both methods give us the 

same 90th percentile value when using the same mean and 

standard deviation derived from PERT. 

 

 Pros and Cons of Box-Muller Transform 
The Box-Muller transform has both advantages and 

disadvantages. One significant advantage is that it generates 

samples from an exact normal distribution, making it useful 

for simulations requiring normally distributed random 

variables. It is also relatively simple to implement, does not 

require complex mathematical functions, and is widely used, 

ensuring broad understanding and support within the field. 

 

However, there are some drawbacks. The method 

requires the computation of logarithms and trigonometric 

functions, which can be computationally expensive compared 

to other methods. Additionally, the Box-Muller transform 

generates pairs of random variables, which might be 
unnecessary for applications requiring only one random 

variable. Furthermore, uniformly distributed random 

numbers are required as input, adding another step if such 

numbers are not readily available. 

 

 PERT-Informed Gaussian Distribution and 90th 

Percentile 

Using PERT estimates to inform a Gaussian distribution 

allows for directly applying the mean and standard deviation 

in the Gaussian probability density function. The 90th 

percentile confidence level remains the same from the initial 
PERT estimates through the Gaussian distribution because 

the mean and standard deviation align closely. The Gaussian 

distribution is symmetric around the mean, and since the 

mean and standard deviation are derived directly from the 

PERT estimates, the 90th percentile, which is a function of 

these parameters, remains consistent. The mode will differ as 

it reflects the symmetry of the Gaussian distribution. Using 

the PERT mean and standard deviation in Gaussian 

Distribution, which is defined by its probability density 

function (PDF): 

 

𝑓(𝑥) =  
1

σ√2π
 𝑒

−
(𝑥−μ)2

2σ2  

 

Where Mean (𝜇) and Standard Deviation (𝜎). 

 

This is evident through the processes above; in this case, 

the PERT Mean and Standard Deviation are supplied directly 

to the Gaussian formula. The following are some of the 

benefits and drawbacks of utilizing the Gaussian Distribution 

to convert non-normal data into normal data. 

 

 Pros and Cons of the Gaussian (Normal) Distribution 

Formula 

The Gaussian (Normal) distribution formula has several 
advantages and disadvantages. (P. Bertsekas & N. Tsitsiklis., 

2002, p. 140) Among the pros, it features an exact analytical 

form, which is beneficial for theoretical analysis and 

applications requiring exact probabilities. It is widely 

applicable due to the central limit theorem, which states that 

the sum of a large number of random variables will be 

approximately normally distributed. (P. Bertsekas & N. 

Tsitsiklis., 2002, p. 140)Additionally, the properties of the 

Gaussian distribution are well-known and extensively 

studied, making it a reliable choice for many applications. 

 

However, there are also cons to consider. One 
significant drawback is the assumption of normality, as many 

real-world phenomena are not normally distributed. Relying 

on the Gaussian distribution can lead to incorrect conclusions 

if the data does not fit this model. It is also not suitable for all 
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data, particularly for data with significant skewness or 

kurtosis, which requires alternative distributions for accurate 

modeling. Furthermore, parameter estimation, such as 

estimating the mean and standard deviation from data, 

requires a sufficient sample size and can be influenced by 

outliers. 

 

 PERT-Informed Gaussian for Monte Carlo Simulation 
and 90th Percentile 

Monte Carlo simulation, combined with a Gaussian 

distribution shaped by PERT estimates, involves generating 

numerous random samples from the normal distribution. This 

method captures the inherent variability in task durations and 

provides a distribution of possible outcomes. The 90th 

percentile confidence level remains the same due to the 

Central Limit Theorem, which ensures that the mean and 

standard deviation of the distribution of sample means will 

approximate the mean and standard deviation of the 

population from which the samples are drawn. 
 

This means that the 90th percentile, based on the mean 

and standard deviation, will remain stable. However, the 

model is refined through empirical data. The PERT mean and 

standard deviation define the distribution of task durations in 

the Monte Carlo simulation. Typically, a normal (Gaussian) 

distribution is assumed, as the Central Limit Theorem 

suggests that the distribution of sample means tends to be 

normal with a sufficiently large sample size. 

 

Monte Carlo simulation generates many random 

samples from the specified normal distribution, with the mean 
and standard deviation derived from the PERT estimates. 

Each simulation represents a possible outcome or realization 

of task durations. Monte Carlo simulation handles uncertainty 

by using random sampling to generate a range of possible 

outcomes based on defined probability distributions for input 

variables. 

 

When applied to project estimation, Monte Carlo 

simulation repeatedly samples task durations from their 

probability distributions, often derived from PERT’s 

expected time and standard deviation. Each simulation 
iteration generates a possible project duration based on these 

sampled values, creating a distribution of potential outcomes. 

