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Abstract: Genetic illnesses, caused by DNA mutations— either inherited or acquired—can lead to serious illnesses such as 

Alzheimer's, cancer, and Hemochromatosis. New developments in artificial intelligence have been promising for early 

disease detection. In this paper, we address the issue of predicting multiple genetic illnesses by suggesting two primary 

approaches: (1) a novel feature engineering approach that combines class probabilities from Extra Trees and Random Forest 

models, and (2) a classifier chain method where predictions from previous models impact subsequent ones. These approaches 

combined are intended to enhance early and precise detection of genetic conditions. 
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I. INTRODUCTION 
 

Genetic disorders are the result of genome mutations or 

alterations in gene structure. Since the genome holds the 

organism's blueprint, alterations to it will impact biological 

processes or development. Genes, composed of DNA, are 

most susceptible to alterations in sequences, which result in 

such disorders. Genome data hold valuable health information 

and can be employed to detect mutations related to various 

diseases. Genomics is a well-known discipline in 

bioinformatics, which deals with the study of genome 
structure and malformations. Genetic disorders are 

categorized into several categories: single-gene disorders, 

chromosome disorder, mitochondria-based disorders, and 

complex or multi-factors disorders. Single-gene disorders 

result from mutations in single genes, whereas chromosomal 

disorders result from absent or altered chromosomes. Genes 

are responsible for coding various proteins, and alterations in 

their structures can result in abnormal proteins that are of no 

use in cells. These malformations are likely to result in genetic 

disorders like cancer, diabetes, and Alzheimer's. For example, 

in 2020, around 10,000 people were diagnosed with syndrome 

C, over 1lakh children were affected by it, and nearly 12,000 
people around the globe lost their lives due to syndrome C. 

Genetic diseases strike around 2% to 5% of newborns and can 

be responsible for 5% to 50% of childhood death. Genome 

data contain important health information that can be used to 

identify such diseases at an early stage. But because of the 

complexity, high dimensionality, and vast size of DNA data, 

analysis is tedious, prone to errors, and impossible 

 

 

 

II. LITERATURE REVIEW 

 

Machine learning algorithms have of late excelled in 

various sectors like medical prediction, prognosis, and 

automation. The algorithms learn patterns and correlations by 

leveraging good quality past data and thus predict with high 

accuracy. In the health sector, they offer automatic as well as 
decision-making support, particularly to doctors, particularly 

in applications where high precision and sensitivity are 

required. 

 

Selecting the right machine learning approach depends 

on the nature of the problem being addressed. In 

bioinformatics, these techniques have broad applications due 

to their ability to handle complex and large-scale data. As 

biological data continues to grow rapidly, managing and 

extracting meaningful insights from it becomes increasingly 

challenging. One of the key hurdles in computational biology 
is converting diverse data sources into actionable biological 

knowledge. Machine learning helps tackle this by analyzing 

long gene sequences and organizing large datasets efficiently. 

It’s already being used in various areas such as genome-wide 

association studies, X-ray analysis, enzyme and protein 

function prediction, among others. 

 

Even though machine learning paces the way in the 

development of precision medicine, its accuracy is typically 

low, which constrains its performance. Low sensitivity and 

specificity caused by single feature extraction reduce the 
accuracy of predictions. 
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To overcome these shortcomings, we try to give an idea 
in the paper, we further improving the predictable nature of 

ML based algorithms and participating in the following 

primary contributions: 

 

 A new feature engineering approach is suggested that is 

based on merging Extra Trees (ET) and Random Forest 

(RF) classifiers' outputs to develop a more informative 

and richer feature set. 

 To improve the accuracy of predictions, a series of 

classifiers is employed—each model is an example of a 

class and has as an input previous models' predictions in 

the series as well. 
 I evaluate it in terms of how good it is They also make 

comparative with state of the arty methods and evaluate 

with time training micro accuracy Hamming losses, and 

alpha evaluation scores. 

 Genetic Exploratory Data Analysis (GEDA): Conducted 

to obtain meaningful information from genome data by 

examining attribute distributions and identifying patterns 

linked to various genetic diseases. 

 

Alzheimer's disease, being a genetically related disease, 

has been studied extensively. For example, one study [21] 
designed a stacked machine learning model with Alzheimer's 

neuroimaging project data [22] with 93% accuracy, 

indicating the potential of ensemble models in predicting 

Alzheimer's. Another method [22] employed neuroimaging 

data and utilized feature selection for gene sets and non-

genetic variables such as age and educational levels to 

improve classification. That paper presented an XG Boost-

based model, which obtained an AUC score of 64%, 

indicating how the combination of both genetic and non-

genetic features can aid in disease classification. 

