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Abstract: Obesity represents a major public health challenge, requiring accurate and interpretable predictive tools. This study 

proposes an approach based on a Multilayer Perceptron (MLP) optimized to predict obesity levels from lifestyle data, eating habits, and 

physiological characteristics, using a comprehensive Kaggle dataset combining real and synthetic samples. After rigorous preprocessing, 

including normalization and class rebalancing, we compare the performance of the MLP with four classical algorithms (Logistic 

Regression, KNN, Random Forest, and XGBoost) using comprehensive metrics (accuracy, precision, recall, F1-score, AUC-ROC). The 

results demonstrate the superiority of the optimized MLP (98.4% accuracy, F1-score of 0.97) over the other models, with a significant 

improvement from hyperparameter optimization through GridSearchCV. The XAI analysis via SHAP identifies weight, gender, height, 

and physical activity as the most determinant factors, providing crucial transparent explanations for clinical applications. This 

combination of high predictive performance and interpretability makes the MLP a valuable tool for obesity prevention and diagnosis in 

public health. 
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I. INTRODUCTION 

 

Obesity is a chronic multifactorial disease that today 

represents a major global public health issue. According to 
the World Health Organization, more than 650 million adults 

were affected by obesity in 2016, a number that continues to 

grow each year (World Health Organization, 2021). This 

condition is associated with increased risks of type 2 

diabetes, hypertension, cardiovascular diseases, and certain 

cancers (Guh et al., 2009). In response to this issue, research 

is focused on developing predictive tools to identify 

individuals at risk before the appearance of clinical 

symptoms. In recent years, artificial intelligence (AI) models 

have shown their effectiveness in this field. In particular, 

machine learning (ML) approaches such as Random Forest, 

Support Vector Machine, and XGBoost have achieved high 
accuracy in classifying obesity levels (Maria et al., 2023; Lin 

et al., 2023). The study by Maria et al. (2023) provides a 

systematic review of ML-based obesity prediction 

approaches, highlighting the best combinations of dietary, 

demographic, and behavioral variables. Meanwhile, Lin et al. 

(2023) successfully applied several supervised models to 
predict childhood obesity based on data collected from 

parents and children. These studies confirm that leveraging 

lifestyle data can reliably predict weight status. In parallel, 

deep learning (DL) techniques, notably multilayer 

perceptrons (MLP) and recurrent neural networks (LSTM), 

have been used to capture complex nonlinear relationships 

between health variables (Mahmut et al., 2023). However, 

the use of these models in medical contexts raises the crucial 

question of their explainability. To address this issue, 

explainable AI methods such as SHAP (SHapley Additive 

Explanations) (Lundberg & Lee, 2017) or LIME techniques 

have been developed to interpret the decisions of "black box" 
models. In this work, we propose a hybrid approach that 

combines traditional machine learning algorithms and deep 
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learning models, applied to a Kaggle dataset on obesity. We 

evaluate and compare the performance of several models 

(Logistic Regression, KNN, Random Forest, XGBoost, 

MLP), optimize them via GridSearchCV, and analyze their 
behavior using global indicators (accuracy, F1-score, AUC-

ROC) and explainable methods (SHAP). The objective of 

this study is to provide a high-performance, interpretable, and 

reproducible approach for the personalized prediction of 

obesity risk. 

 

II. LITERATURE REVIEW 

 

The prediction of obesity using artificial intelligence 

(AI) methods has garnered increasing interest, particularly 

with the rise of machine learning (ML) and deep learning 
(DL) techniques. However, despite notable advances, several 

methodological limitations persist in the current literature. 

 

Traditionally, logistic regression has been one of the 

most widely used tools in epidemiology for predicting health 

conditions due to its simplicity and interpretability. Cheng 

and Rai (2021) emphasize that this model is well-suited for 

simple linear relationships. However, its ability to handle 

complex interactions between behavioral and biological 

variables remains limited, making it unsuitable for 

multifactorial phenomena like obesity. 

 
To address these shortcomings, machine learning-based 

approaches have been proposed. Lin et al. (2023) explored 

algorithms such as Random Forest and SVM for predicting 

childhood obesity. Although their results showed significant 

improvement compared to traditional statistical methods, 

their study did not address the critical issue of class 

imbalance nor the impact of hyperparameter optimization on 

model robustness. Furthermore, their approach remained 

limited to the simple application of algorithms without 

explicit systematic optimization. 

 
On the other hand, Saxena et al. (2023) highlighted the 

effectiveness of boosting techniques, particularly XGBoost. 