This distribution provides insights into the likelihood of 

different project durations, enabling a more nuanced 

understanding of risk and uncertainty. 

 

Monte Carlo simulation samples from a normal 

distribution shaped by the PERT mean and standard 

deviation. The range of values typically spans from the mean 

minus three standard deviations to the mean plus three 

standard deviations, covering approximately 99.7% of 

possible outcomes. This method captures the inherent 
variability in task durations and comprehensively analyzes 

potential project timelines. 

 

Monte Carlo simulation iteratively generates numerous 

random samples (iterations) from the normal distribution. 

Each sample represents a possible outcome or realization of 

task duration, considering both the variability defined by the 

normal distribution and any additional uncertainty introduced 

through the simulation process. While the PERT estimates 

define the shape of the normal distribution, Monte Carlo 

simulation allows for the incorporation of additional 

uncertainty or variability beyond what is explicitly defined by 

these estimates. 

 

This additional uncertainty can be represented by 
introducing randomness into the simulation process, such as 

sampling from distributions with broader ranges or different 

shapes, to account for unforeseen factors. The benefit of 

utilizing a Gaussian distribution in Monte Carlo Simulation 

is that it allows PERT to be properly utilized. The following 

are some of the key pros and cons of our approach: 

 

 Pros and Cons of Using PERT-Informed Gaussian for 

Monte Carlo Simulation 

The Monte Carlo simulation, when combined with 

PERT estimates to shape the Gaussian distribution, offers 
several advantages. Firstly, it provides improved accuracy, 

generating more realistic project duration estimates by 

capturing the inherent variability in task durations and 

offering a detailed analysis of potential project timelines 

(Kerzner, 2017). Secondly, it enhances risk management by 

incorporating additional uncertainty beyond the PERT 

estimates, which provides a more comprehensive picture of 

project risks, aiding better-informed decision-making and 

contingency planning (Montgomery & Runger, 2018). 

 

Thirdly, the flexibility of Monte Carlo simulation allows 

it to account for many possible outcomes, making it adaptable 
to various project scenarios and complexities. This 

adaptability makes it a versatile tool in project management, 

capable of handling diverse project tasks and timelines 

(Karabulut, 2017). Additionally, the simulation offers 

insightful statistical measures, such as percentiles, that help 

project managers understand the likelihood of different 

outcomes. 

 

This detailed insight aids in setting realistic expectations 

and planning buffers, allowing project managers to better 

gauge the probability of meeting specific project milestones 
and deadlines (Musa & Okumoto, 1989). However, there are 

also cons associated with this approach. The combination of 

PERT with Monte Carlo simulation introduces complexity in 

terms of calculations and interpretation, requiring project 

managers to understand both methods to use the combined 

approach effectively. 

 

This complexity can be a barrier to adoption, 

particularly for teams lacking expertise in statistical analysis 

(Meredith & Mantel, 2019). Additionally, Monte Carlo 

simulation requires significant computational resources to 

run numerous iterations and generate a comprehensive range 
of outcomes, making it resource-intensive and time-

consuming (Montgomery & Runger, 2018). Another 

downside is its dependency on the quality and accuracy of the 

initial PERT estimates. 
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Inaccurate or biased input data can lead to misleading 

results, emphasizing the importance of gathering reliable data 

and leveraging expert judgment for the initial estimates 

(Kerzner, 2017). Finally, while the Central Limit Theorem 

supports using a normal distribution for large sample sizes, 

this assumption may not always hold true for all projects. 

 

If the actual distribution of task durations deviates 
significantly from normality, it can lead to potential 

inaccuracies. Validating the normality assumption in the 

context of specific project data is crucial to ensure reliable 

outcomes (Meredith & Mantel, 2019). By leveraging many 

possibilities, Monte Carlo simulation creates a 

comprehensive picture of potential project timelines, 

capturing the inherent variability and providing statistical 

measures (such as percentiles) to inform decision-making. 

 

Hence, combining PERT with Monte Carlo simulation 

optimizes the handling of uncertainty by leveraging the 
strengths of both methods. Leveraging the initial estimates 

from a PERT analysis to inform a Monte Carlo simulation is 

a valid project management and risk analysis approach. 

 

 PERT-Informed Beta Distribution and 90th Percentile 

Shaping a Beta distribution using PERT estimates 

allows for a more flexible representation of skewed data. The 

Beta distribution, defined by shape parameters alpha and 

beta, can accommodate various data patterns. The 90th 

percentile confidence level remains the same from the initial 

PERT estimates through the Beta distribution because the 

shape parameters (alpha and beta) are calculated based on the 
mean and variance derived from the PERT estimates. 

