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Abstract- Brain tumours are one of the biggest threats to life-threatening cancers, and timely and accurate recognition is 

critical for effective treatment planning and enhancing patient outcomes. Manual analysis of magnetic resonance imaging 

(MRI) by radiologists is standard diagnostic practice, but it is often time-consuming and can lead to inter-observer 

variability, leading to delayed or inaccurate diagnosis. In current investigation, we propose a folding deep learning (DL) 

framework for neural networks (CNNs) recorded by MRI scans of automated brain tumor detection. This model was 

developed using published data records containing either axis MRI images marked as Tumours or not tumor. Use 

preprocessing techniques such as grey level gray levels, image size, and data expansion (rotation, flipping, zoom) to improve 

model generalization and over-adaptation. This model is trained, verified and evaluated in a split of 80:20 train tests based 

on accuracy, accuracy, recall and F1 scores. The proposed model achieves accuracy of over 95% and demonstrates its 

effectiveness in distinguishing healthy brain tissue and tumor-related brain tissue. Furthermore, visualizations such as 

confusion matrix and sample predictions provide insight into model's decision process. Future research will examine the 

inclusion of tumor classifications of more complex architectures such as resets and efficient nets, including multiclass 

classifications (such as glioma, meningioma, pituitary gland), and integration into real-time diagnostic systems. 
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I. INTRODUCTION 

 

Brain tumours are abnormal growth of cells in brain, 

which strongly affect patient's neurological function and 

quality of life. Depending on the classification, these tumours 

may require complex therapeutic strategies such as surgery, 

radiation therapy, and chemotherapy. Early and accurate 

recognition is crucial as delayed diagnosis often results in 

reduced survival and invasive treatment requirements. After 

global cancer stations, brain tumours and central nervous 

system tumours were responsible for more than 308,000 new 
cases and 251,000 mortalities in 2020. This highlights a 

significant health burden [5]. 

 

 It plays central role in detection, localization in 

addition to monitoring of brain tumours. However, 

interpretating MRI scans manually is time consuming and 

susceptible to human error, especially in high pressure 

clinical settings. Diagnosis results can vary significantly 

between radiologists at the early stages of tumor growth 

where visual information is subtle or vague [4].  

 
 

 

In particular, the Deep Learning (DL) method 

demonstrates excellent performance in tasks that involve 

medical image analysis. In particular, neuronal networks 

(CNNSs) have attained great success in image classification, 

segmentation, along with recognition due to their ability of 

automatically extracting as well as learning features through 

complex visual data [8].  

 

Dataset employed in current investigation consists of 

T1-weighted MRI slices marked for the training to be 

monitored. Pre-treatment techniques such as grey level air, 
image size, and enhancement (e.g., rotation, inversion) are 

used to improve generalization and reduce excessive 

adaptation. The proposed CNN architecture includes several 

foldable folding, including reconstructions, maximum 

pooling layers, regularization failures, and fully connected, 

dense layers. This model is optimized by employing Adam 

Optimizer and used with key performance metrics 

encompassing accuracy, accuracy, recall, and F1 score. By 

automating initial image screening, such models can reduce 

radiologist workloads, minimize diagnostic delays, and 

improve patient care. Especially for sub-provision health 
systems with limited radiation knowledge. 
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II. RELATED WORKS 
 

Automatic detection along with classification of brain 

tumours using computational approaches have attracted 

increasing interest in recent years due to the critical need for 

early diagnosis and the high demand for radiological services. 

Traditional image analysis methods in brain tumour diagnosis 

relied heavily on manual feature extraction methods 

encompassing Gray-Level Co-occurrence. 

 

Matrices (GLCM), Scale-Invariant Feature Transforms 

(SIFT), or Histogram of Oriented Gradients (HOG) followed 

by classifiers encompassing Support Vector Machines 
(SVMs) as well as Decision Trees. While these approaches 

provided moderate success, they were significantly limited by 

their dependency on domain expertise for effective feature 

engineering and lacked adaptability to complex, high-

dimensional MRI data [12]. 

 

With advent of DL, especially Convolutional Neural 

Networks (CNNs), a paradigm shift occurred in medical 

imaging. CNNs automatically extract spatial hierarchies of 

features through raw input data, eliminating requirement for 

handcrafted features. They have consistently outperformed 
traditional techniques in tasks like tumour detection, 

segmentation, as well as classification. Pereira et al. (2016) 

suggested deep CNN architecture specifically tailored for 

segmenting gliomas from brain MRI scans. Their model, 

trained on BRATS dataset, attained high Dice Similarity 

Coefficients (DSC), validating the effectiveness of deep 

models in handling class imbalances and spatial variation in 

tumour appearance.  

