
Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3386

Digital Transformation through Enterprise

Software: A Comprehensive Review of

Implementation Strategies

Aditya Kashyap1

1Enterprise Software Researcher, Digital Transformation Enthusiast, Bangalore, India

Publication Date: 2025/05/13

Abstract: Enterprise software systems have become the cornerstone of modern organizational efficiency, enabling seamless

integration across critical business processes. Yet, implementing these large-scale solutions remains a formidable challenge,

often plagued by cost overruns, delays, and unmet expectations. This paper presents a comprehensive review of enterprise

software implementation, bridging insights from academic research and real-world practice. It explores a spectrum of

project management approaches—from traditional linear models to agile and hybrid frameworks—and examines how

methodology choices influence implementation outcomes. Techniques for requirements gathering, such as stakeholder

engagement and collaborative workshops, are discussed alongside change management strategies designed to drive user

adoption and minimize organizational resistance. Common pitfalls—including data migration hurdles, legacy system

integration, scope expansion, and insufficient user training—are critically analyzed, with best practices distilled to mitigate

these risks. The review identifies essential success factors such as strong executive sponsorship, meticulous planning, robust

data management, and effective vendor collaboration. Case studies drawn from industry experiences illustrate both

successful transformations and cautionary failures, offering practical lessons for practitioners. Emerging trends, including

the rise of cloud-based solutions and the integration of artificial intelligence, are also explored. The findings underscore a

central truth: achieving sustainable success in enterprise software implementation demands not just technology, but a

disciplined focus on people, process, and adaptive execution.

Keywords: Enterprise Software, ERP, CRM, Implementation Challenges, Methodology, Change Management, Project

Management.

How to Cite: Aditya Kashyap (2025). Digital Transformation through Enterprise Software: A Comprehensive Review of

Implementation Strategies. International Journal of Innovative Science and Research Technology,

10(4), 3386-3407. https://doi.org/10.38124/ijisrt/25apr2189

I. INTRODUCTION

In today’s digitally driven business environment,

organizations rely on large-scale enterprise software systems to

streamline operations and maintain competitiveness. Enterprise

Resource Planning (ERP) systems, such as SAP S/4HANA,

Oracle Fusion Cloud, or Microsoft Dynamics 365 Finance &

Operations, integrate core business functions—finance, human

resources, inventory, order management, and more—into a

unified platform. These systems provide a central source of

truth and enable cohesive, data-driven decision-making across
the enterprise.

In addition to ERP platforms, organizations also deploy

line-of-business applications that target specific functions such

as sales, customer service, or supply chain operations.

Customer Relationship Management (CRM) systems like

Salesforce and Zoho CRM support lead tracking, campaign

management, and customer engagement, while Supply Chain

Management (SCM) solutions such as SAP Ariba and Oracle

SCM Cloud optimize procurement, logistics, and supplier

collaboration.

Implementing these enterprise systems is often a

transformative initiative that impacts multiple stakeholders,

redefines processes, and requires significant organizational

alignment and change management.

The scale and complexity of enterprise software

implementations make them inherently risky. Projects

frequently run over budget and behind schedule; for example,
between 2012 and 2016, 55% of ERP implementations

exceeded their planned budgets and 66% took longer than

anticipated. Such overruns are attributed to factors like

underestimating scope, unforeseen technical hurdles, and

organizational resistance to new processes. Despite decades of

implementation experience, failure rates remain a concern—

many high-profile cases of ERP or CRM projects have failed

to deliver expected benefits or even caused operational

disruptions. This underscores the need for rigorous

implementation methodologies and management practices.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25apr2189

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3387

Inappropriate project management and inadequate

preparedness have been cited as primary reasons for low

success rates of ERP projects. Conversely, organizations that

approach implementation with careful planning, strong

leadership, and user-focused change management significantly

increase their chances of success.