 

The mode, however, will differ and is calculated based 

on the Beta distribution parameters discussed above, offering 

a more accurate reflection of the most probable project 

duration. The PERT mean and standard deviation are used to 

shape a beta distribution, which is defined by its probability 

density function (PDF). In this case, the PERT Mean and 

Standard Deviation are supplied to the Beta distribution 

formula. The following are some of the benefits and 

drawbacks of utilizing the Beta Distribution for converting 
non-normal data. 

 

 Pros and Cons of the Beta Distribution Formula 

The Beta distribution offers several advantages due to 

its flexibility and adaptability. Firstly, it can accommodate 

various shapes, including skewed distributions, making it 

more adaptable to real-world data with non-symmetrical 

characteristics. This flexibility allows for more accurate 

modeling of project durations. Secondly, the Beta distribution 

features customizable parameters, α (alpha) and β (beta), 

which can be tailored to fit specific data patterns, enhancing 

the accuracy of estimates. 
 

Lastly, the Beta distribution is defined over a finite 

interval [0, 1], which can be scaled to fit any range, providing 

a realistic representation of task durations that cannot be 

negative. However, there are also drawbacks to consider. 

Determining the parameters alpha and beta from PERT 

estimates can be complex and requires careful scaling and 

transformation, introducing complexity in parameter 

estimation. Additionally, the calculations involved in shaping 

a Beta distribution are more complex than those for a 

Gaussian distribution, requiring more computational 

resources. 

 

This computational intensity can be a limitation in some 

scenarios. Moreover, the accuracy of the Beta distribution 
relies heavily on the quality of the PERT input estimates. 

Inaccurate or biased data can lead to misleading results, 

making the distribution sensitive to input estimates. 

 

 PERT-Informed Beta Distribution for Monte Carlo 

Simulation and 90th Percentile 

Combining PERT-informed Beta distribution with 

Monte Carlo simulation involves generating random samples 

from the Beta distribution based on PERT-derived 

parameters. This method effectively handles skewness and 

provides a comprehensive analysis of potential project 
timelines. The 90th percentile confidence level remains the 

same due to the Central Limit Theorem, which ensures that 

the mean and standard deviation of the distribution of sample 

means will approximate the mean and standard deviation of 

the population from which the samples are drawn. 

 

This ensures that the 90th percentile, based on these 

parameters, remains stable. Empirical data further refines the 

model, providing a more nuanced understanding of potential 

project durations. The PERT mean and standard deviation 

define the Beta distribution of task durations in Monte Carlo 

simulation. 
 

This approach is used to generate many random samples 

from the specified Beta distribution, providing a robust 

framework for duration estimation. Monte Carlo simulation 

handles uncertainty by using random sampling to generate a 

range of possible outcomes based on defined probability 

distributions for input variables. When applied to project 

estimation, Monte Carlo simulation repeatedly samples task 

durations from their probability distributions, often derived 

from PERT’s expected time and standard deviation. 

 
Each simulation iteration generates a possible project 

duration based on these sampled values, creating a 

distribution of potential outcomes. This distribution provides 

insights into the likelihood of different project durations, 

enabling a more nuanced understanding of risk and 

uncertainty. 

 

 Shaping the Beta Distribution with PERT Parameters 

Monte Carlo simulation samples from a Beta 

distribution shaped by the PERT mean and standard 

deviation. The range of values typically spans from the best-

case to the worst-case scenarios, capturing approximately all 
possible outcomes. This method comprehensively analyzes 

potential project timelines, considering inherent variability. 

Iterative Simulation 

 

Monte Carlo simulation iteratively generates numerous 

random samples (iterations) from the Beta distribution. Each 

sample represents a possible outcome or realization of task 
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duration, considering both the variability defined by the Beta 

distribution and any additional uncertainty introduced 

through the simulation process. 

 

 Incorporating Additional Uncertainty 

While the PERT estimates define the shape of the Beta 

distribution, Monte Carlo simulation allows for the 

incorporation of additional uncertainty or variability beyond 
what is explicitly defined by these estimates. This additional 

uncertainty can be represented by introducing randomness 

into the simulation process, such as sampling from 

distributions with broader ranges or different shapes, to 

account for unforeseen factors. Using PERT-informed Beta 

for Monte Carlo simulation offers several significant 

advantages. 

 

 Pros and Cons of Using PERT-Informed Beta for Monte 

Carlo Simulation 

Firstly, the Beta distribution’s flexibility allows for 
more accurate modeling of task durations, especially when 

they are not symmetrically distributed. This combined 

approach captures the inherent variability in task durations 

and provides a detailed analysis of potential project timelines, 

leading to improved accuracy. Secondly, the Monte Carlo 

simulation incorporates the beta distribution, which provides 

a comprehensive picture of project risks, allowing for better-

informed decision-making and contingency planning. 