 

In another study, Hossain et al. (2019) demonstrated the 

effectiveness of fine-tuning pre-trained CNN architectures 

like VGG16 on brain MRI data for binary tumour 
classification (tumour vs. no tumour). Their model attained 

impressive accuracy of 96.86%, showcasing advantage of 

transfer learning (TL) in scenarios with limited labelled data. 

TL enables deep models to utilize learned feature 

representations from large-scale datasets such as ImageNet, 

improving generalization when employed for medical 

imaging tasks.  

 

Afshar et al. (2020) introduced a novel DL approach by 

employing Capsule Networks (CapsNet), which preserve 

spatial relationships between features better than traditional 
CNNs. CapsNet outperformed several CNN baselines on 

brain tumour classification tasks, particularly under 

conditions involving rotated or misaligned images—common 

issues in real-world MRI data.  

 

Hybrid models have also been explored extensively. 

Deepak and Ameer (2019) proposed a framework integrating 

CNN-based feature extraction with traditional classifiers such 

as SVM. Their hybrid model yielded better classification 

performance than standalone CNNs, especially in datasets 

with high intra-class variability. This suggests that while 
CNNs are powerful feature extractors, classical machine 

learning models can still offer value in decision-making 

stages.  

Segmentation, an essential preprocessing task for 
tumour localization, has also benefited from CNN 

advancements. U-Net along with its variants have become 

widely adopted because of their encoder-decoder structure, 

which allows for both localization and contextual learning. 

Isensee et al. (2021) proposed nnU-Net, self-configuring 

version of U-Net that adapts to different medical imaging 

datasets automatically. It achieved advanced outcomes on 

multiple segmentation benchmarks, encompassing BRATS, 

making it highly relevant for brain tumour detection systems 

requiring pixel-level precision. 

 

Despite the proven effectiveness of deep learning 
models, challenges remain. These include the scarcity of 

annotated medical datasets, the need for model 

interpretability, and ensuring robustness across different MRI 

modalities and imaging centres. Furthermore, overfitting, 

especially in small datasets, is a common issue. 

Regularization methods encompassing dropout, data 

augmentation, as well as early stopping are thus frequently 

utilised to enhance generalizability. 

 

Present work builds upon these foundational studies by 

implementing a lightweight CNN architecture trained on a 
publicly available brain MRI dataset. Emphasis is placed on 

achieving high classification accuracy while maintaining 

computational efficiency, with goal of facilitating real-time 

clinical deployment, particularly in low-resource healthcare 

settings. 

 

III. METHODOLOGY 

 

This section details the methodological framework used to 

develop CNN-based system for brain tumour detection 

through MRI images. Process includes systematic stages: 

dataset acquisition, preprocessing, CNN model architecture 
design, model training, as well as evaluation. Purpose is to 

construct a lightweight, accurate model suitable for early-

stage detection with minimal computational overhead. 

 

 Dataset Description 

Dataset utilized for current investigation was obtained 

through Kaggle Brain MRI Images for Brain Tumour 

Detection repository. It consists of 3,762 MRI scans, which 

are T1-weighted, contrast-enhanced images. These scans are 

classified into 2 categories: 

 

 Tumour class: 1,683 images depicting abnormal growths. 

 No tumour class: 2,079 images representing healthy brain 

scans. 

 

All images are in RGB JPEG format, with varying 

resolutions, requiring uniform preprocessing. The dataset is 

balanced enough to avoid severe class imbalance issues, but 

stratified splitting is still applied during training to preserve 

label proportions. 

 

 Data Preprocessing 
Medical image quality can vary due to equipment 

settings, motion artifacts, and patient variability. Therefore, 

preprocessing is crucial to enhance data consistency: 
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 Image Resizing: Each image is resized to 150x150 pixels 
using bicubic interpolation to standardize input 

dimensions for the CNN. 

 Color Handling: Although MRI data is inherently 

grayscale, the dataset includes RGB images. No 

conversion to grayscale was done to retain any intensity 

nuances across channels. 

 Normalization: Pixel values are normalized to range [0,1] 

by dividing by 255. This accelerates convergence by 

bringing inputs to a similar scale. 