This paper reviews the process and nuances of enterprise
software implementation, with a focus on ERP systems as a

paradigmatic example and extensions of lessons learned to

CRM, SCM, and other enterprise applications. We examine

established project management methodologies - Waterfall’s

sequential approach, Agile’s iterative cycles, and Hybrid

models combining both in order to understand how each

addresses the unique demands of enterprise system

deployment. Techniques for requirements gathering are

discussed, as capturing detailed business and technical

requirements at the outset is foundational to a successful

project. Change management strategies are reviewed to

highlight how organizations can facilitate user adoption and
minimize resistance to new systems. We analyze common

implementation challenges such as data migration (transferring

and transforming data from legacy systems), system integration

(interfacing the new software with existing legacy applications

and external systems), scope creep, and insufficient training.

The literature summarizes mitigation strategies and best

practices for each challenge. We also identify critical success

factors (CSFs) repeatedly emphasized by researchers and

practitioners—top management support, effective project

governance, user involvement, robust data quality

management, etc. that correlate with positive implementation
outcomes. A comparative analysis of Waterfall vs. Agile vs.

Hybrid approaches is provided to guide project managers in

selecting appropriate methodologies based on project context

and organizational culture. The remainder of this paper is

organized as follows. Section 2 provides a literature review of

enterprise software implementation, covering the

implementation life cycle, requirements engineering, change

management, challenges, and success factors. Section 3

focuses on project management methodologies for

implementation, describing the Waterfall, Agile, and Hybrid

approaches in detail and comparing their strengths and

limitations for Enterprise Software implementation projects. In
Section 4, we present case studies to illustrate real-world

implementations: (a) a successful ERP implementation in a

pharmaceutical company analyzed through the lens of the

Project Management Body of Knowledge (PMBOK)

framework, (b) an Agile ERP rollout at Schlumberger that

leveraged Scrum to achieve significant improvements in

productivity and cost, and (c) a failed big-bang implementation

at Hershey Foods that highlights pitfalls to avoid. These case

studies, drawn from provided documents and supplemented by

published analyses, offer practical insights into how the

theories and best practices play out in actual projects. Finally,
Section 5 concludes with a synthesis of findings,

recommendations for practitioners, and discussion of future

trends (such as cloud-based ERP and AI-driven enhancements)

that are poised to influence enterprise software implementation

in the coming years.

II. LITERATURE REVIEW OF ENTERPRISE

SOFTWARE IMPLEMENTATION

Implementing enterprise software is a multi-dimensional

process that has been widely studied in information systems

and project management literature. This section reviews the

existing knowledge on the implementation process, structured

into key thematic areas: the implementation life cycle and
methodologies, requirements gathering techniques, change

management and organizational factors, common challenges

encountered, and critical success factors for enterprise system

projects. While ERP implementations have dominated much

of the literature (given their complexity and enterprise-wide

scope), the insights generally extend to CRM, SCM, and other

large enterprise applications, with some nuances highlighted

for each.

 Overview on Enterprise Systems and their Implementation

Lifecycle

Enterprise software systems—whether enterprise-wide
platforms or function-specific applications—differ in scope

and purpose but share many common implementation

challenges. A comprehensive system like ERP often replaces a

fragmented landscape of legacy tools with an integrated suite

that spans nearly every department, including finance,

operations, human resources, and inventory. This level of

integration typically requires significant process redesign to

align with the system’s capabilities or, conversely, system

configuration to support existing workflows.

In contrast, line-of-business applications such as
Customer Relationship Management (CRM) platforms focus

on targeted domains like sales, marketing, and customer

service. While narrower in scope, these systems are equally

transformative, relying heavily on user adoption and behavioral

change within frontline teams. CRM implementations also

frequently require integration with broader enterprise systems,

such as ERP or e-commerce platforms, to deliver a unified view

of the customer.

Similarly, Supply Chain Management (SCM) solutions

support procurement, manufacturing, logistics, and distribution

processes, often extending beyond the enterprise to encompass
partners and suppliers. SCM implementations emphasize

accurate forecasting, inventory control, and inter-

organizational data integration, which introduce their own

complexities.

Despite their functional differences, the implementation

life cycle for these systems tends to follow a similar

trajectory—beginning with planning and requirements

gathering, followed by system configuration or customization,

data migration, testing, training, deployment, and post-

implementation support. Understanding these shared patterns
is essential for developing implementation strategies across

diverse enterprise environments.