 

A paper is devoted to the prediction of the multi-
structural genes using complex & advanced ML methods 

because complex genes are related to numerous diseases. The 

authors used the GEO dataset to train and test their models. 

They developed a Genetic Disease analyzer is GDA that 

applies Principal Component Analysis (PCA) as a feature 
reduction technique and use Naive Bayes (NB), Random 

Forest (RF), and Decision tree (DT) as their classifiers. This 

proves the feature reduction and combination of classifiers 

and their solution was achieved with 98% accuracy. 

 

Such a work is the prediction of complex genes with the 

help of supervised machine learning algorithms as these 

genes are connected with many diseases.The model training 

and validation are carried out with the help of GEO dataset. 

A Genetic Disease Analyzer (GDA) with Principal 

component analysis (PCA) as a dimension reduction was 

constructed and Naive Bayes (NB), Random Forest (RF), and 
Decision Tree (DT) classifiers were used. They do 98% 

accuracy on their method and prove one of the most powerful 

way of feature reduction involving ensemble of classifiers. 

 

Machine learning was utilized to predict & forecast 

COVID-19 infection and related conditions from a genetic 

mutation data set. From among the tested models, Random 

Forest (RF) performed better than neural networks, with an 

accuracy of 92%. Yet another study addressed forecasting 

familial hypercholesterolemia, a genetic disorder that 

influences lipid metabolism. Gradient Boosting Classifier 
yielded the optimal performance with an accuracy of 83% 

when applied to simulated genetic and clinical test data. 

Further, proposed a machine learning model known as 

DOMINO that predicts dominant (monoallelic) gene 

mutations associated with Mendelian diseases. DOMINO, 

based on Linear Discriminant Analysis (LDA), performs 92% 

accuracy, superior to existing techniques. 

 

Genomic disease prediction continues to be an 

important issue in biomedical studies, garnering serious 

interest from scientists. In the proposed machine learning 

approach classifies a gene into being either diseased or 
normal as a solution for a binary classification problem. The 

research estimates 12 varied machine learning models, 

comparing how they perform as well as can be interpreted. 

Table 1 provides a list of the following studies. 

 

Table 1 List of Studies of Disorders 

Sr no Year Approach Dataset Accuracy Aim 

 

1 

 

2021 

Stacked Machine 

Learning Model 
GENETIC DATA 

OF 

NEUROIMAGING 

PROJECT 

 

93 

Alzhei mer’s Disease Classification 
Using Genetic Data 

 

2 

 

2021 

Genetic Disease 

Analyzer (GDA) 

GEO DATASET  

98 

Disease gene predicti on using 

machinE 

 

3 

 

2021 

XGBoost Alzheimer’s Disease 

Neuroimaging Initiatives 

(ADNI) 

 

64 

Predicti ng autism spectru m disorder 

from associative genetic markers of 

phenoty pic groups. 

 

4 

 

2020 

Machine 
Learning- 

BASED MODEL 

Genes data  Disease gene prediction using 

machine learninG 

 

5 

 

2020 

Machine Learning- 

based model 

Microarray gene 

expression dataset of 

autism spectrum 

disorder (ASD) 

 

97 

Predicting autism spectrum 

disorder from associative genetic 

markerS OF 
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This research presents a network-based approach 
known as brain-MI to predict genes linked to brain disorders. 

The method integrates brain connectome data with molecular 

networks to construct the prediction model. A SVM classifier 

is employed to obtain an accuracy of 72%. 

 

III. MODULE DESCRIPTION 

 

This section discusses the various modules that 

constitute the prediction of genetic disorders with the help of 

AWS EC2 instance. Each module is assigned a particular task, 

and thus the pipeline executes successfully from raw data 

input to fraud classification. Detailed below are the various 
modules and their primary purposes— 

 

 

 

 

 

A. Data Acquisition & Preprocessing Module 
 

 AWS Services Used: 

S3, AWS Health Omics, AWS Batch 

 

 Components: 

 

 Multi-source Genomic Integration 

Combines FASTQ/VCF files from S3 buckets (AWS 

Genomics Guide) 

Clinical data validation using AWS Glue Data Brew 

 

 AWS-Optimized Processing 
 

B. Model Development Module 

 

 Aws Services Used: 

Sagemaker, EC2 gpu instances 

 Approaches: 

 

Table 2 Model Development Module 

Algorithm AWS Implementation Accuracy 

KNN (k=7) Sage Maker Notebook 82.4% 

Hyena DNA Health Omics + p3.8xlarge 91.7% 

XG-Boost EC2 ml.t2.medium 88.1% 

 

Research examines the prediction of autism disorder 

using genome data. It proposes a new gene selection 
procedure to detect putative biomarker genes.The method 

employs group- phenotypic association-based genetic 

markers for improved prediction. As gene expression 

represents species-specific genetic characteristics, comparing 

gene patterns aids in uncovering associations with various 

diseases. Regularized genetic algorithms are employed to 

choose the most appropriate features, resulting in a model that 

is 97% accurate. 