 

This enhanced risk management helps project managers 

prepare more effectively for potential project delays and cost 

overruns. Additionally, the Beta distribution can model 
various possible outcomes, making it adaptable to various 

project scenarios and complexities. This flexibility is 

particularly useful in handling diverse project tasks and 

timelines. 

 

Furthermore, the simulation offers valuable statistical 

measures, such as percentiles, that help project managers 

understand the likelihood of different outcomes. This detailed 

insight aids in setting realistic expectations and planning 

buffers, providing insightful statistical measures. However, 

there are also several drawbacks to consider. 
 

Combining PERT with Monte Carlo simulation using 

the Beta distribution introduces complexity in terms of 

calculations and interpretation. Project managers need to 

understand both methods to use the combined approach 

effectively, which can be a barrier to adoption. Additionally, 

Monte Carlo simulation requires significant computational 

power to run numerous iterations and generate a 

comprehensive range of outcomes. This can be resource-

intensive and time-consuming, posing challenges related to 

computational resources. 

 
The accuracy of the simulation depends heavily on the 

quality and accuracy of the initial PERT estimates. Inaccurate 

or biased input data can lead to misleading results, 

highlighting a dependency on data quality. Lastly, estimating 

the parameters for the Beta distribution requires a careful 

scaling of PERT estimates, which can be complex and prone 

to error if not done correctly, presenting challenges in 

parameter estimation. 

 

By leveraging many possibilities, Monte Carlo 

simulation creates a comprehensive picture of potential 

project timelines, capturing the inherent variability and 

providing statistical measures (such as percentiles) to inform 

decision-making. Combining PERT with Monte Carlo 
simulation using Beta distribution optimizes the handling of 

uncertainty by leveraging the strengths of both methods. This 

approach provides a sophisticated and realistic framework for 

managing uncertainty in project timelines. 

 

 Using the 90th Percentile and Mode 

The 90th percentile is a crucial metric for project 

managers because it captures project uncertainties while 

aligning with stakeholders’ risk tolerance levels. It represents 

a value below which 90% of the data falls, providing a 

realistic view of project timelines that balances ambition with 
prudence. By focusing on the 90th percentile, project 

managers adopt a pragmatic benchmark that acknowledges 

both the best-case and worst-case scenarios. The 90th 

percentile confidence level remains consistent with the initial 

PERT estimates for the PERT-shaped distribution, even after 

Monte Carlo sampling of the PERT-shaped distribution. This 

stability is due to the fact that PERT-derived distributions 

preserve the mean and standard deviation of the initial 

estimates. 

 

These statistical properties ensure that the 90th 

percentile, which depends on the mean and standard 
deviation, remains unchanged throughout the 

transformations. For instance, whether using a Gaussian or 

Beta distribution and even when applying Monte Carlo 

simulations, the 90th percentile confidence level stays the 

same due to the preservation of these fundamental statistical 

characteristics. 

 

 Importance of the Mode 

The mode, which represents the most frequently 

occurring value in a distribution, is critical for pinpointing the 

exact duration most likely to occur based on historical data or 
expert judgment. While the mean provides an average 

estimate and the median gives a middle value, the mode offers 

a precise indication of the most probable outcome. If the 

mode significantly deviates from the mean, it may indicate 

higher variability or risk in the project duration. A mode 

closer to the optimistic or pessimistic estimates suggests a 

skewed distribution, highlighting potential biases or risks in 

the estimates. 

 

 Why the Mode Changes 

Through the various methods and distributions applied, 

the mean and standard deviation typically align closely with 
the initial PERT estimates, maintaining a stable 90th 

percentile. However, the mode can change significantly. In 

the Beta distribution and its subsequent Monte Carlo 

simulations, the mode is not merely the "most likely" value, 

as in the triangular distribution. 
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Instead, it reflects empirical outcomes more accurately. 

This refinement through Monte Carlo simulations enhances 

the precision of the mode, capturing real-world complexities 

and uncertainties more effectively. By leveraging both the 

90th percentile and the mode, project managers gain a 

comprehensive understanding of project durations. 

 

 Refining the 90th Percentile and Mode 
The 90th percentile offers a conservative estimate that 

accounts for potential delays and uncertainties, while the 

mode provides the most likely project duration. Combining 

these two metrics allows for a balanced view that integrates 

optimism with caution, leading to more informed and realistic 

project planning and decision-making. 

