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Abstract; Human drivers bring a unique mix of skills, instincts, and emotions to the road, shaped by their individual driving 

habits. However, driver drowsiness poses a serious threat to road safety, making it critical to develop effective detection 

systems to prevent accidents. Past efforts to identify unusual driver behavior often focused on analyzing the driver’s face or 

vehicle movements using computer vision techniques. While these methods provided some insights, they struggled to capture 

the full complexity of driver behavior. 

 

With the rise of deep learning, researchers have increasingly turned to neural networks to better understand and detect 

driver drowsiness. This paper presents a fresh approach using vision transformers and YOLOv5 architectures to recognize 

signs of drowsiness. We propose a customized YOLOv5 model, pre-trained to detect and extract the driver’s face as the 

Region of Interest (ROI). To overcome the limitations of earlier systems, we incorporate vision transformers for binary 

image classification. Our model was trained and tested on the public UTA-RLDD dataset, achieving impressive results with 

96.2% training accuracy and 97.4% validation accuracy. 

 

To further evaluate its performance, we tested the framework on a custom dataset of 39 participants under various 

lighting conditions, where it achieved a solid 95.5% accuracy. These experiments highlight the strong potential of our 

approach for real-world use in smart transportation systems, paving the way for safer roads. 

 

Keywords; Drowsiness Detection, Image Classification , Vision Transformers (VIT) ,Yolov5, Face Detection. 

 

How to Cite: Abdul Rehman; Mohammad 

Zaidan Waseem; Abdul Rafey; Ali Abbas Hussaini; Hina Parveen; Nida Khan (2025). Identification Detection and YoloV5 based 

Driver Drowsiness Framework. International Journal of Innovative Science and Research Technology, 10(4), 2806-2815.   
https://doi.org/10.38124/ijisrt/25apr1476 

I. INTRODUCTION 
 

The lack of effective drowsiness detection in Advanced 

Driver Assistance Systems (ADAS) remains a major 

contributor to road accidents, leading to severe harm for both 

drivers and pedestrians. The Central Road Research Institute 

(CRRI) reports that fatigue-related crashes—often caused 

when drivers fall asleep behind the wheel—are responsible for 

a significant portion of traffic fatalities and nearly 40% of road 

injuries. Data from the National Highway Traffic Safety 

Administration (NHTSA) [1] reveals that drowsy driving 

causes approximately one million crashes each year, resulting 

in around 2,000 fatalities and 70,000 injuries. Alarmingly, 

nearly 80% of these accidents involve single-vehicle run-off-

road incidents, where the driver loses control and either leaves 

the road or collides with another vehicle [2]. This underscores 

how drowsiness, although frequently underestimated, poses a 

serious risk on the roads and highlights the growing need for 

reliable detection systems to enhance safety. 

 

In recent times, detecting driver fatigue has become a 

prominent area of research. Drowsiness detection methods are 

generally grouped into three categories: physiological 

monitoring, vehicle-based analysis, and facial behavior 

tracking [3], [4]. Physiological techniques involve tracking 

body signals like heart rate, brain activity, and skin 

temperature, which shift as a person becomes sleepy [5]. 

Technologies such as electrocardiography (ECG) [6], 

electroencephalography (EEG) [7], electromyography (EMG), 

and electrooculography (EOG) [8] are commonly used to 

assess a driver's condition. A significant challenge in this 

approach, however, is maintaining user comfort while 

collecting data through sensors [9]. Vehicle-based strategies 

monitor driving behavior—such as erratic steering, sudden 

braking, or inconsistent speed—to identify signs of fatigue. 

Sensors within the car record these patterns to detect unusual 

activity. Still, this method can be affected by external variables 

like bad weather, rough roads, or medications taken by the 

driver [10]. Meanwhile, facial analysis provides a contactless 

solution by using computer vision and machine learning to 
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observe facial movements and expressions that indicate 

drowsiness [11]. 