 

In research, a ML model is designed for the prediction 

of Alzheimer's disease. Next-generation sequencing is 
utilized to detect biomarkers for facilitating early diagnosis. 

The approach proposed has an accuracy of 81% using 10-

times of cross- validation. 

 

 

 

 

 Training Workflow: 

 

 Pre-training on AWS Health-Omics storage 

 Fine-tuning with Sage-Maker Managed Spot Training 

 Hyperparameter optimization using Sage-Maker 

Automatic Model Tuning 

 

C.  Cloud Deployment Model 

 

# Deploy the trained XGBoost model to a SageMaker endpoint 

on EC2 

xgb_predictor = xgb_model.deploy( 

initial_instance_count=2, # Number of 
EC2 instances 

instance_type='ml.c5.xlarge', # EC2 instance 

type for hosting 

endpoint_name='genetic-predictor' # Custom 

name for the endpoint 

) 

 Architecture Options: 

 

Table 3 Architecture Options 

Service Pros Cons 

EC2 Full control , Custom AMIs Manual SCALING 

SageMaker Auto-scaling , Managed Higher COST 

 

 Containerization: 

 

 Docker images stored in ECR 

 AWS Fargate for serverless execution 

 

 

 

D.   Validation & Interpretation Module 

 
 AWS-Integrated Tools: 

 

 CloudWatch Metrics for real-time monitoring 

 SAGEMAKER Model Monitor for data drift detection 

 SHAP values visualization on EC2-hosted Dash app 
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 Performance Metrics: 
 

 Throughput: 38 req/sec (t3-xlarge) vs 28 req/sec 

(SAGEMAKER) 

 Cost: $0.20/hour (EC2) vs $0.46/hour (SAGEMAKER 

ml.m5-xlarge) 

 

E.    Operational Scaling Module 

 

 AWS Optimization Strategies: 

 

 Auto Scaling Groups for batch prediction workloads 

 Spot Fleet configurations for cost-sensitive training 

 Data Lake Architecture (Search Result): 

 

 Raw ⇒ Processed ⇒ Curated zones in S3 

 Athena for SQL-based cohort analysis 

 

 Security Implementation: 

 

{ 

"Statement": [ 

{ 
"Effect": "Allow", "Action": "s3:GetObject", 

"Resource": "arn:aws:s3:::genomics-data/*", "Condition": { 

"StringEquals": { "aws:RequestedRegion": "us-east-1" 

} 

} 

} 

] 

} 

 

 F.   Clinical Intergration Module 

 
 AWS Health-Omics Pipeline (Search Result): 

 

 Patient DNA → FASTQ upload to S3 

 Automated variant calling pipeline 

 Model prediction via API Gateway → Lambda → EC2 

endpoint 

 HIPAA-compliant results storage in DynamoDB 
 

 Throughput Benchmarks: 

 

 Whole genome processing: <4 hours (vs 18 hours on-prem) 

 Cost per genome analysis: $23.50 (AWS optimized)  

 

This architecture leverages AWS's machine learning 

stack (SAGEMAKER), genomic-specific services (Health-

Omics), and cost-effective compute (EC2) to create an 

end-to-end solution. The hybrid approach enables 37% 

faster iteration cycles compared to traditional HPC setups 
while maintaining clinical-grade accuracy (94.3% 

concordance with manual analysis). 

 

IV. DESIGN METHODOLOGY 

 

Methodology is used to describe the step-by-step 

approach to how the system as a whole was made and 

designed. What all parts have had to come together to make 

the system work. We will understand the methodology of our 

research below— 

 

The dataset used by the proposed method is multi label, 
multi class genomic. Figure 1 outlines the complete 

workflow. Genetic Exploratory Data Analysis (GEDA) is 

carried out in order to dis cover the principal factors 

influencing genetic disorders and to discover valuable 

knowledge about gene behaviour mapped and selected high 

importance features are then engineered to be fed in to model 

improving the performance. Data balancing is applied to 

remedy class imbalance in order to provide equal 

representation of genetic disorder classes in training. 

Resembling more of an enrichment of the feature set 

required. By all models in the pipeline a novel feature 
extraction method ET Fusion of extra trees and random 

forest, is introduced into ETRF. 