However, this review also notes that most studies focus 

solely on raw performance (accuracy), neglecting metrics 

more suitable for imbalanced medical contexts, such as F1-

score or AUC-ROC. Moreover, few studies account for the 

need to make these models understandable for healthcare 

professionals. 

 

The rise of deep learning has led to the adoption of 

neural networks such as Multilayer Perceptron (MLP) for 
predicting obesity, as demonstrated by Mahmut et al. (2023). 

While these architectures capture complex nonlinear 

relationships, they are often seen as "black boxes." The lack 

of explainability tools in these studies severely limits their 

applicability in clinical contexts, where understanding 

algorithmic decisions is crucial. Another major weakness 

identified by Sadiku et al. (2019) is the lack of 

hyperparameter optimization. Most studies rely on default 

configurations without using techniques like GridSearchCV 

or RandomizedSearchCV, compromising the generalization 

of models outside of training datasets. 

 
 

Finally, the issue of explainability remains largely 

underexplored. Tjoa and Guan (2021) emphasize that the 

integration of explainable AI (XAI) tools like SHAP or 

LIME remains marginal in health-related studies. This lack of 
transparency poses a significant barrier to clinical adoption, 

where it is essential to justify predictions, especially for 

critical medical decisions. 

 

Recent studies, such as that by Lin et al. (2023), have 

demonstrated that the use of SHAP allows for identifying key 

predictive factors of obesity, such as family history and 

eating habits, providing a better understanding of model 

decisions. Additionally, research by Du et al. (2024) 

highlighted the effectiveness of an obesity risk prediction 

system based on XGBoost and SHAP, enabling personalized 
healthcare management. However, despite these 

advancements, challenges remain, particularly regarding the 

computational complexity of SHAP for large datasets and 

complex models, as well as the need for thorough clinical 

validation to ensure the reliability of interpretations provided 

by these tools. 

 

III. PROPOSED METHODOLOGY 

 

A.  Dataset 

The dataset used in this study is the "Obesity Level 

Dataset," made available on Kaggle by Mehrparvar (2023). It 
consists of 2,111 individuals, each described by 17 

explanatory variables related to dietary habits (e.g., 

frequency of fast food consumption, hydration), physical 

activity, family history of overweight, and certain 

demographic characteristics such as gender and age. The 

target variable is multiclass and categorizes individuals into 

seven obesity levels: [0] Underweight, [1] Normal weight, 

[2] Overweight level I, [3] Overweight level II, [4] Obesity 

type I, [5] Obesity type II, and [6] Obesity type III. This 

granularity is essential for modeling the progression of body 

weight states, as emphasized in recent works by Begum et al. 
(2024), who stress the importance of a finer classification in 

clinical predictions related to obesity. 

 
B. Data Preprocessing 

Before training the models, several preprocessing steps 

were applied to improve the quality of the inputs. First, 

categorical variables such as Gender, 
family_history_with_overweight, SMOKE, or MTRANS 

were converted into numerical values using the LabelEncoder 

method, which is commonly used in similar studies to handle 

non-numeric attributes (Alsareii et al., 2023). Continuous 

numeric variables such as Weight, Height, FCVC, FAF, or 

CH2O were normalized using StandardScaler to ensure scale 

homogeneity. This preprocessing is essential for models 

sensitive to Euclidean distances, particularly KNN and MLP, 

as highlighted by Helforoush et al. (2024) in their 

comparative study on machine learning-based obesity 

classification. The target variable was encoded as a one-hot 
vector for deep learning models, a common practice in 

architectures with a softmax output. The dataset was then 

stratified and split into 80% for training and 20% for testing, 

while maintaining the class proportions. This procedure aims 

to avoid distribution bias and is particularly recommended 

when certain classes are underrepresented, as observed in the 

study by Genc et al. (2025) on similar models. 
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C. Model Training and Evaluation 

We evaluated and compared five supervised 

classification algorithms applied to predicting obesity levels. 

The choice of models is based on both their demonstrated 
effectiveness in medical and nutritional contexts, as well as 

their complementarity in terms of complexity. 

 

 Multinomial Logistic Regression, 

Was used as a baseline model for the classification of 
obesity levels. This linear model was optimized using the 

SAGA solver, compatible with L2 regularization, to 

minimize the regularized logistic loss function. A 

GridSearchCV was conducted to identify the best 

hyperparameters: C = 10, penalty = 'l2', solver = 'saga' 

(Hosmer et al., 2000). 

 

 Random Forest,  

Proposed by Breiman (2001), was chosen for its 

robustness to noisy data and its ability to model complex 

non-linear interactions. Each tree is built using bagging, and 

the final prediction is obtained through majority voting. 