 

Recently, several behavior-based methods have been 

developed for detecting fatigue in drivers. Among the most 

widely used techniques are facial recognition models like the 

Viola-Jones (Haar Cascade) algorithm [12], Canny edge 

detection [3], and various neural networks including 

Convolutional Neural Networks (CNN) [13], Artificial Neural 

Networks (ANN) [14], Naive Bayes classifiers [12], and 

Generative Adversarial Networks (GANs) [15]. These models 

focus on analyzing visual features to identify fatigue with high 

accuracy. In this research, we propose a behavioral detection 

system that utilizes both face detection and drowsiness 

recognition by combining YOLOv5 and Vision Transformers 

(ViT). The key contributions of this work are as follows: 

 

 Custom training of a YOLOv5 model specifically for 

accurate face detection. 

 Design and evaluation of a binary image classification 

system using Vision Transformers for identifying 

drowsiness. 

 Real-time performance testing of the model on a specially 

curated dataset with diverse driving conditions. 

 

The remainder of this paper is structured as follows: 

Section II reviews prior research on drowsiness detection 

techniques. Section III outlines the proposed approach, 

beginning with face detection using YOLOv5, then moving to 

data augmentation, and finally, image classification with 

Vision Transformers. Section IV discusses the experiments 

and results, including model accuracy on our custom dataset. 

Section V presents the main findings and compares them with 

existing methods. Section VI concludes the paper with final 

thoughts and future directions. 

 

II. RELATED WORKS 

 

Driving plays a vital role in everyday life, which makes 

it essential to thoroughly understand, analyze, and anticipate 

driver behavior. Recognizing the importance of this, many 

researchers have explored techniques to identify irregular 

behaviors, particularly driver drowsiness. Recently, there has 

been a noticeable shift toward more sophisticated approaches 

to improve the accuracy of drowsiness detection systems. For 

example, Zuojin Li et al. [16] investigated vehicle-centric 

methods by gathering yaw angle and steering wheel data 

through sensors mounted in vehicles. They calculated 

approximate entropy from this time-series data and used these 

features to train a Back-propagation Neural Network. Their 

system classified driver states—awake, drowsy, or very 

drowsy—with an accuracy of 87.21%. 

 

 

To overcome the limitations found in physiological and 

vehicle-based methods, researchers have increasingly focused 

on behavioral approaches. While vehicle-based methods rely 

on the vehicle’s movement patterns, behavioral techniques 

concentrate on the driver’s facial cues, which tend to yield 

more consistent results. Although physiological monitoring 

offers high accuracy, it often lacks practicality due to its 

complex setup. Advancing this field, Sherif Said et al. [17] 

designed a system using the Viola-Jones algorithm to detect 

facial and eye regions. Their system activated an alert when 

signs of drowsiness were detected, achieving an accuracy of 

82% indoors and 72.8% outdoors. Likewise, Feng You [18] 

proposed a two-phase model that starts with offline training 

and transitions to real-time use. The method uses DLIB’s CNN 

for face detection and calculates the eye aspect ratio based on 

68 facial landmarks. The offline stage involves Support Vector 

Machine (SVM) training, followed by online monitoring, and 

achieves a high accuracy of 94.8%. However, its limitation lies 

in the need to train the SVM individually for each user. 

Another study [15] enhanced performance by using 

Generative Adversarial Networks (GANs) alongside 

Convolutional Neural Networks (CNNs) to generate synthetic 

training data, resulting in improved model accuracy. 

 

In a different approach, R. Tamanani et al. [19] 

introduced a system made up of two sequential components. 

The first stage uses the Haar Cascade algorithm for facial 

detection and real-time data processing, while the second stage 

utilizes a CNN model for extracting features and performing 

classification. Their model, tested on the UTA-RLDD dataset 

using 5-fold stratified cross-validation, reached impressive 

metrics—precision, recall, and F1 scores of 91.8%, 92.8%, 

and 92%, respectively. When evaluated on a custom dataset, it 

achieved training, validation, and testing accuracies of 98%, 

84%, and 88%. 