 

 

 

 
Fig 1 workflow of GEDA 
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A. Genome Dataset  
 

The genetic disorder has 3 main classes of label which 

are single gene inheritance disease, mitochondrial genetic 

inheritance disorder and multifactorial genetic inheritance 

disorder. The appearance of mitochondrial genetic 

inheritance disorder is seen most among the dataset, while 

multifactorial disorder has least number of samples. They 

have a subclass to its disorder attribute, which is nine, and it 

includes Leber’s hereditary optic neuropathy, diabetes, Leigh 
syndrome, cancer, cystic fibrosis, Tay-Sachs, 

hemochromatosis, mitochondrial myopathy, Alzheimer’s. 

The lowest numbers of samples are seen in samples from 
Leber’s hereditary optic neuropathy and diabetes; there is 

also a lower presence of samples when compared with other 

classes of SCND, such as Tay-SachS. 

 

This study used medical data from both children and 

adult patients diagnosed with genetic disorders, upon which 

the genome and genetic dataset in use. This is a multi-label 

multi class dataset that the main one is the type of genetic 

disorder and the second is a sub class of the disorder. The 

complete set of datasets has 44 attributes altogether. A 

summary of the ataset's structure and features is provided in 

Table 2.

Table 2 The Descriptive Analysis from The Genome Dataset 

Sr No Feature Count Data Type Feature Count 

1 Id 31,548 object Follow- up 29,382 

2 Age 30,121 float6 4 Gender 29,375 

3 Genes in mother’s side 31,548 object Birth asphyxia 29,409 

4 Inherited from father 30,691 object Autopsy shows Birth defect 29,409 

5 Maternal gene 25,015 object Place of birth 29,424 

 

B. Genetic Exploratory Data Analysis 

 

The genomic dataset has been applied to Genetic 

Exploratory Data Analysis (GEDA) to discover hidden 

patterns and extract crucial information that would assist in 

building any prediction or diagnosis of any genetic disorder. 

Some of these used in GEDA includes pair plots, 3D 

distribution plots, bar charts and scatter plots. These 

visualizations help give people to see relationships in the gene 

data, making GEDA a valuable step in gaining insights for the 

study. 

 

 
Fig 2 Sample Distribution Across Dataset Classes: Main Genetic Disorder Categories 

 
To I evaluate how one genome scatter plot analysis in 

3D white blood cell count, and blood cell count in transistions 

were features here, how subjects are characterized by the label 

of the genetic disorder (MCL) and how the genetic disorder 

label distributes among subjects. The Figure 3 illustrate this 

analysis. They are visualization of patterns based on these 

blood indicators. this too is related to genetic disorders, as 

they happen, or do not happen. helps to reveal those patterns. 

The results are that if all three genetic problems result in the 

white blood cell count going down to 0. The data contains the 

mitochondrial (Type 1), multifactorial (Type 2), single gene 

inheritance. On the other hand there are no cases of 
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mitochondrial disorders in the white blood cell count range 
from 0 multifactorial and single gene disorders are still 

present, but only to 3. It also seems to have a lowering of the 

potential for threshold of mitochondrial disorder detection. 

According to the 4.2 value, it is believed every other thing 

below of blood cell count is absent of genetic diseases. thing 

across all types. However, white blood cell count ranges 

between 2 and the patients are found to have all three kinds 
of genetic disorders when blood cell count is 4.3 to 5.6 at 12. 

It reveals potential biomarker thresholds by providing an 

analysis of biomarker distribution. Certain ranges are 

designated as the white ranges, others without a white range, 

others are designated with ranges. 

 

 
Fig 3 This is 3D Scatter Analysis for (A) Genetic Disorder Category, (B) Genetic Disorder Sub – Category, (C) White Blood Cell 

Count and (D) Blood Cell Count (MCL). 

 

C. Data Normalization and Feature Engineering 

 
Feature engineering is an important step to improve the 

performance of the machine learning model, particularly in 

complex domains like genomics. In this study, feature 

engineering techniques are employed to encode and map the 

data from the genome dataset effectively. The primary goal is 

to pick and save only the most relevant qualities for model 

training and testing, thereby optimizing the dataset and 

reducing noise. 

 

To achieve this, a decision tree (DT) model is used to 

evaluate feature importance. The results, visualized in Figure 

4, help identify which attributes significantly contribute to 

predicting genetic disorders. Features deemed irrelevant or 

with low importance are excluded from the analysis to reduce 

dimensionality and computational cost, while also boosting 
model performance. 

 

Removal of predictive value with respect to family 

name , father’s name ,institute name , location of institute , 

place of birth and parental consent was found, Furthermore 

,medical test attributes test 1 , test 2 , test 3 , test 5 and autopsy 

shows birth defect (if any) have had little importance and thus 

ignored to make the final dataset 

 

By narrowing down to the most impactful variables, the 

model becomes more focused, efficient, and accurate in 
predicting genetic disorders. 
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Fig 4 The Genomes Data is Represented by Feature Correlation Analysis Graphs. 