 

 Monte Carlo – 90th Percentile and Mode 

The Monte Carlo simulation method captures a 

significant portion of project uncertainties and provides a 

realistic view of project timelines. By maintaining the 90th 
percentile confidence level and refining the mode through 

empirical data, Monte Carlo simulations enhance the 

robustness of project duration estimates. This dual 

perspective ensures that project planning and execution are 

informed by both theoretical models and real-world data, 

leading to more accurate and reliable estimates. 

 

 All Methods Considered 

Fusing PERT to shape distributions and then using 

Monte Carlo sampling from that shaped distribution to arrive 

at an empirical mode significantly enhances the precision and 

reliability of project duration estimations. This approach 
leverages the strengths of both methods to offer more 

accurate and nuanced insights into project timelines. Using 

PERT to shape different distributions, followed by Monte 

Carlo sampling, demonstrates that the 90th percentile 

confidence level remains consistent with the initial PERT 

estimates through the PERT-shaped distribution and into the 

distribution derived from Monte Carlo sampling. 

 

This consistency is due to the preservation of underlying 

statistical properties such as the mean and standard deviation. 

For instance, the Box-Muller transform retains the statistical 
characteristics of the PERT estimates, ensuring the 

transformed distribution reflects the same overall data 

properties. Additionally, the Central Limit Theorem ensures 

that the empirical distribution approximates the true 

underlying distribution with enough simulations. 

 

However, while the 90th percentile remains consistent, 

the mode often changes between the theoretical and empirical 

distributions. The mode, which represents the most frequently 

occurring value, is critical because it highlights the most 

likely project duration based on the data. In the Beta 

distribution, the mode is a theoretical estimate, whereas, in 
the Monte Carlo simulations, the mode reflects empirical 

outcomes. 

 

This empirical mode can provide deeper insights into 

potential project durations, capturing real-world variability 

and complexities that theoretical models might miss. 

Considering the mode alongside the 90th percentile allows 

project managers to balance optimism and caution, providing 

a more robust framework for estimating project durations and 

planning resources effectively. Considering the PERT 

distribution approach, the method calculates the mean by 

heavily weighting the most likely estimate. 

 

This provides a balanced approach with a realistic 

standard deviation reflecting the actual spread of data. 
However, it does not account for the full range of possible 

variability as Monte Carlo simulations do. For the Triangular 

Distribution shaped by PERT, this approach uses best case, 

most likely, and worst case to create a distribution with the 

most likely value at the peak. It is intuitive and easy to apply, 

giving some weight to the most likely estimate. 

 

However, it is less accurate as it treats the range with 

equal weight on tails, potentially less realistic than the PERT 

method. The Normal Distribution shaped by PERT assumes 

a normal distribution using the most likely value as the mean, 
requiring a standard deviation. This method is familiar and 

straightforward, assuming a symmetrical distribution. 

 

However, it may not accurately represent skewed data 

and requires additional information like the standard 

deviation. The Beta Distribution shaped by PERT uses shape 

parameters α (alpha) and β (beta) derived from best-case, 

most likely, and worst-case estimates. This allows for 

skewness and flexibility, representing a more realistic 

distribution. 

 

The complexity in calculation and implementation is a 
downside. In the PERT Shaped Normal Distribution + Monte 

Carlo approach, PERT estimates are used to derive a normal 

distribution, followed by Monte Carlo simulations. This 

method is familiar and straightforward if data follows a 

normal distribution but assumes a symmetrical distribution, 

which may not capture skewness. Finally, the PERT Shaped 

Beta Distribution + Monte Carlo approach uses PERT 

estimates to derive shape parameters α (alpha) and β (beta) 

for a beta distribution, followed by Monte Carlo simulations. 

This method accurately represents skewed data, provides 

realistic estimates, and handles complexity and non-linearity 
effectively. However, it is computationally intensive and 

requires an understanding of beta distribution and Monte 

Carlo simulations. Overall, integrating PERT with Monte 

Carlo simulations, particularly through a beta distribution, 

provides a robust method for project duration estimation, 

accommodating variability and skewness while ensuring 

reliable and informed decision-making. 

 

 Final Approaches Selected 

Our methodology explored various distributions and 

how PERT can shape them, progressing to Monte Carlo 

sampling for enhanced estimation accuracy. Notably, there is 
no significant difference between PERT-informed Gaussian 

and PERT with Box-Muller Transform for our purposes, as 

both methods generate normal distribution samples 

efficiently. Our evaluation identified two robust approaches: 
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 “PERT Shaped Normal Distribution + Monte Carlo” and 

“PERT Shaped Beta Distribution + Monte Carlo.” 

These methods were chosen for their ability to balance 

simplicity with accuracy, providing realistic estimates that 

account for variability and skewness—crucial factors for 

effective project management. The PERT Shaped Normal 

Distribution + Monte Carlo approach assumes symmetry in 

the data, as represented by the Gaussian (normal) distribution. 
However, this assumption makes it less suitable for capturing 

skewed data accurately. 