 

In this research, we propose a novel framework that 

integrates YOLOv5 [20], [21] with Vision Transformers [22], 

[23], [24], [25] to offer a more robust alternative to existing 

approaches. The system’s real-time performance was 

evaluated using a custom-built dataset designed to simulate 

various real-world driving scenarios. 

 

III. RESEARCH METHODOLOGY 
 

This section introduces our novel framework, which is 

composed of several well-defined stages. At its core, the 

system incorporates a fine-tuned, pretrained YOLOv5 model 

for automatic face detection and a custom-trained Vision 

Transformer (ViT) model for binary image classification. To 

strengthen the performance of the ViT classifier, we employed 

various data augmentation strategies to enlarge and diversify 

the training dataset. An outline of the complete framework, 

including the drowsiness detection components, is illustrated 

in Figure 1.  
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Fig 1 Proposed framework 

 

The system utilizes two video datasets: (1) the Arlington 

Real-Life Drowsiness Dataset (UTA-RLDD), and (2) a custom 

dataset collected at Texas University. Both datasets are 

processed through the same framework for detecting signs of 

drowsiness. Video frames are extracted and fed into the 

pipeline as input. 

 

 Face Detection with A. Yolov5 

Since the video frames from both datasets have wide-

angle views, it is essential to focus on specific regions of 

interest (ROIs) to improve detection accuracy. YOLOv5 is 

employed for this purpose, enabling automated face detection 

and cropping from the broader image. The YOLOv5 

architecture integrates Cross Stage Partial Networks (CSP) 

and a variant of the Darknet backbone. These elements 

enhance feature extraction and reduce computation without 

sacrificing accuracy.In our setup, the YOLOv5 model is 

trained and fine-tuned to detect faces within the extracted 

wide-angle frames. CSP and the Darknet grid mechanism 

annotate the input image to extract meaningful features and 

recover target-related information. During the face detection 

phase, the input frame is divided into an A × A grid. If the 

center of a face lies within a specific grid cell, that cell 

becomes responsible for detecting the object.The confidence 

score for the j-th bounding box in the i-th grid cell is calculated 

using Equation (1): 

 

Cij = Pi,j × IOUPredictedTrue                                             (1) 

 

Here, Cij C_{ij} Cij represents the confidence score for 

the j j j-th bounding box in the i i i-th grid. The term Pi,j P_{i,j} 

Pi,j indicates whether a target is present in the j j j-th bounding 

box of the i i i-th grid, taking a value of 1 if a target is detected 

and 0 otherwise. The parameter IOUPredicted,True 

IOU_{Predicted,True} IOUPredicted,True refers to the 

Intersection Over Union (IOU), a widely used metric that 

measures the overlap between the predicted and actual 

bounding boxes. A higher IOU score indicates greater 

accuracy in predicting the box’s location. 

 Image Augmentation 

Training Vision Transformer (ViT) models on large and 

varied image datasets plays a key role in boosting their 

accuracy and overall performance. To achieve this, image 

augmentation techniques are applied to create diverse versions 

of existing images. These transformations—such as flipping, 

shifting, zooming, and others—help the model generalize 

better by introducing subtle variations. This approach 

enhances the model’s ability to recognize patterns under 

different conditions. 

 

 Vision Transformers for Image Classification 

Once facial detection and image augmentation are 

completed, an effective machine learning architecture is 

essential for accurate image classification. In this research, we 

employ the Vision Transformer (ViT) model to carry out this 

task efficiently. Unlike traditional convolutional neural 

networks, the ViT architecture leverages the power of 

transformer models—commonly used in natural language 

processing—to handle visual data. Instead of using 

convolutional layers, the input image is first resized and then 

divided into N fixed-size patches. Each patch is then flattened 

and linearly embedded to form a sequence of inputs, which are 

fed into the transformer model for classification. 