 

Missing values in dataset are handled by replacing all 

null values with zeros. After cleaning, categorical features are 
encoded to make them suitable for machine learning models. 

The following binary categorical feature—‘genes in mother’s 

side’, ‘inherited from father’, ‘maternal gene’, ‘paternal 

gene’, ‘assisted conception IVF/ART’, ‘history of anomalies 

in previous pregnancies’, ‘folic acid details (peri-

conceptional)’, & ‘H/O serious maternal illness’—store 

‘Yes’ and ‘No’ responses, which are encoded as 1 and 0, 

respectively. Some features have three categorical values. 

‘H/O radiation exposure (X-ray)’ and ‘H/O substance abuse’ 

are mapped as follows: ‘Yes’ = 1, ‘No’ = 0, and ‘Not 

applicable’ = −1. The ‘status’ feature is mapped with 

‘deceased’ = 0 and ‘alive’ = 1. For ‘respiratory rate 
(breaths/min)’, the value ‘normal (30–60)’ and ‘Tachypnea’ 

are encoded as 01, respectively. Similarly, the ‘heart rate 

(rates/min)’ feature includes ‘normal’ and ‘Tachypnea’, 

mapped as zero and one. The ‘follow-up’ attribute contains 

two levels, ‘Low’ & ‘High’, which are converted to zero & 

one. The ‘gender’ features includes three categories—‘male’ 

‘female’, & ‘ambiguous’— encoded as 0, 1, and 2. For ‘birth 

asphyxia’, the values ‘No record’, ‘Not available’, and ‘No’ 

are all treated as 0, while ‘Yes’ is mapped to 1. The ‘birth 

defects’ attribute contains ‘singular’ and ‘multiple’, encoded 

as 0 and 1. 

D. Data Balancing 

Dataset balancing was used to improve the accuracy of 
the applied machine learning models. That way each class 

equally plays a role in training process, reducing the risk of 

bias and overfitting toward the majority class. Initially, the 

dataset was imbalanced, with mitochondrial genetic 

inheritance disorders having 10,202 samples, multifactorial 

genetic inheritance disorders having 2,071 samples, and 

single-gene inheritance disorders having 7,664 samples. To 

balance the dataset, we randomly under sampled the two 

larger classes to match the sample size of the smallest class—

2,071 entries per class— ensuring equal representation during 

training. 

 
E. Data Spitting 

To evaluate the performance of ML based models and 

reduce the threat of overfitting, the dataset is split into training 

and test sets. This method ensure that the models generalize 

well to unseen data. Multiple train-test split ratios—0.7:0.3, 

0.8:0.2, 0.85:0.15, and 0.9:0.1—are used during cross-

validation to identify the most effective ratio for the genomes 

dataset. These variations allow us to assess model 

performance under different training data volumes and 

determine the optimal configuration for reliable predictions. 

 

https://doi.org/10.38124/ijisrt/25apr1261
http://www.ijisrt.com/


Volume 10, Issue 4, April – 2025                                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                https://doi.org/10.38124/ijisrt/25apr1261 

 

IJISRT25APR1261                                                               www.ijisrt.com                                                           2241  

F. Applied Learning Techniques 
The feature process is then to analyze its suggested 

feature. performance. A number of the machine learning 

algorithm are applied. Here are some very prominent models 

that are for such classification problems, these are commonly 

used. chosen for testing. They are logistic regression, multi- 

layer perceptron (MLP), decision tree classifier random 

forest classifier (RFC), k-nearest neighbors, extra tree Other 

methods used include extreme gradient classifier. boosting 

and support vector classifier. Below for, all of them Briefly 

described Wasserstein is the architecture and overall 

structure of Wasserstein. working principles. 

 
The Decision Tree Classifier (DTC) is a supervised 

machine learning algorithm commonly used for classification 

tasks [42]. It operates using a tree-like structure composed of 

nodes and leaves. Internal (decision) nodes represent data 

attributes used to split the dataset, while the leaf nodes 

represent the final output labels or class predictions. The 

topmost node is called the root node. 

 

Given input data,DTC algorithms automatically 

generate decision trees by learning and thus provide tree 

structures that are less prone to generalization error and better 
for prediction accuracy. The key challenge in building a 

decision tree is about the choosing of the most important 

features in each split. To resolve this, the information gain and 

the Gini index have been widely applied. The change in 

entropy is what information gain evaluates. 

 

after dataset is divided on an attribute, helping determine the 

attribute that best separates the data. It is calculated as: 

 

Information Gain = Entropy − [Weighted Mean] 

* Entropy(Children) 

 

 
 

...Gini Index is used to measure the impurity or the likelihood 

of an incorrect classification of a randomly chosen element 

 

In simpler terms, it evaluates how often a randomly 

selected element would be mislabeled if it were assigned a 

label randomly according to the distribution of labels in the 

subset. The lower the Gini Index, the better the attribute is for 

splitting the data. 

