
Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1961

IJISRT25APR1961 www.ijisrt.com 4410

A Natural Language Processing

Framework for Document Similarity in

Java Environments

Ayan Hussain1; Moh Zaid Khan2; Rayyan Arif Hussain3;

Abdul Ahad4; Ambreen Anees5*

1,2,3,4Department of Computer Science & Engineering, Integral University, Lucknow, India

1,2,3,4 These Authors Contributed Equally to this work.

Corresponding Author: Ambree Nanees5*

Publication Date: 2025/06/04

Abstract: Document similarity plays a pivotal role in the field of Natural Language Processing (NLP), especially in tasks

that require identifying the degree of relatedness between textual content. This paper presents a comprehensive study and

implementation of document similarity techniques using the Java programming language, with a focus on practical NLP

approaches. The motivation behind this work stems from real-world applications such as plagiarism detection, content

recommendation systems, semantic search engines, and automated document classification. The system developed in this
research employs a multi-step NLP pipeline beginning with data preprocessing. This includes default procedures such as

text normalizing, tokenizing, stop word removal, and optional stemming or lemmatization. Following post-preprocessing,

documents are converted into numerical vectors using the Term Frequency–Inverse Document Frequency (TF-IDF)

weighting scheme, which determines how important terms are in each document in relation to the collection as a

whole.Since cosine similarity is effective at comparing text-based vectors in a high-dimensional space, it is used to evaluate

similarity among document vectors.

Keywords: Natural Language Processing, Document Similarity, TF-IDF, Cosine Similarity, Java, Text Mining, Information

Retrieval, Plagiarism Detection.

How to Cite: Ayan Hussain; Moh Zaid Khan; Rayyan Arif Hussain; Abdul Ahad; Ambreen Anees; (2025) A Natural Language

Processing Framework for Document Similarity in Java Environments. International Journal of Innovative Science and

Research Technology, 10(4), 4410-4415. https://doi.org/10.38124/ijisrt/25apr1961

I. INTRODUCTION

In an age where information is dominated by digital

content, being able to quantify and compare textual content

in an efficient manner has become ever more crucial.

Document similarity — quantifying how much two or more

documents are similar to one another — is a core NLP and IR

technique. It provides the means for a plethora of real-world

applications such as plagiarism detection, identifying

duplicate content, semantic search, automated document
categorization, and recommendation systems.

Word frequency and distribution have been the main

focus of statistical and vector-based approaches used

historically to address document similarity. Techniques such

as cosine similarity and Term Frequency-Inverse Document

Frequency (TF-IDF) have become popular due to their

performance, scalability, and ease of use, especially when

dealing with large text collections. While more sophisticated

models such as deep learning models and semantic

embeddings have gained popularity recently, TF-IDF-based

models remain a reliable foundation and are particularly

well-suited for small to medium-sized and educational

applications.. This paper describes a Java implementation of

a document similarity system based on fundamental NLP

methods. The objective is to design and build a modular and

interpretable system that can process raw text documents,

extract meaningful features, and compute similarity scores

between them. The implementation relies on Java’s flexibility

and wide range of libraries, offering a practical perspective

for students and developers seeking to understand the inner

workings of text similarity algorithms.

II. LITERATURE REVIEW

Document similarity has been extensively researched in

the context of Natural Language Processing (NLP), with

many models and methods developing over time. The key

https://doi.org/10.38124/ijisrt/25apr1961
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25apr1961

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1961

IJISRT25APR1961 www.ijisrt.com 4411

approaches and advancements in this field are presented here

in the form of major thematic areas.

A. Traditional Statistical Models
One of the most traditional methods of document

similarity is the Vector Space Model (VSM) of Salton et al.

[1]. This model maps text documents into vectors in a space

of multiple dimensions, with one dimension per term. The

TF-IDF weighting mechanism was introduced to improve

VSM by focusing on terms significant within a document but

infrequent across the corpus. These old-fashioned approaches

are computationally light and interpretable, which is why

they suit small to medium-sized applications.

Figure 1 below illustrates an example of cosine

similarity scores computed between pairs of documents using

a TF-IDF-based VSM approach. The highest similarity

between Doc1 and Doc2 is around 0.78, which reflects a high

content overlap. Doc1 and Doc3 are moderately similar at

around 0.58, and Doc2 and Doc3 are least similar at a score

of around 0.43. These findings highlight the efficiency of
cosine similarity in capturing textual relationships.