 

I ∈RH×W×C ⇒ IP 
∈RN×(P2.C)                                              (2) 

 

N = H × W/P2                                                                                                              (3) 

 

In Equations (2) and (3), H, W, and C denote the height, 

width, and number of channels of the original image, 

respectively. The term (P, P) refers to the resolution of each 

individual patch, while N represents the total number of 

patches generated from the image. An example of the patch 

division process applied to a sample image is illustrated in 

Figure 3. Further details about the characteristics of these 

patches are summarized in Table II. 

https://doi.org/10.38124/ijisrt/25apr1476
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Fig 2 Patch Generation and Embedding Visualization 

 

Table 1 Characteristics of the Created Patches 

Technique Skewnes 

Size of image                     392×392  

Size of patch                     28×28 

 Patches per image 196 

Elements per patch               2352 

 

Each image patch of size (P, P) is first flattened into a 

one-dimensional vector of shape (1, P²). These flattened 

vectors, denoted as E(1, P²), are then passed through a fully 

connected layer represented by the projection matrix F(P², D). 

This transformation converts each patch into a fixed-length 

latent vector of dimension D, referred to as a patch embedding, 

represented as e(1, D). The conceptual workflow of generating 

these embeddings, along with the architecture of the Vision 

Transformer (ViT), is depicted in Figure 4(a). 

 

To enable classification, a learnable class token is added 

to the sequence of patch embeddings. Since images do not 

inherently carry positional context like text, learnable 

positional embeddings (s) are also introduced. These are added 

alongside the class token  iclass i_{class} iclass to retain 

spatial relationships among patches. The final input sequence 

fed into the transformer, denoted by z₀, is formulated in 

Equations (4) and (5). 

xnE] + Epos                                                                          (4) 

 

Where  

 

E                                        (5) 

 

These constructed sequences serve as inputs to the 

transformer encoder, which consists of L identical layers. Each 

layer includes a Multi-Head Self-Attention (MSA) block 

followed by a Multi-Layer Perceptron (MLP) block, as 

illustrated in the figures. The transformer operates using both 

of these blocks in tandem, with each encoder layer 

incorporating a Layer Normalization (LN) step followed by 

residual skip connections. The mathematical expressions for 

these operations are described in Equations (6) and (7). 
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Fig 3 (a) Generation of Patch Embeddings and Conceptual Overview of the ViT Model (b) Transformer Encoder Architecture  

(c) Multi-Head Attention Block 

 

z‘
l = MSA(LN(zl−1)) + zl−1                                                                                    (6) 

 

zl = MLP(LN(zl
‘)) + zl

‘                                                                                           (7) 

 

The operations carried out within the Multi-Head Self-

Attention (MSA) block are illustrated in Figure 4(c). In the 

attention mechanism, the input vector is first duplicated and 

then multiplied with three distinct weight matrices — 

WqW_qWq, WkW_kWk, and WvW_vWv — resulting in the 

generation of the query (Q), key (K), and value (V) matrices. 

To compute the attention matrix, a dot product is performed 

between each query vector qqq in Q and all corresponding key 

vectors kkk in K. This is typically done by multiplying matrix 

Q with the transpose of matrix K. In the Self-Attention (SA) 

mechanism, the scaled dot-product is a variation of the regular 

dot-product, adjusted by dividing by the square root of the 

dimension of the key vectors, dkd_kdk, to stabilize gradients. 

The resulting scores are then passed through a softmax 

function to determine the attention weights. These weights are 

then multiplied by the value vectors to compute the final 

output for each attention head, as described in Equation (8). 

Within the transformer encoder, the MSA block performs this 

scaled dot-product attention independently across multiple 

attention heads. The outputs from all heads are concatenated 

and sent through a fully connected feed-forward network wi 

parameters. 