Hyperparameter optimization (n_estimators = 500, 

max_depth = 15, min_samples_split = 5, max_features = 

'sqrt') via GridSearchCV ensured excellent stability without 

overfitting. 
 

 XGBoost,  

Developed by Chen & Guestrin (2016), was adopted for 

its ability to efficiently handle complex multiclass 

classification problems using gradient boosting. It was 
configured through rigorous hyperparameter optimization 

using GridSearchCV with stratified 5-fold cross-validation, 

ensuring an optimal balance between bias and variance. Key 

parameters adjusted include n_estimators, max_depth, 

learning_rate, and subsample, ensuring effective 

regularization to prevent overfitting. To enhance 

explainability, SHAP analysis was integrated to identify the 

most influential variables in the model’s decisions, in line 

with the recommendations of Lundberg & Lee (2017). This 

methodological approach combining performance and 

transparency meets the requirements of sensitive medical 
applications (Chen et al., 2016). 

 

D. Clustering and Segmentation 

 

 K-Nearest Neighbors (KNN), 

Algorithm was implemented as a non-parametric 

classification method based on the principle of local 

similarity. The methodological optimization was based on 

several approaches to adapt this classifier to the specificities 

of heterogeneous biomedical data. To overcome the inherent 

limitations of the KNN algorithm, particularly those related 

to the curse of dimensionality and the hubness phenomenon  

 

 

 

described by Radovanović et al. (2009), we 

incorporated two major methodological improvements. First, 
an adaptive weighting of the votes was implemented, 

following the approach of Chaoyu et al. (2023), to reduce the 

disproportionate influence of majority classes by dynamically 

adjusting the weight assigned to each neighbor based on the 

local density of the data. Second, we implemented a hybrid 

metric, combining the classic Euclidean distance with a 

clinical similarity measure, in accordance with the 

recommendations of Zhang et al. (2022). This approach 

allows the integration of explicit medical knowledge in the 
distance calculation by over-weighting critical variables such 

as BMI or family history, thus improving the relevance of 

neighborhoods in a biomedical context. 

 

E. Multilayer Perceptron (MLP) 

We designed a Multilayer Perceptron (MLP) 

specifically tailored to model the complex nonlinear 

relationships between behavioral, demographic, and 

biomedical variables involved in classifying obesity levels. 

Our architecture includes four hidden layers (256, 128, 64, 32 

neurons) combined with advanced regularization techniques 
such as Dropout (Srivastava et al., 2014) and Batch 

Normalization (Ioffe et al., 2014), ensuring better 

generalization and accelerated convergence. The use of these 

methods follows recent recommendations by Raghu et al. 

(2019), who emphasize their effectiveness in neural networks 

applied to health data. 

 

The model optimization was performed using the Adam 

algorithm (Kingma & Ba, 2014), which is particularly suited 

for heterogeneous and moderately sized datasets due to its 

dynamic adjustment of learning rates. An early stopping 

mechanism was integrated to prevent overfitting, in line with 
best practices outlined by Prechelt et al. (2012), by halting 

training when the validation loss stopped improving after 10 

iterations. 

 

F. Framework for Explainability (SHAP) 

To ensure the transparency and interpretability of our 

predictive models applied to obesity level classification, we 

integrated a systematic approach based on the SHAP 

(SHapley Additive exPlanations) method, developed by 

Lundberg and Lee (2017). This technique, based on game 

theory, assigns each variable a precise contribution in the 
decision of each prediction, making complex models such as 

Random Forest, XGBoost, and Multilayer Perceptron (MLP) 

interpretable. 

 

Our methodology relied on the use of various 

explainers provided by the SHAP library, utilizing 

TreeExplainer for tree-based models (Random Forest and 

XGBoost) to ensure quick and accurate SHAP value 

computation tailored to these structures, as well as 

DeepExplainer for MLP, which efficiently estimates the 

contributions of variables within neural networks. For each 
model, we conducted both global and local analyses using 

summary plots, which provide an overview of the average 

importance of variables across all predictions, and 

dependence plots, which are used to examine the marginal 

effect of key variables while highlighting potential nonlinear 

interactions. 
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Fig 1 Pipeline of the SHAP Explain Ability Methodology for Obesity Classification Models 

 
 

IV. INTERPRETATION OF EXPERIMENTAL 

RESULTS 

 

A. Global Performance Comparison 

To assess the comparative performance of the different 

approaches implemented, we summarized the results obtained 
by each model according to standard metrics in multiclass 

classification: accuracy, precision, recall, macro F1-score, and 

average AUC-ROC when applicable. These metrics allow for 

analyzing each model's ability to correctly classify samples 

while accounting for class imbalances, which is particularly 

important in a medical context where prediction accuracy and 

reliability are crucial. The results obtained for each model 

were compared to identify the most effective ones in the 

context of our study, with a particular focus on each model's 

ability to handle complex interactions between behavioral, 

demographic, and biomedical variables.  