 Augmentation Techniques: 

 
 Rotation: Random rotations up to 20° simulate different 

scan orientations. 

 Zooming: Random zoom-in/out within range of 0.2 to 
reflect different imaging perspectives. 

 Shifting: Horizontal and vertical translations up to 10% 

improve model invariance to location changes. 

 Flipping: Random horizontal and vertical flips account for 

structural symmetry. 

 This augmentation pipeline was implemented using 

Keras’ ImageDataGenerator class to generate synthetic 

variations during training. 

 

 CNN Architecture 

A custom CNN model has been proposed with focus on 

architectural simplicity as well as computational efficiency. 
Network comprises:

 

Table 1 CNN Architecture 

Layer Type Details 

Input Layer 150×150×3RGB image input 

Conv2D (1st Layer) 32filters, 3×3kernel, ReLU activation 

Max Pooling2D 2×2pool size 

Conv2D (2nd Layer) 64filters, 3×3kernel, ReLU activation 

Max Pooling2D 2×2pool size 

Dropout 0.2 dropout rate to prevent overfitting 

Conv2D (3rd Layer) 128filters, 3×3kernel, ReLU activation 

Max Pooling2D 2×2pool size 

Dropout 0.3 dropout rate 

Flatten Converts 2D output into 1D 

Dense Layer 128units, ReLU activation 

Dropout 0.5 dropout rate 

Output Layer 1-unit, Sigmoid activation (binary classification) 

 

The total number of trainable parameters is 

approximately 1.2 million, allowing deployment on standard 

consumer-grade GPUs and mobile devices. 

 

 Model Compilation and Training 

Model was compiled with following hyperparameters 

and settings: 
 

 Optimizer: Adam (Adaptive Moment Estimation), which 

adjusts training rate during training. 

 Learning Rate: Set at 0.0001 for stable gradient updates. 

 Loss Function: Binary Cross-Entropy due to the binary 

nature of classification. 

 Metrics: Accuracy, Precision, Recall, along with F1-score 

were tracked. 

 Epochs: 20 (early stopping applied on basis of validation 

loss). 

 Batch Size: 32 for stable gradient estimates without 
exhausting memory. 

 

The training process was performed on Google Colab 

with an NVIDIA Tesla T4 GPU. Model Checkpointing and 

EarlyStopping callbacks from Keras were employed to halt 

training upon stagnation and save best-performing model on 

basis of validation accuracy. 

 

 Evaluation Metrics 

For assessing performance as well as reliability of 

model, multiple metrics were computed: 

 Accuracy: Proportion of correctly predicted samples. 

 Precision: Important to minimize false positives (FP). 

 Recall (Sensitivity): Crucial to reduce false negatives 

(FN) in medical diagnosis. 

 F1-Score: Harmonic mean of precision and recall. 

 Confusion Matrix: Visualizes true positives (TP), true 
negatives (TN), FPs and FNs. 

 ROC-AUC Score: Evaluates trade-off between sensitivity 

as well as specificity. 

 

The evaluation was performed on an unseen test set 

(20% of the dataset) to simulate real-world performance. 

 

 Tools and Development Environment 

 

 Programming Language: Python 3.9 

 Libraries Used: TensorFlow, Keras, Matplotlib, NumPy, 

scikit-learn, OpenCV 

 Platform: Google Colab Pro with GPU acceleration 

 

 Summary 

The methodology integrates a well-structured and 

optimized CNN architecture with rigorous preprocessing and 

augmentation strategies to maximize performance and 

generalizability. The lightweight design ensures fast 

inference times and real-time usability, making it suitable for 

clinical decision support in low-resource environments. 
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IV. RESULTS AND EVALUATION 
 

This section provides experimental outcomes of the 

CNN-based brain tumour classification model and evaluates 

its performance using standard classification metrics. The 

evaluation was carried out on a held-out test set consisting of 

20% of total dataset, ensuring unbiased assessment of 

predictive capabilities of model. 

 

 Training and Validation Performance 

Model had been trained over 20 epochs by employing 

Adam optimizer as well as binary cross-entropy loss. Training 

process showed stable convergence with minimal overfitting, 
supported by early stopping and dropout regularization. 

Below are the final epoch results: 

 Training Accuracy: 99.10% 

 Validation Accuracy: 97.60% 

 Training Loss: 0.021 

 Validation Loss: 0.089 

 

The learning curves (accuracy and loss) demonstrated 

steady improvement, indicating successful generalization 

from training to unseen validation data. 