Fig 1 Cosine Similarity scores between Document pairs using

TF-IDF.

B. Similarity Metrics

Among various similarity measures, Cosine Similarity

remains the most popular for comparing document vectors. It

evaluates the cosine of the angle between two vectors,

effectively normalizing for document length. Studies have

shown that when paired with TF-IDF, cosine similarity yields

meaningful results in tasks such as duplicate detection and

document clustering [2].

Following preprocessing procedures like stopword

elimination, lowercasing, and stemming, the highest
frequency words across documents tend to capture the

essential semantics of the text. As can be seen from Figure 2,

terms like "data," "similarity," "text," and "information" were

most common, each commanding roughly 9–10% of the

overall word frequency distribution. This means that these

words have a crucial role to play in establishing document

similarity and bear high weights in the resulting TF-IDF

vectors.

Fig 2 Most Frequent terms after text Preprocessing, Showing

their Proportional Distribution.

C. Semantic Models and Word Embeddings
With advancements in NLP, semantic similarity

methods have gained prominence. In contrast to older

models, these techniques seek to encode the sense behind the

words. Word embeddings, such as Word2Vec, GloVe, and

fastText, capture context-dependent semantic relationships by

embedding words in a high-dimensional vector space. In

terms of synonym identification and semantic proximity,

these models have outperformed TF-IDF, especially in longer

or more complex texts [3].

D. Deep Learning and Contextual Representations

In contrast to older models, these techniques seek to

encode the sense behind the words. Word embeddings such

as Word2Vec, GloVe, and fastText represent words in a

vector space with high dimensions, encoding context-

dependent semantic relations. These have produced improved

results over TF-IDF in the detection of synonyms and
semantic closeness, especially in longer or more complicated

texts [3]. However, these models come with increased

computational cost and complexity, making them less

suitable for lightweight or real-time systems [4].

E. Java-based NLP Libraries and Tools

In the Java community, various libraries support the

implementation of NLP operations. Apache OpenNLP and

Stanford CoreNLP offer tools for named entity recognition,

tokenization, and part-of-speech tagging, while Apache

Lucene is widely used for text retrieval and indexing. In

addition to supporting scalable and modular Java

applications, these libraries are helpful for developing

document similarity systems with conventional NLP

pipelines [5].

F. Summary of Findings
The literature highlights that while modern neural

models offer improved performance in capturing semantic

similarities, traditional models like TF-IDF combined with

cosine similarity remain effective for many practical

applications. Their simplicity, ease of deployment, and

readability make them applicable to educational instruments,

prototypes, and resource-poor settings.

https://doi.org/10.38124/ijisrt/25apr1961
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1961

IJISRT25APR1961 www.ijisrt.com 4412

III. OBJECTIVE

The primary objective of this project is to design,

develop, and implement a system that can measure the
similarity of text documents using Natural Language

Processing (NLP) algorithms implemented in the Java

programming language. This project is aimed at exploring the

practical usability of classical NLP methods—text

preprocessing, vector space representation, and similarity

measurement—within a structured and modular Java-based

environment.

A. To Understand and Implement NLP Preprocessing

Techniques

The project aims to implement basic text preprocessing

operations such as tokenization, stop-word elimination, case

normalization, and stemming/lemmatization. These processes

are essential in converting raw text into a structured format

useful for computational analysis.

B. To Represent Documents Using Vector-Based Models
Another key aim is to transform preprocessed text into

a numeric form using the Term Frequency-Inverse Document

Frequency (TF-IDF) method. This captures word significance

within single documents as compared to across the whole set

of documents and offers a sensible feature set upon which to

compare.

C. To Measure Document Similarity Using Cosine Similarity

The project aims to compute similarity scores between

document vectors using cosine similarity, a widely accepted

metric for evaluating the closeness of text documents in a

multi-dimensional space.

D. To Implement the Entire Pipeline in Java

All components—from preprocessing to similarity

scoring—are implemented in Java. The goal is to

demonstrate the feasibility and performance of a Java-based
NLP system, and to build a tool that is modular,

maintainable, and scalable.