 Implementation Phases

Researchers and practitioners commonly describe

enterprise system implementation as a multi-phase project. The

typical life cycle includes: Initiation and Planning,

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3388

Requirements Analysis, System Design and Configuration,

Development and Customization, Testing, Data Migration,

Training and User Acceptance, Deployment (Go-Live), and

Post-Implementation Support. Each phase has specific

objectives and deliverables. For example, during the planning

phase, organizations define project scope, assemble the project

team, set timelines, and secure executive sponsorship.

Requirements analysis involves gathering detailed business
requirements and performing a gap analysis between those

needs and the standard functionality of the selected software.

This phase often includes documenting current (“as-is”)

processes and designing future (“to-be”) processes to leverage

system capabilities.

Design and configuration entail setting up software

modules, defining workflows, user roles, and permissions to

meet business needs. A key consideration is determining which

processes can be adapted to the software’s default capabilities

versus those requiring customization. Development is typically

needed for custom code, system integrations, and reporting
tools. Testing is conducted in multiple rounds—unit testing,

integration testing, and user acceptance testing—to validate

that the system performs as expected and that data flows

correctly across modules. Conference Room Pilot (CRP)

sessions or end-to-end simulations are commonly used to

validate setup before full deployment, as issues identified late

in testing can be expensive and time-consuming to fix.

Data migration is a critical pre-go-live activity involving

extracting, cleansing, transforming, and importing legacy data

into the new system. Concurrently, training programs for end-
users and administrators are implemented to ensure readiness

from day one. Deployment can be a “big bang” rollout—where

all modules and locations go live simultaneously—or a phased

approach, depending on the organization's risk appetite and

operational complexity. After go-live, stabilization and support

activities address initial issues, provide ongoing user

assistance, and optimize system performance.

Several implementation frameworks guide these phases.

For instance, the Project Management Institute (PMI) maps

implementation tasks to its standard process groups: initiating,

planning, executing, monitoring and controlling, and closing.
Vendor-specific methodologies—such as SAP’s ASAP or

Oracle’s AIM—also define structured, phase-wise

implementation models. Successful projects allocate

substantial time and resources to the early stages, particularly

planning and requirements gathering, as these foundational

activities significantly influence downstream outcomes.

Rushing or neglecting these phases is frequently cited as a key

contributor to enterprise software implementation failure.

The approach taken to manage these phases can vary.

Traditionally, many enterprise software implementations
followed a Waterfall methodology – a linear, stage-gate

process where each phase is completed before the next begins.

Waterfall aligns with the idea of extensive upfront planning and

design, followed by build and test, and is still used in

environments with fixed requirements and regulatory or

validation needs (e.g. in pharmaceutical manufacturing ERPs).

However, Waterfall approaches have drawbacks for complex

software projects: they handle change poorly and tend to reveal

problems late in the project. In recent years, there has been a

shift toward Agile methodologies, even for enterprise software

implementation projects, emphasizing iterative development,

frequent feedback, and flexibility to change requirements mid-

course. Agile for enterprise systems may involve implementing

the software in incremental “sprints” or focusing on one

module or process at a time in iterative cycles. Pure Agile can
be challenging to apply to enterprise software implementation

projects due to the integrated nature of processes, but hybrid

approaches have emerged. A Hybrid methodology aims to

combine Waterfall’s structured planning with Agile’s

adaptability. For example, an implementation might use

Waterfall for initial global design and core configuration, and

Agile cycles for iterative prototyping of extensions,

customizations, or localization for different business units. We

will explore these methodologies in detail in Section 3.

Choosing the right project management approach is a critical

decision that should consider the organization’s culture, the

clarity of requirements, regulatory constraints, and the
complexity of system integration. Studies show that there is no

one-size-fits-all: the “best” approach depends on project

context, but all require strong discipline and governance to

succeed.

With a foundational understanding of the enterprise

system life cycle, the next critical element is capturing precise

business and technical requirements to ensure system

alignment with organizational goals.