 

When PERT estimates indicate skewness, the Gaussian 

distribution might not reflect the true variability. On the other 

hand, the PERT Shaped Beta Distribution + Monte Carlo 

approach accommodates skewness effectively. Using shape 

parameters alpha (α) and beta (β) derived from PERT 

estimates, the Beta distribution offers a more accurate 

representation of the inherent skewness in the data. 

 
Regarding the calculation and interpretation of standard 

deviation, the PERT Shaped Normal Distribution + Monte 

Carlo method uses the standard deviation derived from PERT 

estimates. However, since the Gaussian distribution assumes 

symmetry, it might not align with the actual data distribution, 

especially in skewed cases. Conversely, the PERT Shaped 

Beta Distribution + Monte Carlo method derives standard 

deviation from realistic PERT estimates (best case, most 

likely, worst case), accurately reflecting the actual data 

spread and contributing to a more precise representation of 

the data's variability. 

 
In terms of robustness and reliability, Monte Carlo 

simulations on a Gaussian distribution may overlook 

significant characteristics of the data's distribution, such as 

skewness and heavy tails, due to the assumption of symmetry. 

In contrast, Monte Carlo simulations on the Beta distribution 

capture a wider range of possible outcomes, including 

skewness, resulting in a distribution more representative of 

real-world data. This provides a more reliable 90th percentile 

confidence level. 

 

Bias reduction is another crucial aspect where these 
methods differ. 

 

The Gaussian distribution's assumption of symmetry 

may not mitigate all biases, particularly if the underlying data 

is skewed, potentially leading to over- or under-estimation of 

the 90th percentile confidence level. The Beta distribution, 

however, minimizes the influence of extreme values by 

appropriately weighting the most likely estimate and 

accurately reflecting the data spread through its shape 

parameters, thereby reducing bias in the resulting 

distribution. From a practical application standpoint, the 

Normal Distribution Shaped by PERT is easier to implement 
and familiar to many practitioners. 

 

However, it might not offer the same accuracy in 

representing skewed data, especially when the data does not 

follow a symmetric pattern. The PERT Shaped Beta 

Distribution + Monte Carlo method, though more complex to 

implement, provides valuable flexibility in representing 

skewed data and delivering realistic estimates. This makes it 

particularly useful for project management scenarios where 

an accurate representation of variability is crucial. 

 

The 90th percentile confidence level remains consistent 

between the Beta distribution and the Monte Carlo histogram 

because they are derived from the same underlying Beta 

distribution parameters. This percentile represents the value 
below, at which 90% of the data falls, and remains a critical 

measure for understanding potential project duration. 

However, the mode, representing the most frequently 

occurring value, can differ between the theoretical Beta 

distribution and the Monte Carlo simulation results. 

 

The mode from the Beta distribution provides a 

theoretical estimate, while the mode from the Monte Carlo 

simulation reflects empirical data from numerous simulated 

outcomes. The Central Limit Theorem supports that with 

enough simulations, the empirical distribution approximates 
the true underlying distribution. A higher empirical (Monte 

Carlo) mode may indicate a longer time to complete the 

project, capturing real-world variability more accurately. 

 

Conversely, a lower empirical mode suggests faster 

completion, indicating that the project might proceed more 

quickly than anticipated. Even though the 90th percentile 

confidence interval remains consistent across both 

distributions, it plays a crucial role in project management by 

providing a conservative estimate that accounts for potential 

risks and uncertainties. This measure ensures a 90% 

confidence level that the project will not exceed this duration, 
offering a buffer against unforeseen delays. 

 

Additionally, considering the mode provides further 

insights into the most probable outcomes. The mode helps to 

pinpoint the most likely project duration, offering a more 

refined understanding of expected timelines. This dual 

perspective—incorporating both the 90th percentile for risk 

management and the mode for pinpointing the most probable 

duration—enables a more nuanced and accurate approach to 

project planning and execution. 

 
By integrating PERT with Monte Carlo simulations, 

project managers gain a dual perspective that combines 

theoretical models with an empirical representation of real-

world data, leading to more accurate and reliable project 

duration estimates. This method allows for a comprehensive 

understanding of potential project outcomes, improving 

decision-making and project planning. Our estimation 

process begins with a simple three-point estimate consisting 

of the best-case, most likely, and worst-case scenarios. 