E. To Validate the Effectiveness Through Results and

Visualization

The project also seeks to verify the system using a

collection of test documents, comparing the results both

numerically and graphically through figures such as bar

charts, tables, and graphs. These graphical aids assist in

interpreting the output and determining the efficiency of the

similarity detection process.

F. To Provide a Foundation for Future Extensions

Finally, the project aims to lay the groundwork for

further enhancements. The current system is designed in such

a way that it can later be extended to include semantic

similarity models such as Word2Vec, BERT, or even deep

learning approaches.

IV. METHODOLOGY

This section describes the step-by-step methodology used

for measuring document similarity using classical NLP
techniques implemented in Java. The system follows a

structured pipeline, beginning with data input and

preprocessing, and concluding with similarity computation and

result visualization.

 Data Collection

The first step involves gathering a set of plain text

documents to be used as input. These documents may vary in

topic and length to ensure meaningful comparison. In this

project, sample documents are stored locally and read using

Java I/O operations.

 Text Preprocessing

TPreprocessing is an essential stage to clean up and

normalize text data. In this process, it becomes consistent

input for next steps, increasing the quality of feature

extraction. The following pre-processing:

 Tokenization: Breaking text into separate words or terms.

 Stop-word Removal: Eliminating common non-

informative words (e.g., "the", "is").

 Case Normalization: Converting all text to lowercase.

 Stemming/Lemmatization: Reducing words to their root

forms (optional but useful for improving similarity

accuracy) [2].

To provide a clear overview of the relationships among

documents, tokens, and similarity computation, Figure 3

illustrates the conceptual data model underlying the system:

Fig 3 UML-style conceptual model showing how a document

contains multiple tokens, which are processed to compute

similarity scores.

 Feature Extraction with TF-IDF

The preprocessed and cleaned documents are then

transformed into their numerical values based on the Term

Frequency-Inverse Document Frequency (TF-IDF) method.

The method determines a weight for every term in every

document based on its frequency or rarity across the

document set.

https://doi.org/10.38124/ijisrt/25apr1961
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1961

IJISRT25APR1961 www.ijisrt.com 4413

TF-IDF formula:

TFIDF(t,d)=TF(t,d)×log(DF(t)N)

Where:

 TF(t, d) is the frequency of term t in document d

 DF(t) is the number of documents containing the term t

 N is the total number of documents[1]

 Similarity Computation using Cosine Similarity

Once documents are vectorized using TF-IDF,

similarity between each pair is computed using cosine

similarity. It measures the cosine of the angle between two

vectors in a multi-dimensional space and is given by:

cos(θ)=∥A∥×∥B∥A⋅B

Where:

 A and B are TF-IDF vectors of two documents

 · is the dot product

 ‖A‖, ‖B‖ are the magnitudes of the vectors

 Cosine similarity ranges from 0 (completely dissimilar) to

1 (identical).[2]

 Implementation in Java

The entire pipeline is implemented in Java using

standard libraries and custom methods. File handling,

preprocessing, and mathematical operations (like vector

creation and dot product) are manually coded to provide a
transparent view of how document similarity works.

Libraries like Apache Commons, Stanford CoreNLP, or

OpenNLP can be optionally used to enhance preprocessing

and tokenization stages.[6]

 Result Evaluation and Visualization

The results, in the form of similarity scores between

documents, are stored and visualized using graphs, tables,

and diagrams. Bar charts show similarity levels across pairs,

while tables offer precise numeric results. These visual tools

help evaluate the effectiveness and consistency of the

similarity detection process.

V. IMPLEMENTATIONS

The implementation of the document similarity system is

carried out using Java, focusing on modularity, efficiency,
and readability. This section outlines the actual system

development, code structure, and tools/libraries used at

various stages.

Fig 4 Below illustrates the overall implementation flow of the

system.

 Development Environment

The project is developed using:

 Programming Language: Java (JDK 11+)

 IDE: Apache Netbeans 24 / Eclipse

 Build Tool: Apache Maven (for dependency management)

 Libraries Used:

 Java Standard Libraries (I/O, Math, Collections)

 Apache Commons Text (for string handling)

 Stanford CoreNLP or Apache OpenNLP (for

preprocessing)

These tools provide a stable environment for managing

text files, handling string processing, and implementing

mathematical computations. [6]

 File Reading and Data Input

The documents are stored as .txt files in a local
directory. Java’s File I/O (e.g., BufferedReader, FileReader)

is used to read each document line by line and store content

in a List<String> or Map<String, String> structure for further

processing.