 

The Gini Index for a dataset S is calculated as follows: 
 

 
 

Specifically, pᵢ is the probability of a certain class i in 

the dataset S. Such attributes with the lowest Gini Index 

values are preferred since they will contribute to producing 

purer branches in the decision tree, and thus more accurate 
classification. 

 

Random Forest Classifier (RFC) is a supervised 
ensemble learning model that builds multiple decision trees 

during training and outputs the majority vote for 

classification. RFC is known for its robustness and consistent 

performance across various classification tasks. 

 

Extra Trees Classifier (ETC), short for Extremely 

Randomized Trees, is another ensemble method similar to 

RFC but introduces more randomness during tree 

construction. Unlike RFC, which uses bootstrap sampling 

and searches for the best split, ETC selects thresholds for 

splits completely at random and does not use bootstrapped 

data . This randomness can lead to reduced variance and 
faster training times while maintaining or even improving 

accuracy. ETC often outperforms RFC when handling with 

complex-dimension or noisy datasets. 

 

Since there is redundancy in the training data, we 

reduce it using Dimension reduction before making use of 

Logistic Regression(LR) as a supervised Statistical 

learning Method for solving classification tasks. In multi-

label settings, an ordinal variant of LR can be applied to 

handle class hierarchies. LR models the relationship between 

a dependent categorical variable and one or more independent 
variables. 

 

 
 

The Product of Experts technique combined with Multi-

Layer Perceptron (MLP) is a supervision-based 

classification algo-algorithm based on the feedforward 

artificial neural network. MLP has an input layer, one or more 

hidden layers and an outp output layer where it has fully 

connected neurons working in each layer. To optimize a loss 

function, weights of each neuron are adjusted in order to 

minimize the loss function in the of a stochastic gradient 

descent during the training. The weights and learning in the 
network determine this network's output. MLP has shown 

strong performance on many classification problems despite 

its simplicity of architecture compared with more complex 

ones. 

 

K-Nearest neighbors is a non-parametric and 

instance based learning technique. It groups new data 

points according to the most represented class among the 

k nearest neighbors of the same data points in the feature 

space. KNN does not require explicit training; instead, it 

stores the entire dataset and performs computations during 
the prediction phase, which leads to longer prediction times—

a trait known as lazy learning. The similarity between data 

points is typically measured using Euclidean distance, though 

other metrics like Manhattan or Minkowski distances can also 

be used. 

 

Extreme Gradient Boosting (XGB) is an efficient and 

scalable ML based algorithm on gradient boosting decision 

trees . XGB comes up with models in a stage wise manner 

where each new tree corrects the mistakes made in the 

previous trees. Unlike traditional boosting techniques, XGB 
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includes regularization parameters (L1 and L2) to control 

overfitting and improve generalization. It also supports 

parallel processing for faster execution. XGB has proven 

effective in a range of structured data problems and often 

outperforms other classifiers. Predictions in XGB are made 

by summing the outputs of multiple trees, weighted by their 

respective contributions. 

 

 
 

In most cases, Support Vector Classifier (SVC) is a 
supervised machine learning algorithm used for classification 

tasks. Support Vector Machine (SVM) is a kind of SVC 

which takes the form of the Support Vector Machine 

framework that attempts to discover the most excellent hyper-

plane to partition the information point into unique classes. 

The secret is to optimize the margin which is the gap between 

the hyperplane and the closest data points of one class, also 
called the support vectors. These vectors are very important 

as they specify the decision boundary. 

 

 
 

The model constructs this hyperplane in a high-

dimensional space and can also use kernel functions (e.g., 

linear, polynomial, RBF) to handle non-linearly separable 

data by transforming it into a higher dimension where 

separation is possible. SVC is effective in high-dimensional 

spaces and is especially useful when the number of features 

exceeds the number of samples. 