 

 
 

MSA = concat(SA1;SA2;.....SAh) × W0             (9) 

 

W0 ∈Rhdk×D 

 

The MLP (Multi-Layer Perceptron) block includes a 

fully connected feed-forward layer that incorporates non-

linear activation functions. At the final layer of the encoder, 

the most significant token from the sequence, denoted as zL, 

is sent to an external classification head, which is responsible 

for predicting the corresponding class labels. 

 

IV. EXPERIMENTAL ANALYSIS AND RESULTS 

 

 Dataset Preparation and Utilization 

This study utilizes the UTA-RLDD dataset [26], a widely 

recognized and comprehensive benchmark dataset for 

drowsiness detection, to train the Vision Transformer (ViT) 

model. The UTA-RLDD training set includes data from 36 

participants, captured under various real-world conditions. 

The video recordings in this dataset focus on two primary 

categories: drowsiness-related behaviors (such as yawning and 

head nodding), and non-drowsiness activities (like speaking, 

laughing, and looking around), with each clip lasting 

approximately one and a half minutes. Random frames are 

extracted from each participant’s video and are labeled as 

either ‘alert’ or ‘drowsy’ based on their visible state. These 

frames have a resolution of 640 × 480, which is notably higher 

than what most other drowsiness detection datasets offer. 

Additionally, the dataset features considerable variations in 

facial scale, orientation, and expression, making it well-suited 

for evaluating mode l performance in practical scenarios. This 

image-based dataset is used for both annotation and training of 

the YOLOv5 and ViT models. 

 

For evaluation purposes, a custom dataset was created, 

involving 39 individuals recorded using a high-resolution 

DSLR camera. Compared to the UTA-RLDD dataset, this 

custom collection introduces greater variability in body 

posture, camera angles, and facial orientation. The detailed 

specifications of both the UTA-RLDD and the custom datasets 

are presented in Table III. 
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Table 2 Comparision of the Datasets 

Attribute UTA-RLDD Dataset Our Dataset 

Frame resolution 640×480 3840×2160 

Number of Subjects 36 39 

Collected in day and night × X 

Multi-oriental frames × X 

Number of scenarios Five Nine 

Number of frames 9180 1246 

Utilization Training, Validation Testing 

 

 Computation Specifications of Proposed System 

This section outlines both the hardware and software 

configuration details used in the Driver Drowsiness Detection 

Framework. The implementation was carried out using Python 

3.9, incorporating libraries such as TensorFlow 2.0, Keras, and 

OpenCV for frame processing and model development. The 

YOLOv5 and ViT models were trained without relying on 

high-performance Graphics Processing Units (GPUs). A 

detailed overview of the system requirements and 

specifications necessary for training and testing the models is 

provided in Table IV. 

 

Table 3 Specification and Configuration 

Specifications System’s Configuration 

Operating system Ubuntu 20.04.3 LTS 

CPU Intel® i7 10th gen 

RAM 15.8 Usable 

GPU Intel® UHD Graphics 

Frameworks Tensorflow, OpenCV 

 

 Evaluating Yolov5 for Face Detection 

YOLOv5 serves as the primary architecture in this 

framework, configured specifically for precise facial detection 

and feature extraction from input images. The model was 

trained using custom parameters over 200 epochs. Following 

extensive testing, the model achieved a minimum confidence 

score of 0.75. Key performance metrics such as accuracy, 

recall, and mean Average Precision (mAP) at a 0.5 threshold 

are illustrated in Figure 6. The detection results from the 

trained architecture, evaluated on a sample of the dataset, are 

presented in Figure 5. After multiple evaluations, the inference 

speed of the trained YOLOv5 model was determined to 

approximately 51.9 frames per second. Post-detection, the 

region of interest (ROI) is extracted by cropping the bounding 

box from wide-angle frames in both training and validation 

datasets. 

 

 
Fig 4 YoloV5 results on sample images in custom dataset 
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Fig 5 Visualization of YoloV5 Performance for 200 epochs 

 

 Evaluating Trained Vit Architecture 

After face detection, the training kit is improved with 

effective methods, as discussed in section III. In this 

experiment, the VIT model is trained for drowsiness, the state 

classification is a binary like Dowy or awake. 