Java Buffered Reader Reader = new Buffered Reader

(new FileReader("doc1.txt"));String line;

https://doi.org/10.38124/ijisrt/25apr1961
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1961

IJISRT25APR1961 www.ijisrt.com 4414

While ((line = reader. Read Line ()) != null) {document

Content += line .to Lower Case();}reader.close();

 Text Preprocessing
Each document undergoes several preprocessing steps

before being transformed into a vector:

 Tokenization: Splitting text using whitespace or regex.

 Stop-word Removal: Comparing tokens against a

predefined stop-word list.

 Normalization: Lowercasing and punctuation removal.

 Stemming (Optional): Simple suffix stripping or using

Porter Stemmer if libraries are available.

 Java String[] tokens = content.split("\\W+");

 List<String> filteredTokens = Arrays.stream(tokens).

Filter (token -> !stopwords.contains(token))

collect(Collectors.toList());[2]

 TF-IDF Vector Construction

After preprocessing, a TF-IDF matrix is built to

numerically represent each document. This involves:

 Calculating term frequency (TF) per document.

 Calculating inverse document frequency (IDF) across the

corpus.

 Multiplying both to generate a weighted feature vector.

 Java double tf = (double) termCount / totalTermsInDoc;

 double idf = Math.log((double) totalDocs /

docsWithTerm);

 double tfidf = tf * idf;[1]

 Cosine Similarity Computation

The similarity between every pair of document vectors

is calculated using cosine similarity:

 cos(θ)=∑Ai2×∑Bi2∑(Ai×Bi)

 java double dotProduct = 0.0;

 for (String term : vectorA.keySet()) {dotProduct +=

vectorA.getOrDefault(term, 0.0) *

vectorB.getOrDefault(term, 0.0);}

 The result is a score between 0 (no similarity) and 1

(identical documents).[2]

 Result Output and Visualization

After computing all similarity scores, results are

presented in:

 Console output (Java terminal or logs)

 Tabular format for comparison

 Visual plots like bar charts and pie charts (created

externally using tools such as Python or Excel)

 Java System.out.println("Similarity between Doc1 and

Doc2: " + cosineSimilarity);

 You can also write results into .csv files for easier import

into visualization tools.

VI. RESULTS AND DISCUSSION

This section presents the outcomes of the document

similarity analysis and interprets the results based on the

techniques used. It includes similarity scores, visualizations,

and an analytical discussion of the system's effectiveness and

limitations.

 Similarity Score Results

The system was tested on a dataset of text documents

from varied domains (e.g., technology, environment,

education). After preprocessing and TF-IDF vectorization,

cosine similarity was used to calculate the similarity between

document pairs.

 A Sample of the Similarity Scores is Shown below:

Table 1 The scores reflect the semantic closeness of documents, where scores closer to 1 indicate high similarity.

Document Pair Cosine Similarity Score

Doc1 - Doc2 0.86

Doc1 - Doc3 0.45

Doc2 - Doc4 0.22

Doc3 - Doc4 0.77

 Visualization

To better interpret the results, the scores were plotted

using various visual tools:

 Bar Chart: Depicting similarity between different

document pairs.

 Pie Chart: Showing the proportion of similar vs

dissimilar documents.

 Line Graph (optional): For analyzing changes in

similarity across multiple comparisons.

 Workflow Diagram: Summarizes the NLP process from

input to output.

 ER Diagram: Shows database structure if implemented

in a persistent system.

These figures enhance understanding of both the data

and the methodology, aligning with best practices in

research presentation [1].

 Accuracy and Interpretation

The system produced accurate similarity estimations

for text documents that share significant common

vocabulary or structure. In contrast, documents from

unrelated domains showed low similarity scores. This

validates the relevance of TF-IDF and cosine similarity for

syntactic similarity detection.

https://doi.org/10.38124/ijisrt/25apr1961
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr1961

IJISRT25APR1961 www.ijisrt.com 4415

 However, the system may not perform well in the

following cases:

 Synonym Handling: Documents using different words
with similar meaning (e.g., "automobile" vs "car") are

not recognized as similar unless semantic models like

Word2Vec or BERT are used.[3][4]

 Contextual Understanding: TF-IDF does not capture

word meaning in context, leading to gaps in semantic

understanding.

