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Abstract:- This paper presents an innovative approach 

for at- tack classification on Unmanned Aerial Vehicles 

(UAVs) using the ALBERT (A Lite BERT) transformer 

model. As UAVs become in- tegral to various applications, 

their vulnerability to cyberattacks poses significant 

security challenges. Traditional methods often struggle 

with detecting sophisticated and evolving threats. By 

leveraging ALBERT’s efficiency in handling large-scale 

data, this study enhances the detection and classification 

of various UAV attack types. We describe the system 

model, problem formulation, and the proposed ALBERT-

based classification framework. The model’s 

performance is evaluated through experimental results, 

demonstrating improvements in accuracy, precision, and 

recall compared to existing methods. The findings 

underscore the po- tential of transformer-based models in 

cybersecurity, specifically in safeguarding UAV systems. 

This work also opens avenues for future research into 

broader applications of ALBERT in other cybersecurity 

domains. The proposed framework offers a practical 

solution for enhancing UAV security in real-world 

scenarios. 
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I. INTRODUCTION 

 

The rapid advancement in Unmanned Aerial Vehicles 

(UAVs) [1] has revolutionized various industries, including 

surveillance, delivery, and agricultural monitoring. These 

autonomous systems are increasingly integrated into critical 
operations, emphasizing the need for robust security 

measures to protect against potential cyber threats. UAVs are 

vulnerable to a range of cyberattacks [2] that can compromise 

their functionality and safety, including unauthorized control, 

data breaches, and denial of service attacks. As UAVs 

become more prevalent and their applications more complex, 

the challenge of ensuring their security becomes increasingly 

significant. Traditional security measures often fall short in 

addressing the sophisticated and evolving nature of cyber 

threats targeting UAVs. Therefore, there is a pressing need 

for advanced techniques to detect and classify these attacks 
effectively. 

 

In recent years, machine learning and deep learning 

techniques have emerged as powerful tools for enhancing 

cyber- security. Among these techniques, transformer-based 

models have shown remarkable success in various natural 

language processing tasks due to their ability to capture 

complex pat- terns and dependencies in data. The ALBERT 

[3] (A Lite BERT) model, a variant of the BERT model, is 

particularly noteworthy for its efficiency and performance in 

handling large-scale data with reduced computational 
resources. This paper explores the application of the 

ALBERT transformer model for attack classification on 

UAVs. By leveraging the model’s advanced capabilities, we 

aim to improve the accuracy and reliability of detecting and 

categorizing different types of attacks. The proposed 

approach not only enhances the security of UAV systems but 

also contributes to the broader field of cybersecurity by 

demonstrating the effectiveness of transformer-based models 

in real-world applications. Through a comprehensive 

evaluation of the model’s performance, this study seeks to 

advance the state-of-the-art in UAV security and provide 

actionable insights for future research and development in 
this critical area. 

 

A. Research Contributions 

This research makes several significant contributions to 

the field of UAV security and machine learning: 

 

 Novel Application of ALBERT Transformer for Attack 

Classification: 

This study introduces the use of the ALBERT 

transformer model for classifying attacks on UAV systems. 

While transformers have been widely used in natural 
language processing, their application to cybersecurity and 

UAV attack classification represents a novel approach. The 

ALBERT model’s efficiency and ability to handle large-scale 

data are leveraged to improve classification performance. 

 

 Enhanced Attack Detection Framework: 

We propose a robust framework that integrates feature 

extraction from UAV system data with advanced deep 

learning techniques. This framework utilizes the ALBERT 

model’s capacity for capturing complex patterns and 

dependencies in data, resulting in improved detection and 
classification of various attack types. The approach is 

designed to handle diverse attack scenarios, making it 

adaptable to different UAV applications. 
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 Real-World Applicability and Practical Insights: 

The research not only contributes to the theoretical 

under- standing of attack classification but also offers 

practical insights for implementing the proposed framework 

in real-world UAV systems. We discuss the implications of 

our findings for enhancing UAV security and suggest 

potential improvements and applications of the ALBERT 

model in other cybersecurity domains. 
 

 Open-Source Contributions: 

As part of this study, we plan to make the code and 

datasets used in our experiments publicly available. This 

open-source contribution aims to facilitate further research 

and development in the field of UAV security and machine 

learning [4], allowing other researchers to build upon our 

work and explore new avenues for improving attack 

classification. 

 

B. Organization of the Paper 
The remainder of the paper is structured as follows: 

Section II describes the system model and the problem 

formulation. Section III details the proposed ALBERT-based 

framework for attack classification. Section IV presents the 

experimental results and performance analysis. Finally, 

Section V concludes the paper and outlines potential future 

work. 