 

Specific Benchmarks for evaluating classification 

models are used in the evaluation of the Vic framework. The 

status of accuracy and loss of accuracy for model training and 

verification is depicted in FIG. 7. These learning plots show a 

good suitable algorithm because both confirmation and 

training decreases maintain a point of stability with minimal 

differences. To maximize the performance, the training of 

skilled VIT models was included at the same time as three 

assignments: 1) calculation of the output, 2) troubleshooting 

errors and 3) setting the hyperparameters. After several relapse 

of the setting of hyperparameters, the maximum training and 

confirmation accuracy, respectively, is respectively 96.2% and 

97.4% achieved with a specific set of hyperparameters, as 

shown in the Table V. 

 

Table 4 Tuned Hyperparameters of Vit Model 

Hyper-parameter Attribute 

Number of classes 2 

Input shape (256, 256, 3) 

Resized image Size (392, 392) 

Patch Size 28 

Batch Size 256 

Number of Epochs 150 

Learning Rate 0.001 

Weight Decay 0.0001 

Number of Heads 4 

Transformer Layers 8 

Transformer Units [128, 64] 

MLP head Units [2048, 1024] 

 

To further evaluate the classification performance of the 

ViT model, both Hamming Loss and Binary Cross-Entropy 

were computed. The trained ViT model achieved a cross-

entropy loss of 0.6907 and a Hamming Loss of 0.0673. Since 

lower values indicate better performance, the low log loss 

suggests promising results. While cross-entropy effectively 

penalizes incorrect predictions—making it a suitable choice 

for a loss function—it is not ideal as a standalone evaluation 

metric. Therefore, additional accuracy-based metrics such as 

Precision, Recall (also known as Sensitivity), and F1-Score 

were calculated to provide a more comprehensive performance 

overview. These metrics are derived using Equations (10), 

(11), and (12), respectively. 

 

                                                     (10) 

                                                   (11) 

 

                              (12) 

 

 The Influence of Training and Validation Data Splits On 

Test Accuracy 

The primary objective was to evaluate the performance 

of the ViT model's predictions on our custom dataset using 

various training and validation data splits. For this purpose, 

four different data partition ratios were applied to the UTA-

RLDD dataset: 80-20, 70-30, 60-40, and 50-50. The ViT 

model was trained and validated on each of these splits, and 

the corresponding accuracy scores were compared to assess 

performance. 
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Notably, significant variations in accuracy were observed 

depending on the ratio of training to validation data, which in 

turn influenced the model’s performance on the custom test 

dataset. Among all configurations, the 80-20 split produced the 

most favorable results, achieving training, validation, and test 

accuracies of 96.2%, 97.4%, and 95.5%, respectively, as 

illustrated in Figure 8. 

 

 
Fig 6 The Impacts of Data Splits 

 

Table 5 Statistical Information of Performance of Vit Model with Custom Dataset 

  Day-

Time 

 Evening-

Time 

  Night-

Time 

  

Scenario Drowsy 

(F) 

Vigilant 

(F) 

Accuracy Drowsy 

(F) 

Vigilant 

(F) 

Accuracy Drowsy 

(F) 

Vigilant 

(F) 

Accuracy(F) 

Bare Face 0.979 0.978 0.979 0.985 0.979 0.982 0.949 0.954 0.951 

Spectacles 0.955 0.959 0.957 0.989 0.979 0.984 0.892 0.917 0.905 

Sunglasses 0.932 0.955 0.943 0.965 0.970 0.967 - - - 

Average 0.955 0.964 0.959 0.980 0.976 0.978 0.921 0.935 0.928 

 

Table 6 Comparision of Our Proposed Framework with the Existing Models 

 
 