 

These initial estimates provide a basic framework for 

the potential outcomes. To refine these estimates, we apply 
the PERT method, which gives more weight to the most likely 

outcome. This weighted approach provides a more balanced 

mean estimate by considering the likelihood of various 

scenarios. Next, we model these PERT estimates using a Beta 

distribution. 
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This step accounts for any skewness in the data, 

allowing us to better represent the uncertainty and variability 

in the estimates. To refine our estimates further, we will 

perform a Monte Carlo simulation on the beta distribution. 

By running numerous simulations, we generate a large 

number of random samples. 

 

This approach leverages the Central Limit Theorem, 
providing an empirical, real-world simulation of the potential 

outcomes. From the Monte Carlo simulation results, we 

calculate the mode (the most frequently occurring value) and 

the 90th percentile. The mode gives us an idea of the most 

likely duration based on the simulations, while the 90th 

percentile provides a high-confidence estimate that accounts 

for potential uncertainties. 

 

Also, it is important to note that the mode represents the 

most frequently occurring value in a distribution, making it a 

crucial measure for identifying a project's most probable 
completion time. This statistical measure aids in setting 

realistic timelines and expectations, ensuring that project 

plans are grounded in the most likely outcomes. However, the 

mode can change based on the shape of the distribution and 

the influence of the optimistic, most likely, and pessimistic 

estimates. 

 

Monte Carlo simulations, which account for variability 

and uncertainty, often result in a different mode than initial 

estimates, providing a more accurate reflection of potential 

project durations. In the context of project duration estimates, 

the mode should not be negative; accurate and reasonable 
estimates inherently prevent such anomalies. 

 

The 90th percentile is another critical measure that 

complements the mode. It represents the value below, at 

which 90% of the observations fall, offering a high 

confidence interval for project completion times. By 

considering both the mode and the 90th percentile, project 

managers can develop a robust understanding of potential 

project outcomes. The mode provides the most likely 

completion time, while the 90th percentile offers a buffer for 

uncertainty, ensuring that timelines are not overly optimistic. 
 

This combination helps identify and mitigate risks, set 

realistic schedules, and communicate effectively with 

stakeholders. For instance, if the mode indicates a completion 

time of 29.68 days and the 90th percentile suggests 31.69 

days, project managers can confidently plan for a duration 

within this range, accounting for most potential delays and 

ensuring a higher probability of meeting deadlines. This 

integrated approach leads to more accurate and reliable 

project estimations, ultimately benefiting overall project 

management. 

 
 

 

 

This step-by-step progression—from simple estimates 

to PERT, Beta distribution, and Monte Carlo simulation—

allows us to refine our initial estimates into a statistically 

informed recommendation. The final recommendation 

includes both the mode and the 90th percentile values, 

offering a comprehensive and reliable estimate for project 

planning and risk management. In project management, 

understanding the difference between the initial most likely 
estimate (mode) and the mode obtained after Monte Carlo 

simulations on a beta distribution is crucial for making 

informed decisions. 

 

The initial most likely estimate is derived from expert 

judgment and represents the duration that is most likely to 

occur based on initial assessments. It is part of the three-point 

estimation (optimistic, most likely, and pessimistic) used in 

PERT analysis. After shaping the PERT estimates into a beta 

distribution, Monte Carlo simulations are performed to 

account for variability and uncertainty. These simulations 
generate a large number of potential outcomes for the 

duration of the project. The mode from these simulations is 

identified as the most frequently occurring value among the 

simulated results, providing a more empirically driven 

estimate that reflects real-world variability. 

 

The difference between the initial most likely estimate 

and the mode after Monte Carlo simulations is calculated to 

quantify the most probable completion time shift due to the 

additional variability captured in the simulations. This 

difference is given by: 

 

Difference = Mode Monte Carlo − Most Likely Estimate 

 

If the mode after Monte Carlo simulations is higher than 

the initial most likely estimate, it indicates potential delays or 

underestimation of the project duration. This requires careful 

attention to risks and contingency planning. Conversely, 

suppose the mode after Monte Carlo simulations is lower than 

the initial most likely estimate. In that case, it suggests 

possible efficiencies or overestimates the project duration, 

allowing for potential resource reallocation or schedule 

optimization. 
 

We calculate the percentage difference between the 

initial most likely estimate and the Monte Carlo mode: 

 

 
 
This comprehensive approach, progressing from simple 

estimates to PERT, Beta distribution, and Monte Carlo 

simulation, refines initial estimates into statistically informed 

recommendations. The final recommendation includes both 

the mode and the 90th percentile values, offering a reliable 

estimate for project planning and risk management. Now, let 

us consider the real implementation of our approach to 

evaluate its efficacy. 
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III. REAL WORLD IMPLEMENTATION 

 

 Diagrams 

 

 
Fig 1 PERT Shaped Gaussian in Power B.I. with Co-Pilot Feature Enabled 

 

 
Fig 2 Sample of Our Approach in Power BI. with the Co-Pilot Feature 
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The screenshots above in Figures I and II show how our 

mathematical approach of PERT + Monte Carlo can be 

leveraged in Power BI. (using R script to do calculations) and 

also incorporates Power BI.’s co-pilot feature to auto-

summarize the interpretation of the calculations in the context 

of projects. Having A.I. summarize such results dynamically 

opens a new world of continuous inquiry where the user can 

ask the AI to explain/interpret the results for self-serve 
understanding! 