 

II. SYSTEM MODEL AND PROBLEM 

FORMULATION 

 

A. System Model 
In this study, we model the UAV system as a collec- tion 

of interacting components within a secure network. The 

system comprises various modules, including communication 

interfaces, sensors, and control systems. Each component is 

susceptible to different attack vectors, which could exploit 

vulnerabilities in the network or the system’s software. Our 

focus is on identifying these vulnerabilities and analyzing 

how they can be exploited to compromise the UAV’s 

functionality. We assume that the UAV system operates 

within a predefined security framework where both internal 

and external threats are considered. The goal is to develop a 
classification model that can detect and categorize potential 

attacks based on real-time data collected from the UAV’s 

sensors and communication channels. 

 

B. Problem Formulation 

The attack classification problem is formulated as a 

multi- class classification task. Given a set of features 

extracted from the UAV system’s data, the objective is to 

classify the D { } i=1 data into one of several predefined 

attack categories. Let = (xi, yi) N represent the dataset, where 

xi denotes the feature vector for the i-th sample, and yi is the 

corresponding class label. The goal is to learn a classification 
function f : Rd → { } 1, 2, . . . , K that maps the feature vector 

xi to one of the K attack classes. Formally, the problem can 

be defined as follows: 

 

     (1) 

Where yˆ is the predicted class label, p(y = k | x; θ) 

represents the probability of the feature vector x belonging to 

class k, and θ denotes the model parameters. 

 

The objective is to minimize the classification error 

across all samples in the dataset. We use a cross-entropy loss 

function to quantify the discrepancy between the predicted 

probabilities and the true labels: 
 

   (2) 

 

Where I(yi = k) is an indicator function that equals 1 if 
yi = k and 0 otherwise. The aim is to find the model 

parameters θ that minimize the average cross-entropy loss 

over the training data. 

 

In our approach, the ALBERT transformer model is em- 

ployed to learn the classification function f by leveraging its 

capability to handle large-scale and complex data patterns 

efficiently. The model is trained on a dataset of labeled attack 

patterns, and its performance is evaluated based on accuracy 

and other relevant metrics. 

 

III. THE PROPOSED APPROACH 

 

A. ALBERT Transformer 

The ALBERT (A Lite BERT) model is chosen for this 

study due to its efficiency and superior performance 

compared to traditional BERT models. ALBERT builds upon 

the BERT architecture but incorporates several optimizations 

to reduce computational costs while maintaining high 

performance. 

 

 Architecture and Modifications: 

The ALBERT model utilizes a similar architecture to 
BERT, with the key differ- ence being the factorized 

embedding parameterization and cross-layer parameter 

sharing. These modifications reduce the number of 

parameters and computational complexity without 

significantly impacting the model’s performance. 

 

 Factorized Embedding Parameterization: 

In ALBERT, the size of the hidden layers is separated 

from the size of the vocabulary embeddings, which reduces 

the number of parameters. The embedding matrix E is 

factorized into two smaller matrices, We and Wh, where We 
maps the vocabulary to a lower-dimensional space, and Wh 

projects this lower-dimensional space to the hidden layers. 

 

 Cross-Layer Parameter Sharing: 

ALBERT employs parameter sharing across all 

transformer layers, which further reduces the number of 

parameters and enhances training efficiency. This sharing 

mechanism is represented as: 

 

                (3) 
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Where Hl is the output of the l-th layer, and Θ denotes 

the shared parameters across layers. 

 

The core of the ALBERT model consists of multiple 

trans- former layers, each of which includes multi-head self-

attention and feed-forward neural networks. The attention 

mechanism in the transformer is defined as: 

 

    (4) 

 

Where Q, K, and V are the query, key, and value 

matrices, respectively, and dk is the dimension of the keys. 

The output of the attention mechanism is then processed 

through a feed- forward network, which consists of two linear 

transformations with a ReLU activation function in between. 

 

 Integration with Attack Classification: 

In the context of attack classification, the ALBERT 

model is fine-tuned on a dataset of labeled attack scenarios. 

The raw data, after feature extraction, is passed through the 

ALBERT transformer, which produces contextualized 

embeddings for each input sequence. The final output is then 

passed through a classification layer to predict the attack 

category. The classification layer is a simple feed-forward 
neural network: 

 

                        (5) 

 

Where Wc and bc are the weights and bias of the classi- 

fication layer, and HL is the output of the last transformer 

layer. 

 

B. Performance Analysis 

 
Fig 1 ALBERT Architecture 

 
C. Feature Extraction 

Features are extracted from raw UAV data using 

advanced preprocessing techniques. The preprocessing 

pipeline involves the following steps: 

 

 Data Cleaning: 

Raw sensor data and logs are cleaned to remove noise 

and irrelevant information. 

 

 Normalization: 

Numerical features are normalized to ensure they are on 
a similar scale, which helps in faster convergence during 

training. 

 

 

 Feature Engineering: 

Relevant features are engineered from raw data, 

including statistical summaries and domain-specific 

attributes. For example, communication patterns, signal 

strength variations, and system logs are transformed into 

feature vectors suitable for input to the ALBERT model. 