 Discussion

The implementation using Java was modular, efficient,

and transparent in processing. While Java is not the most

common choice for NLP (Python is preferred), this project

demonstrates that Java can be successfully used to

implement core NLP pipelines.

The results support the claim that classical methods

like TF-IDF and cosine similarity are still valuable for many

document similarity tasks, especially when the focus is on
syntactic similarity rather than deep semantic understanding.

This is consistent with prior work such as Manning et

al. [2], which emphasizes the reliability of classical IR

models in large-scale applications.

VII. CONCLUSION

In this research, we explored and implemented a

system for measuring document similarity using Natural

Language Processing techniques in the Java programming

language. The system effectively combined fundamental

text-processing steps—such as tokenization, stop-word

removal, and case normalization—with classical feature

extraction methods like TF-IDF and cosine similarity to

quantify the similarity between textual documents.

The results confirmed that the TF-IDF model, coupled

with cosine similarity, provides a reliable and interpretable

approach for identifying syntactic overlap and shared

vocabulary between documents. The system showed great

accuracy when comparing documents with identical themes

and content, and low similarity scores for unrelated text

pairs, confirming its correctness.

While the strategy is effective and adequate for most

practical uses, it has a few drawbacks. Notably, the model's

lack of comprehension of context, semantics, and synonyms

creates a challenge when trying to compare documents that

have distinct vocabularies to convey identical meaning.

Additions in future developments can include the

incorporation of semantic models like Word2Vec, GloVe, or

transformer-based models like BERT to better comprehend

contexts.

In summary, this project is a successful proof of

concept of how classical NLP and IR methods, even when

used in Java—a less popular language in NLP—can yield

solid solutions for document similarity analysis.

REFERENCES

[1]. G. Salton and C. Buckley, "Term-weighting

approaches in automatic text retrieval," Information
Processing & Management, 1988.

[2]. C. D. Manning, P. Raghavan, and H. Schütze,

Introduction to Information Retrieval, Cambridge

University Press, 2008.

[3]. T. Mikolov et al., "Efficient Estimation of Word

Representations in Vector Space," arXiv preprint

arXiv:1301.3781, 2013.

[4]. J. Devlin et al., "BERT: Pre-training of Deep

Bidirectional Transformers for Language

Understanding," NAACL-HLT, 2019.

[5]. Apache OpenNLP Documentation. [Online].

Available: https://opennlp.apache.org.

Accessed on: Apr. 22, 2025.

[6]. S. Balaji and P. Vikram, Natural Language Processing

with Java, Packt Publishing, 2018.

https://doi.org/10.38124/ijisrt/25apr1961
http://www.ijisrt.com/

	Framework for Document Similarity in
	Java Environments
	Ayan Hussain1; Moh Zaid Khan2; Rayyan Arif Hussain3;
	Abdul Ahad4; Ambreen Anees5*
	1,2,3,4Department of Computer Science & Engineering, Integral University, Lucknow, India
	Corresponding Author: Ambree Nanees5*
	I. INTRODUCTION
	II. LITERATURE REVIEW
	B. Similarity Metrics
	C. Semantic Models and Word Embeddings
	D. Deep Learning and Contextual Representations
	E. Java-based NLP Libraries and Tools
	F. Summary of Findings

	III. OBJECTIVE
	B. To Represent Documents Using Vector-Based Models
	C. To Measure Document Similarity Using Cosine Similarity
	D. To Implement the Entire Pipeline in Java
	E. To Validate the Effectiveness Through Results and Visualization
	F. To Provide a Foundation for Future Extensions
	 Data Collection
	 Text Preprocessing
	 Feature Extraction with TF-IDF
	 Similarity Computation using Cosine Similarity
	 Implementation in Java
	 Result Evaluation and Visualization

	V. IMPLEMENTATIONS
	 Development Environment
	 File Reading and Data Input
	 Text Preprocessing
	 TF-IDF Vector Construction
	 Cosine Similarity Computation
	 Result Output and Visualization

	VI. RESULTS AND DISCUSSION
	 Similarity Score Results
	 Visualization
	 Accuracy and Interpretation

	VII. CONCLUSION