 

Table 1 Comparative Performance Table of ML/MLP Models (Default Settings) 

Modèle Accuracy (%) Précision (%) Recall (%) F1-score (%) AUC-ROC moyen 

Logistic Regression 87.2 87.2 87.5 87.4 ~0.89 

K-Nearest Neighbors 80.9 81.5 80.8 80 ~0.91 

Random Forest 95.3 96.7 95.6 95 ~0.99 

XGBoost 95.7 96.9 96.4 96 ~0.995 

MLP 98.4 97.8 97.3 97.1 N/A 

 

Our study demonstrates that MLP and XGBoost are the 

two most performant models, with respective accuracies of 

98.4% and 95.8%. Random Forest remains highly 

competitive (95.1%), while Logistic Regression and KNN 

show lower, yet acceptable, performance after optimization. 

The performance gain after hyperparameter tuning exceeds 
+6% for certain models (Logistic Regression, KNN), 

highlighting the importance of systematic optimization. 

 Impact of Hyperparameter Optimization on the Accuracy of 

Machine Learning Models 

 

This table highlights the improvement in accuracy 

achieved after hyperparameter optimization for each machine 

learning model. 

 

Table 2 Accuracy Gain After Hyper Parameter Optimization for ML Models 

 

Models Accuracy Accuracy (optim) Gain (%) 

Logistic Regression 0.871 0.936 6.50 

K-Nearest Neighbors 0.813 0.872 5.90 

Random Forest 0.949 0.951 0.20 

XGBoost 0.912 0.969 5.70 

3195 
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Table 2 shows that Logistic Regression and K-Nearest 

Neighbors benefit from the most significant gains, with 

improvements of +6.5% and +5.9% in accuracy, respectively, 

highlighting their sensitivity to fine-tuning. The XGBoost 
model also shows a notable improvement of +5.7%, 

confirming the importance of parameter tuning in boosting 

algorithms. 

 

B. Detailed Model Analysis 

 

 One-vs-Rest AUC-ROC Curves 

A detailed analysis of the performance of the RF, 
XGBoost, KNN, and LR models was conducted through the 

interpretation of the One-vs-Rest AUC-ROC curves to assess 

their discriminative capacity for each class. 

 

 
Fig 2 Multi-Class AUC-ROC Curves for ML Models 

 

 Figure 2 illustrates the multi-class AUC-ROC curves for 

the different evaluated models. It can be observed that 

XGBoost (a) and Random Forest (b) demonstrate exceptional 

performance, with AUCs close to or equal to 1 for all classes, 

indicating excellent discriminative ability. The K-Nearest 

Neighbors (c) model yields satisfactory but more variable 

results, with a noticeable performance drop for class 1 (AUC = 

0.82). In contrast, Logistic Regression (d) displays curves less 

close to the upper left corner, with overall lower AUCs, 

particularly for the minority classes (Classes 5 and 6), 

highlighting its limitations in handling complex relationships 

and class imbalances. 

 

 The learning curves for the MLP model (accuracy & loss), 

Show the progressive convergence of the model, which 

minimizes categorical cross-entropy loss using the Adam 

optimizer (learning_rate=0.0005), with significant 

improvements observed over iterations. 

 

 

 
Fig 3 Learning curves (accuracy & loss) 
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The Figure 3 demonstrate significant stability between 

the training and validation sets. The final evaluation on the test 

set reveals exceptional performance with an accuracy of 

98.49%, a macro F1-score of 0.9714, a macro precision of 

0.9716, and a macro recall of 0.9731, confirming the model's 

effectiveness in predicting obesity levels. 

 

 KNN Validation Curve 
 

 
Fig 4 Validation curve Showing the Evolution of Accuracy and F1-score as a Function of the  

Number of Neighbors k (k ∈ [1, 30]) 

 

Figure 4 illustrates the impact of the parameter k on the 

performance of the K-Nearest Neighbors classifier. It is 

observed that both accuracy and macro F1-score are 

maximized for k=1, reaching approximately 85.5% and 

84.9%, respectively. Beyond this point, performance gradually 

declines, suggesting a loss of precision in class discrimination. 

C. Feature Importance and Interpretability 

The comparative analysis of feature importance across 

models represents a critical step in identifying consistent 

biomedical determinants and potential algorithmic biases. 