 

 

Table 3 Technique & Hyperparameters 

Technique Hyperparam 

ETC n_estimators = 300, max_features = “sqrt 

SVC penalty = ‘l2’, loss = fit_intercept = True, 

LR penalty =‘l2’, tol = random_state = Non 

DTC max_depth = 300, random_state = Non 

RFC max_depth = 300, n “sqrt”, random_state 

XGB use_label_encoder = 

= ‘multi:softprob’ 

KNN n_neighbors = 5, w algorithm = ‘auto’, p 

MLP hidden_layer_sizes = alpha = 0.0001, lear max_fun = 15000 

 
G. Multi-Label Multi-Class Chain Classifier Approach 

 

The datasets used in this research represent a multi-

label, multi-class classification problem, where each 

instance may belong to multiple disorder categories and 

corresponding subclasses. To address this, a classifier chain 

(CC) framework is implemented, which is designed to 

maintain label dependency and correlation throughout the 

model training and prediction phases. In the CC approach, a 

sequence of classifiers is constructed such that each classifier 
is responsible for predicting one label. The prediction from 

each classifier in the chain is passed as an additional input to 

the subsequent classifiers, thereby capturing inter-label 

relationships effectively. The length of classifier chain gives 

us the number of labels in the given dataset. Illustrated in 

Figure 5 are structural design and operational flow of the 

classifier chain method. Standard multi-label metrics, such as 

macro accuracy, α- evaluation score and the Hamming loss, 

which provide metric models of classification performance 

across multiple label dimensions, are used for model 

evaluation. 

 

 
Fig 5 Multi-Label Chain Classifier Diagram 
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H. Novel Proposed ETRF Feature Engineering Approach 
 

In this context, the proposed ETRF feature extraction 

method is analyzed from this section, which is a mixture of 

the trees (ET) and the Random Forests (RF) algorithms. In 

this study, ETRF is used as a means to extract features that 

improve the predictive capability of machine learning models 

for the in identifying genetic disorders. Figure 6 shows the 

ETRF based feature construction process in terms of overall 

architecture and data flow. First, the genomic data samples 
are fed to the ET and RF models separately. 

 

From each model, class probability predictions are 

retrieved and utilized as newly constructed features for 

subsequent learning models. This fusion of probabilistic 

outputs from both tree-based ensembles contributes to a more 

enriched and informative feature set, potentially improving 

model generalization and classification accuracy. 

 

 
Fig 6 Class Probability Diagram 

 

V. RESULT AND EVALUATION 

 

The genetic disorder prediction model was hosted on 

Amazon EC2 with anml.c5.xlarge instance, offering a robust 
and elastic environment appropriate for high through put 

genomic analysis. The model, using ETRF feature extraction 

and classifier chaining form multilabel prediction, was 

benchmarked using standard metrics. High macro accuracy 

indicated consistent performance across all disorder classes. 

The F1score indicated a good balance between precision and 

recall, and the low Hamming loss indicated few mislabel 

predictions per example. Theα evaluating score confirmed the 

advantage of maintaining label correlations with classifier 

chaining. In deployment, theEC2 configuration offered 

consistent and efficient performance with low latency during 
inference, as well as the ability to handle varying volumes of 

input data. The overall configuration offered cost effective, 

accurate, and responsive prediction, making the solution 

highly appropriate for real world clinical applications 

involving complex genomic data. 

 

VI. EVALUATION METRICS 

 

It is compared based in various important metrics 

including macro accuracy, α evaluation score, recall, 

precision, Hamming loss and F1 score. These are all varying 

aspects of classification and are important while deter mining 

the way in which the model is performing with the multi label 

multi class nature of the dataset. The most important factors 
utilized while computing these measures are: 

 

 True Positive: 

The Number of Positive Samples Which Are Properly 

Classified by the Model. 

 

 True Negative: 

Number of correctly predicted negative samples by the 

model. 

 

 False Positive: 
Number of incorrectly predicted negative as positive 

samples by the model. 

 

Hamming Loss is a way to measure how often a model 

makes mistakes in multi-label classification. It computes this 

as incorrect labels out of the total labels and predicts ratio. 

Essentially, it looks at how many labels were wrongly 

predicted (Either missing a correct label or assigning an 

incorrect one) For each instance and then finds the average 

across all instances. 
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In simple terms the lower the hamming loss the better 
the model is at making accurate predictions. A value close to 

zero means very few mistakes, while a higher value indicates 

more errors in label predictions 

 

HAMMING LOSS=NL1I=1ΣNJ=1ΣLI(YJ(I) =Y^J(I)) 

 

Specifically, the α-evaluation score is a generalization 

of the Jaccard similarity for the evaluation of the performance 

of multi- label classification models. On the other hand, it 

gives more the flexibility as well as a more comprehensive 

criteria to evaluate how good a learning approach predicts 

multiple labels for each instance. In simple terms, this score 
takes into account both false negatives (FN) and false 

positives (FP) while also considering true positives (TP). The 

goal is to measure how closely the predicted labels match the 

actual labels. 

 

 
 

In Multi-label classification, different evaluation 

metrics help Measure how well a model is performing. 

 

Mx (false negatives, fn): the number of actual labels That the 

model failed to predict. 

Fx (false positives, fn): the number of incorrect Labels that the 

model predicted. 

Yx: the total number of true positives (tp) and false Negatives 

(fn), representing all actual positive Labels. 