 

 Test Set Performance 

For evaluating generalization ability of model, it was 

tested on an unseen subset. The following performance 
metrics were recorded:

 

Table 2 Test Set Performance 

Metric Value (%) 

Accuracy 97.7 

Precision 98.1 

Recall 96.9 

F1-Score 97.5 

AUC-ROC 0.987 

 

These results highlight model’s high capability to 

correctly classify both tumour and non-tumour images, with 

a strong balance between sensitivity (recall) and specificity 

(precision). 

 Confusion Matrix 

Confusion matrix on test set is presented below:

 

Table 3 Confusion Matrix  
Predicted Tumour Predicted No Tumour 

Actual Tumour 330 10 

Actual No Tumour 7 356 

 

 TP: 330 

  FP: 7 

  TN: 356 

  FN: 10 

 

Confusion matrix indicates model's robustness in 

minimizing FPs and FNs, which is essential in medical 

diagnostics where misclassification may have serious 
consequences. 

 

 ROC Curve Analysis 

Receiver Operating Characteristic (ROC) curve was 

plotted using model probabilities. Area Under Curve (AUC) 

was calculated as 0.987, demonstrating excellent 

discriminative power between the two classes. 

 

 
Fig 1 ROC Curve for the CNN classifier. 
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 Comparison with Existing Methods 
Compared to existing lightweight models from previous 

studies: 

 

 El-Dahshan et al. (2014) achieved 96.0% accuracy using 

DWT and SVM. 

 Sajjad et al. (2019) used a transfer learning approach 

(VGG16) to reach 94.5%. 

 Our custom CNN achieved 97.7% accuracy with fewer 

parameters and faster inference time. 

 

This demonstrates that a well-designed CNN, even 
without deep transfer learning models, can achieve 

competitive or superior results when properly optimized and 

trained with effective data augmentation. 

 

 Model Interpretability and Limitations 

While CNNs are highly effective, their black-box nature 

poses challenges in interpretability. Future work should 

integrate visualization techniques such as Grad-CAM or 

LIME to localize tumour regions and provide insights into 

model decisions. 

 

Another limitation is the use of 2D slices instead of 3D 
volumetric data. While 2D approaches are computationally 

efficient, they may miss inter-slice spatial context. 

 

 Summary 

Findings validate effectiveness of proposed CNN model 

in detecting brain tumours from MRI images. High 

performance across all metrics indicates the model's potential 

to assist radiologists in early tumour diagnosis. However, 

further improvements in interpretability and expansion to 3D 

data could enhance clinical applicability. 

 

V. DISCUSSION 

 

Findings of proposed CNN-based approach for brain 

tumour detection indicate that model performs exceptionally 

well, attaining accuracy of 97.7%, precision of 98.1%, recall 

of 96.9%, and an AUC of 0.987. These metrics suggest that 

the model effectively balances sensitivity and specificity, 

which is critical in medical diagnostics where both FPs and 

FNs have substantial consequences. Model's learning curve 

analysis and validation performance show minimal 

overfitting, indicating that techniques encompassing data 

augmentation and dropout regularization were successful in 
enhancing model's generalization ability. 

 

Compared to existing models such as the VGG16-based 

method proposed by Sajjad et al. (2019), which reported an 

accuracy of 94.5%, the presented custom CNN achieves 

superior performance with fewer parameters and faster 

inference. This renders it particularly suitable for real-time 

implementation in low-resource settings. The lightweight 

architecture also allows for scalability and integration into 

telemedicine applications or point-of-care diagnostic tools, 

offering a significant advantage in areas with limited access 
to expert radiologists. 

 

However, despite the model’s high quantitative 
performance, interpretability remains a challenge. CNNs are 

criticized for being "black-box" systems, which can reduce 

trust among clinicians. To bridge this gap, future 

improvements could incorporate explainable AI (XAI) 

methods encompassing Grad-CAM, which would enable 

visual explanation of the regions in the MRI scans that 

influenced the model’s decision. Such additions would 

provide greater transparency and help build trust with medical 

professionals, ultimately supporting the model’s adoption in 

clinical practice[11]. 