 

 

 

 

 

 Google Sheet Plugin 

 

 We start with the Triangular distribution 

 We use PERT to shape a distribution (either normal or 

beta), then sample from that with Monte Carlo to generate 

a histogram, and then smooth it. 

 

 The mean, standard deviation, and 90th percentile remain 
the same before and after Monte Carlo. 

 The mode, however, changes. 

 Examples below: 

 

 Before Monte Carlo 

 
Fig 3 Distribution Plots before Monte-Carlo Method 

 

 After Monte Carlo 

 

 
Fig 4 Google Sheets’s Application of PERT + Beta Distribution + Monte Carlo 
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 Note: We have also created a video of how our solution 

works on our website.  

 

The plugin solution is simple to follow and install on 

any computer with access to Google Sheets.  

 

The video is available at the following website:  

https://icarenow.io/pmc-estimator-2. 
 

The Monte Carlo simulation, before and after, as per 

Figures III and IV, generates a large number of random 

samples to estimate the distribution. The mode, shown as the 

red circle in the figure above, represents these samples' most 

frequently occurring value. However, the highest peak in the 

histogram may sometimes differ slightly from the actual 

mode due to how the samples are grouped into bins. 

 

This is a normal variable in statistical visualization. The 

recommendation is that the simulations indicate that this item 
is likely to take around 29.68 days, which is 97.87% longer 

than the initial estimate of 15.00 days. The recommended 

value, therefore, we can assume is anywhere between 29.68 

days (with a 66% confidence) and 31.69 days (with a 90% 

confidence). 

 

IV. CONCLUSION 

 

Our exploration demonstrates that integrating PERT and 

Monte Carlo simulation significantly advances project 

duration estimation beyond traditional methods. This 

approach balances theoretical models with empirical data, 
providing a comprehensive risk management and decision-

making framework. 

 

 Our Methodology offers Flexibility by Accommodating 

Both Normal and Beta Distributions: 

 

 We use PERT values in the Gaussian equation for normal 

distributions, perform Monte Carlo simulations, and 

derive the 90th percentile and mode. 

 For skewed data, we shape a Beta distribution using PERT 

values, run Monte Carlo simulations, and extract the 90th 
percentile and mode. 

 

This dual approach allows project managers to capture 

variability and uncertainty in project tasks effectively. By 

leveraging initial PERT estimates to inform Monte Carlo 

simulation parameters, we model a larger sample size, 

resulting in a more nuanced understanding of potential 

project durations and enhancing the reliability of both 90th-

percentile confidence estimations and the mode. 

 

Implemented through accessible tools like Google 
Sheets and Power B.I., our methodology demonstrates the 

practical application of advanced statistical techniques in 

everyday project management. It empowers project managers 

to refine initial human estimates with statistical rigor, 

providing a powerful tool for accurate and reliable duration 

estimation. 

 

Future work should explore “what-if" scenarios based 

on probabilistic outcomes for duration and cost estimates. 

This approach transforms duration estimation from a static 

exercise to a dynamic, data-driven process, ensuring 

decisions are grounded in statistical rigor. 

 

To expand the methodology’s applicability, exploring 

additional probabilistic models such as Poisson and 
Exponential distributions is essential for capturing distinct 

characteristics of different project tasks. Automating the 

reporting of calculation outcomes, as demonstrated in our 

screenshot of an R-version integration with Co-Pilot and 

Power BI, can provide added value through dynamic 

summarization of findings. 

 

Emerging technologies like machine learning and 

artificial intelligence promise to further enhance project 

duration estimation. Algorithms that learn from historical 

data adapt to project dynamics and predict outcomes with 
unprecedented accuracy could offer corrective measures, 

paving the way for even more sophisticated and reliable 

project management tools. 

 

In conclusion, we have demonstrated a successful 

framework for integrating PERT and Monte Carlo simulation 

to yield robust duration recommendations. This method 

offers a significant improvement in managing the 

uncertainties and complexities of modern project 

management, ultimately leading to more successful project 

outcomes. By embracing the inherent randomness in project 

management and grounding decisions in statistical rigor, 
project managers can make more informed and reliable 

recommendations, enhancing overall project success. 
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