 Evaluation of Vit Model with Custom Dataset 

The custom dataset we created includes three different 

conditions: bare face, glasses, and sunglasses, with various 

gestures recorded during the daytime, nighttime, and early 

morning hours. The proposed system was tested using this 

custom dataset for evaluation. A statistical analysis of the 

model’s performance across all these scenarios was conducted 

separately, as shown in Table VII. Notable differences were 

observed in the average accuracies of the model for images 

taken during the daytime, night, and midnight. The model 

achieved average accuracies of 95.9%, 97.8%, and 92.8% for 

daytime, evening, and nighttime images, respectively. The 

model performed better during the evening due to optimal 

lighting conditions. The final overall accuracy of the ViT 

model on the custom dataset was 95.5%. 

 

 Comparison with Existing Models 

An effective combination of architectures for both face 

detection and classification is critical for achieving optimal 

performance. To attain the best results, several frameworks 
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employing different computer vision and machine learning 

architectures have been proposed. This section focuses on 

reviewing prominent studies that use machine learning 

architectures to detect human drowsiness. A detailed 

comparison of various methods for detecting drowsiness in 

humans is presented in Table VIII. Numerous face detection 

algorithms, ranging from Haar cascades to Convolutional 

Neural Networks (CNNs), have been developed in recent 

research efforts on drowsiness detection. These studies have 

also utilized a range of image classification algorithms, from 

Bayesian classifiers to CNNs. 

 

V. AUTHOR CONTRIBUTIONS: KEY FINDINGS 

AND COMPARATIVE ANALYSIS 

 

This section presents a comparative analysis of our 

proposed model with existing research in the field, 

highlighting significant findings. The comparison focuses on 

two key aspects: datasets and model architecture. 

 

 Dataset 

 The effectiveness of drowsiness detection is highly 

dependent on several factors within the dataset. A large volume 

of data, while beneficial, can make real-time evaluation more 

challenging【26】【29】. This issue is compounded by the 

variability and ambiguity of image data in public datasets. To 

address these challenges, we created a custom dataset tailored 

to real-time requirements, which resulted in optimal test 

outcomes. This dataset is not only easier to analyze but also 

has the potential for further expansion, allowing other 

researchers to build on the system for global drowsiness 

detection. 

 

 YOLOv5 and Vision Transformer  

Many recent drowsiness detection studies have relied on 

Convolutional Neural Networks (CNNs)【13】, Generative 

Adversarial Networks (GANs)【15】, and traditional 

computer vision techniques【11】. In contrast, our approach 

introduces a novel combination of YOLOv5 and Vision 

Transformer (ViT) for real-time drowsiness detection, an 

approach that has not been implemented before. We conducted 

various experiments with real-time adapted datasets to assess 

the performance of the ViT architecture. This paper provides a 

comprehensive comparison between our proposed system and 

existing solutions, based on model performance. 

 

VI. CONCLUSION 

 

In this paper, we introduced the Vision Transformer 

(ViT) for estimating the drowsiness state of skilled drivers. 

The proposed system consists of two main components: the 

early component, which utilizes YOLOv5 for facial detection 

and cropping using a CNN architecture to detect five 

predefined facial landmarks, and the core component, which 

employs ViT for binary image classification. After extensive 

testing, YOLOv5 achieved an approximate mAP score of 95%. 

The ViT model demonstrated high values in key performance 

metrics, including average precision (0.97), sensitivity (0.98), 

and F1-score (0.97). Additionally, the use of a custom dataset 

enabled the ViT architecture to achieve an impressive test 

accuracy of 95.5%. 

 

While the proposed model performs satisfactorily in 

terms of detection accuracy, it requires large volumes of 

labeled data, particularly for model training. 

 

FUTURE WORK 
 

There are several areas for future improvements. First, 

we aim to optimize the network configuration within the 

proposed architecture for deployment on micro-calculation 

systems, thereby reducing computational costs and improving 

efficiency without sacrificing performance. Second, we plan 

to use data augmentation techniques to expand the training 

dataset, further enhancing the model’s performance. 
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