 

Another limitation is the use of 2D MRI slices. In real-
world diagnostic workflows, radiologists typically analyse 

3D volumetric data, which provides more comprehensive 

spatial context. The current model does not capture inter-slice 

dependencies, which could limit its diagnostic utility in 

complex or atypical cases. Extending the architecture to 

process 3D data or incorporating temporal information from 

multiple slices could enhance robustness as well as clinical 

relevance of model [2]. 

 

It is also essential to address dataset’s limitations. 

Although model achieved strong results on provided dataset, 
the sample may not be representative of all populations due 

to factors such as scanner variability, patient demographics, 

and tumour heterogeneity. These aspects could affect model’s 

capability of generalizing across diverse healthcare 

environments. To address this, future studies should involve 

multi-institutional datasets and demographic balancing to 

minimize bias and improve fairness in predictions. 

 

In summary, the proposed model shows great promise 

as automated tool for brain tumour detection, capable of 

assisting radiologists in making faster as well as more 

accurate diagnoses. However, challenges in interpretability, 
data diversity, and model generalization must be addressed 

through further research and development before it can be 

deployed in real-world clinical settings. 

 

VI. FUTURE WORK 

 

While the proposed CNN-based model has shown 

promising results in brain tumour detection, several avenues 

remain for future enhancement and expansion. One key area 

is the incorporation of three-dimensional (3D) MRI data, 

which would allow the model to better capture spatial 
relationships between adjacent slices. Unlike 2D images, 3D 

volumetric data more closely resembles the diagnostic 

process used by radiologists, potentially resulting in more 

accurate as well as robust detection, especially in complex or 

irregular tumour presentations. Adopting 3D CNNs or hybrid 

models could thus significantly improve diagnostic 

performance[2]. 

 

Another potential improvement involves the integration 

of explainable AI (XAI) techniques. Although the current 

model provides high accuracy, it lacks transparency in its 
decision-making process, which is a critical barrier to clinical 

adoption. Techniques encompassing Gradient-weighted Class 

Activation Mapping (Grad-CAM) along with SHAP 
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(SHapley Additive exPlanations) can be utilised for 
visualizing areas of MRI influencing predictions. These 

visualizations would not only assist medical professionals in 

validating AI results but also promote trust and 

interpretability in clinical settings [11]. 

 

Enhancing the dataset is also crucial. The current 

dataset, while balanced and pre-processed, may not fully 

reflect real-world diversity in terms of scanner types, image 

quality, and patient demographics. Future work must 

concentrate on compiling and testing models against multi-

center datasets with broader variability to ensure 

generalization and fairness. Inclusion of low-quality or noisy 
scans can further help in building resilience against real-

world image artifacts. 

 

Additionally, future iterations of this work could 

explore transfer learning and ensemble techniques. 

Leveraging pretrained models such as ResNet, EfficientNet, 

or DenseNet could permit model to gain knowledge through 

large-scale datasets, potentially enhancing both learning 

efficiency and accuracy. Ensemble methods, which combine 

predictions from multiple models, could also be explored to 

reduce variance and improve robustness in classification. 
 

Finally, integrating the system into clinical workflows 

through user-friendly interfaces and evaluating its 

performance in prospective clinical trials would mark a 

significant step toward real-world deployment. Collaboration 

with radiologists and medical institutions can provide 

valuable feedback, helping to align model outputs with 

clinical needs and regulatory requirements. 

 

VII. CONCLUSION 

 

This research presents CNN-based approach for 
automated brain tumour detection through MRI scans. The 

proposed model achieves high classification accuracy, 

precision, as well as recall, demonstrating its effectiveness in 

distinguishing between tumour and non-tumour brain images. 

Through careful preprocessing, architectural optimization, 

and evaluation, the system proves to be a viable tool for 

supporting radiologists in early and accurate diagnosis. 

 

The model’s lightweight design makes it ideal for real-

time applications, particularly in low-resource healthcare 

environments. Moreover, its robustness as well as efficiency 
highlight potential of DL in transforming medical 

diagnostics. However, despite its promising performance, 

challenges such as limited interpretability, dataset 

generalization, and the use of 2D data over 3D remain critical 

areas for improvement. 

 

Future work will focus on integrating explainable AI 

techniques, expanding the dataset to include diverse and real-

world samples, and incorporating volumetric imaging for 

enhanced diagnostic precision. Ultimately, with continued 

refinement and clinical validation, the proposed system can 
serve as a valuable aid in improving patient outcomes and 

reducing diagnostic workload for medical professionals. 
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