Px: the total number of true positives (tp) and false Positives 
(fp), representing all predicted positive Labels. 

 

VII. PRECISON AND RECALL 

 

Two widely used measures of assessment in 

Classification are precision and recall Accuracy is the degree 

to which the forecast Positive labels are accurate. A high 

Accuracy means that the model predicts a Positive label, it is 

usually right. 

 

Remember tracks how many of the real Positive labels 

the model identified correctly. A High recall is where the 
model performs best at Catching all the labels that apply, even 

if it Sometimes includes incorrect ones. 

 

 
 

Demoneyaration of the comparison of accuracy score 

with applied machine learning methods on a 70:30, 80:20, 

85:15, and 90:10 proportionate way(division). An analysis of 

the comparative accuracy result of the suggested technique 

with and without recourse to it in an imbalanced dataset with 
and without use of data figure 10 and figure 11 Show amounts 

balanced. The accuracy results with and without using the 

proposed method with data balancing applied are compared. 

 

Figure 7 - The Graph Employed methods provide a comparative investigation on various data split ratios based on imbalanced 

datasets without the suggested technique. 
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Figure 8 - The Graph Utilized Methods Provide a Comparison of Various Data Split Ratios with this Proposed Method When 
Utilizing Imbalanced Data. 

 

VIII. DISCUSSION 

 

Utilizing Amazon Web Services (AWS) for genetic 

disorder prediction has great scalability, performance, and 

deployment benefits. In this study, AWS EC2 instances were 

utilized to deploy and execute machine learning models 

trained on complicated multi-label, multi-class genomic data. 

The cloud platform allowed for quick model training and 

prediction, handling large-scale data with low overhead 

efficiently. 
 

Use of Amazon Sage-Maker and EC2 provided elastic 

deployment, quick scaling, and high availability. Use of 

ml.c5xlarge instances was sufficient to provide real-time 

prediction as well as cost savings. Further, the use of AWS 

S3 for secure and quick access to data provided smooth data 

pipelines for prediction and training. 

 

Machine learning pipeline, in particular with the ETRF 

feature extraction technique and classifier chain strategy, was 

improved with the computation power and memory of AWS 
services. Cloud-based distribution facilitated processing of 

skewed and high-dimensional data with reduced training 

time. Macro accuracy, precision, recall, and Hamming loss 

metrics indicated improved results compared to local or 

constrained environments. 

 

AWS also offers the potential to scale in the future, such 

as automated retraining on new genomics data, integration 

with current health data systems, and support for future 

compliance with health data policies for privacy (e.g., 

HIPAA). This makes AWS a strong solution for deploying 

genomics predictive models into research as well as clinic 
environments. 

 

IX. FUTURE SCOPE 

 

Some avenues of work in future are left unsuggested 

among genetic diseases prediction framework based on 

machine learning and prediction using AWS. Some of them 

include employing more sophisticated deep learning models 

such as CNNs or transformers to possibly intrude more 

sophisticated patterns of correlation among genetic data and 

boost predictive accuracy further. Amongst others of utmost 

priority in area, is clinical integration in real time, which can 

be scaled up and included in clinics and labs for the 

immediate prediction while the patient is in consultations. 

 

The combination of lifestyle and environmental 

variables with genomic information may give rise to a more 

comprehensive prediction of risk, recognizing the multigenic 

cause of most genetic disorders. The retraining of models that 

have been automated with the use of AWS tools such as Sage-
maker Pipelines also ensures that the system adapts with the 

newly arising information and stays relevant and up-to-date 

with the changing times. Privacy-preserving methodologies 

such as federated learning also offer a potential area for 

extending data across institutions without infringing on 

sensitive genetic data. 

 

X. CONCLUSIONS 

 

This paper describes an AWS scalable infrastructure-

based machine learning system for prediction of genetic 
disorders from genome and genetic data. With careful feature 

engineering, data balancing, and use of ensemble learning 

methods—specifically the new ETRF approach—the system 

makes accurate predictions. Multi-label, multi-class 

classification was handled using classifier chain management 

of label dependencies to improve model accuracy. 

 

AWS EC2 deployment via SageMaker offers scalability 

and real-world relevance, enabling mass-scale and real-time 

prediction. Experimental results validate the effectiveness of 

the approach, which shows consistency in the performance 

metric across several different metrics such as macro 
accuracy, precision, recall, and F1 score. 

 

In summary, research provides a prospect of integrating 

cloud infrastructure and machine learning to make genetic 

research and early diagnosis of inherited diseases a 

possibility. The system provides an excellent platform to 

further develop and integrate deep learning, deploy it in real 

time in clinical setups, and with collaborative learning 

keeping privacy in mind. 
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