 

 
Figure 4: Relative Importance of Features Across Models 

 

Figure 4 presents the normalized feature importance in 

our study, highlighting Weight, Height, and Frequency of 

Vegetable Consumption (FCVC) as the most influential 

variables across all models. However, notable differences are 

observed: XGBoost and Random Forest assign greater 

importance to Age and Gender, whereas Logistic Regression 

and K-Nearest Neighbors place more emphasis on factors such 
as Weight and Height. 

D. Explainability Insights (SHAP Analysis) 

 

 SHAP Summary Plots,  

This section discusses the dominant variables identified 

through SHAP analysis, highlighting key factors such as 

Weight, Height, Age, and Frequency of Vegetable 

Consumption (FCVC) as the most influential in predicting 
obesity levels across the evaluated models. 
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Fig 5 Relative Importance of Variables Across Models 

 

Figure 5 illustrates the impact of variables on model 

predictions for K-Nearest Neighbors (a), Logistic Regression 

(b), and XGBoost (c) using SHAP values. The color gradient 

represents the feature values, with blue indicating low values 

and red indicating high values, providing a clear visualization 

of how each variable influences the classification outcomes. 

 SHAP Stacked Bar Charts for Multi-Class (MLP) 

A comparative analysis of feature influence across 

predicted classes, highlighting how each variable contributes 

differently depending on the obesity level classification. 

 

 

 
Figure 6: SHAP summary plots 
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Figure 6 visualizes the average feature importance for 

each target class (from Underweight to Obesity Type III). 

The chart highlights a clear dominance of certain behavioral 

and biometric variables across classifications. 
 

V. DISCUSSION 
 

The results of our study demonstrate that advanced 

models such as XGBoost and MLP outperform traditional 

approaches like Logistic Regression and KNN, achieving 

accuracies of 95.7% and 98.4%, respectively. These models 

effectively capture complex non-linear relationships, 

consistent with the findings of Sajid et al. (2022) and Esteva 

et al. (2019). However, KNN remains limited by the curse of 

dimensionality and class imbalance issues, as noted by 

Radovanović et al. (2009). While hyperparameter 
optimization through GridSearchCV significantly enhanced 

model performance, generalizing these results to other 

populations remains challenging (Brown et al., 2024). The 

integration of SHAP improved model interpretability by 

identifying key variables such as weight, height, and age, 

aligning with the recommendations of Lundberg and Lee 

(2017) and Samek et al. (2017). Nevertheless, SHAP’s 

computational complexity on large datasets restricts its 

applicability in real-time clinical environments, as 

highlighted by Tjoa and Guan (2021). 

 

VI. LIMITATIONS AND FUTURE RESEARCH 
 

 
Although this study demonstrated the effectiveness of 

advanced models in predicting obesity risk, several 

limitations must be considered. The use of a single dataset 

from Kaggle may introduce selection bias, particularly due to 

limited sample diversity. Furthermore, while hyperparameter 

optimization improved model performance, the optimal 

configuration may not be generalizable to other populations. 

The integration of SHAP (SHapley Additive exPlanations) 

for model interpretability presents computational challenges, 

especially for complex models such as XGBoost and MLP, 

limiting its real-time application in clinical settings. Finally, 
the clinical acceptability of AI-driven decision support 

systems remains a major challenge, particularly for critical 

healthcare decisions. 

 

Future research should focus on improving 

interpretability, incorporating temporal models such as 

LSTMs or Transformers, and expanding datasets to include 

greater demographic and geographic diversity. Additionally, 

integrating IoT (Internet of Things) sensors for real-time data 

collection could enhance prediction personalization. 

 

VII. CONCLUSION 
 

This study explores the use of artificial intelligence for 

obesity prevention, a rapidly growing global health concern. 

By comparing traditional models (logistic regression, KNN, 

Random Forest) with advanced approaches (XGBoost, 

MLP), we demonstrated that deep neural networks 

outperform classical methods in multiclass classification. All 

models were optimized using GridSearchCV, significantly 

improving their performance, with XGBoost achieving an 

accuracy of 96.9% and our optimized MLP reaching 98.05%. 

Logistic regression, while useful, remains limited in 

modeling complex interactions, and KNN exhibits 

weaknesses in handling class imbalances. The integration of 

SHAP (SHapley Additive exPlanations) enhanced model 
interpretability by highlighting the importance of key 

variables such as weight, height, and age. Our hybrid 

approach, combining high performance, transparency, and 

generalizability, provides a robust and reproducible pipeline 

applicable in clinical settings. 
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