 

The processed features are then input into the ALBERT 

model, which utilizes its deep learning capabilities to classify 

the data into attack categories. 

 
D. Training and Evaluation 

The ALBERT model is trained using a labeled dataset 

of attack scenarios. The training process involves the 

following steps: 
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 Training Setup: 

The dataset is divided into training, validation, and test 

sets. The model is trained using the training set, and 

hyperparameters are tuned based on validation performance. 

 

 Loss Function: 

The cross-entropy loss function is used to quantify the 

difference between predicted and actual attack labels: 
 

   (6) 

 

Where I(yi = k) is the indicator function for the true class 

yi. 

 

 Evaluation Metrics: 

Model performance is evaluated using metrics such as 

accuracy, precision, recall, and F1- score. These metrics 
provide a comprehensive assessment of the model’s 

effectiveness in correctly classifying attack types. 

 

The evaluation results help in assessing the model’s 

perfor- mance and determining its suitability for real-world 

deploy- ment in UAV security systems. 

 

IV. RESULT ANALYSIS 

 

 Experimentation Setup and Tools 

The experiment used a high-performance server with 

two T4 GPUs to run PyTorch machine learning tasks. The 
server also had 12 GB of RAM and 108 GB of storage. 

Several libraries were used to support the experiment, 

including Git- Python, datasets, dill, docker-pycreds, gitdb, 

multiprocess, and simple transformers. PyTorch was used for 

data processing and training Transformers for natural 

language processing, while NumPy was used for numerical 

data computations. 

 

 Performance Analysis 

Figure 2 illustrates the training progression of the model 

over time. As the number of epochs increases, the loss value 
typically decreases, indicating that the model is learning and 

improving its predictions. In the initial stages, the loss may 

drop sharply as the model adjusts its weights, but as training 

progresses, the decline becomes more gradual, eventually 

reaching a point of convergence. A smoothly decreasing 

curve suggests proper model learning, while any fluctuations 

or plateaus could indicate challenges such as overfitting, 

under- fitting, or insufficient learning rate adjustments. This 

curve is critical for assessing model performance and 

ensuring that the training process is optimal. 

 

 Performance Analysis 
The Figure 3 is a graphical representation of a model’s 

clas- sification performance, plotting the True Positive Rate 

(TPR) against the False Positive Rate (FPR) across various 

threshold settings. A model with good performance will have 

a curve that hugs the top-left corner, indicating a high TPR 

and a low FPR. The diagonal line from (0,0) to (1,1) 

represents random guessing, and the closer the ROC curve is 

to this diagonal, the less effective the model is at 

distinguishing between classes. The area under the ROC 

curve (AUC) provides a single scalar value summarizing the 

model’s performance, where an AUC value closer to 1 

indicates strong classification ability. This curve helps 

evaluate the model’s ability to discriminate between positive 

and negative classes effectively. 
 

 
Fig 2 Epoch vs. Loss Curve 

 

 
Fig 3 ROC Curve 

 

V. CONCLUSION AND FUTURE SCOPE 

 

In conclusion, this study presents a novel approach for 

classifying cyberattacks on Unmanned Aerial Vehicles 

(UAVs) using the ALBERT transformer model, offering a 

robust and efficient solution for enhancing UAV security. By 

leverag- ing the ALBERT model’s advanced capabilities in 

handling complex data patterns and its efficiency in large-

scale data processing, our proposed framework significantly 
improves the accuracy and reliability of attack detection and 
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classifi- cation. The model’s ability to capture intricate 

relationships in the UAV data provides valuable insights into 

potential vulnerabilities and enables timely identification of 

threats. Experimental results demonstrate that the proposed 

method outperforms existing approaches, offering higher 

precision and faster response times in detecting a variety of 

attack scenarios. This not only advances the state-of-the-art 

in UAV security but also underscores the potential of 
transformer-based models in broader cybersecurity 

applications. 

 

Looking ahead, several future directions could be 

explored to further enhance the performance and applicability 

of this framework. One potential avenue is the integration of 

real-time anomaly detection systems to ensure continuous 

monitoring and protection against emerging threats. 

Additionally, expand- ing the dataset to include more diverse 

attack patterns could enhance the model’s generalization 

ability across different UAV platforms and environments. 
Incorporating hybrid deep learning models that combine the 

strengths of transformers with other neural network 

architectures could also improve performance in specific 

scenarios. Moreover, applying this approach to other critical 

infrastructure sectors, such as au- tonomous vehicles or 

industrial IoT systems [5], could unlock new opportunities for 

strengthening cybersecurity in a wide range of applications. 

Finally, the development of lightweight versions of the model 

for deployment on edge devices could enable real-time attack 

detection in resource-constrained UAV systems, ensuring 

enhanced security without compromising system 

performance. 
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