 Requirement Gathering Techniques
A thorough requirements gathering process is the

foundation of a successful enterprise software implementation.

This process entails identifying, documenting, and validating

what the business needs from the new system, including

functional requirements (specific capabilities and workflows),

data requirements, interface requirements, and non-functional

requirements (performance, security, compliance, etc.).

Inadequate requirements definition can lead to choosing the

wrong software, costly customizations, and misalignment

between the system and business processes. Thus,

organizations are encouraged to invest significant effort in this

phase.

 Stakeholder Involvement:

Effective requirements elicitation involves a diverse

range of stakeholders—end-users who handle day-to-day

operations, managers who rely on reports and controls, IT staff

responsible for technical feasibility, and executives who define

the strategic direction. A widely recommended practice is to

engage end-users early and often throughout the requirements

process. By collecting input through interviews, workshops,

surveys, and prototyping, the project team can capture the

actual operational needs and pain points of those using the
system. This approach results in more complete and accurate

requirements and fosters user buy-in and ownership by making

stakeholders feel included in shaping the solution. Early and

frequent engagement of users is a hallmark of user-centered

design and often leads to better system adoption and quicker

realization of business value post-implementation.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3389

 Techniques and Best Practices:

Enterprise system projects typically apply a blend of

techniques for gathering and validating requirements. Each

method has its own strengths and is selected based on the

project's scope, complexity, and user base.

 Individual Interviews:

One-on-one interviews with stakeholders are a
foundational technique to understand specific functional needs,

pain points, and current workarounds. Departmental leads and

key users can articulate how they currently operate and what

improvements they expect. While time-intensive, interviews

are valuable for uncovering nuanced or department-specific

requirements and for surfacing tacit knowledge.

 Group Workshops:

Facilitated workshops bring cross-functional teams

together to collaboratively define requirements. Structured

approaches like Joint Application Development (JAD) sessions

are commonly used, where users, subject matter experts, and
IT facilitators engage in real-time discussions. These sessions

are especially effective in building consensus, aligning

perspectives, and accelerating the definition of shared

requirements across business units.

 Surveys and Questionnaires:

For large or globally distributed user groups, such as in

multi-country CRM implementations, surveys help gather

input efficiently. Though less interactive, they enable

standardized data collection on user needs and feature

prioritization. Surveys are often used in conjunction with more
interactive methods to broaden input.

 Business Process Mapping:

Documenting existing processes (“as-is”) and designing

future processes (“to-be”) is essential in implementations

where operational workflows are central. Process maps and

flowcharts help identify inefficiencies and uncover

requirements related to task automation, exception handling, or

approval flows. In some cases, advanced techniques like

process mining can be used to analyze system logs and uncover

actual process behavior, adding data-driven insight to design
discussions.

 Prototyping and Demonstrations:

Iterative prototyping—where a preliminary version of the

system is configured and reviewed by end-users—is especially

useful in Agile or hybrid project environments. Users often find

responding to tangible interfaces easier than abstract

discussions, and prototypes help clarify and validate evolving

requirements. This technique is particularly effective for

refining user interfaces, dashboards, and workflow logic. Many

modern enterprise platforms now offer rapid configuration

tools that enable the creation of such prototypes with minimal
effort.

 Gap Analysis:

Most organizations implement commercially available

enterprise software instead of building custom systems from

scratch. Consequently, requirements gathering often involves

comparing business needs with the standard functionality

provided by the chosen software. A fit-gap analysis identifies

where the software meets needs and where gaps exist,

prompting decisions on whether to adapt processes, pursue

custom development, or use third-party solutions. Conducting

a thorough gap analysis early helps prevent costly surprises

during testing and deployment.

Best practices in requirements gathering also emphasize
the importance of prioritizing requirements—distinguishing

must-haves from nice-to-haves—to prevent uncontrolled scope

expansion. Establishing a formal sign-off process is equally

important. Once requirements are documented—typically in a

Software Requirements Specification (SRS), user stories, or

use cases—key stakeholders and sponsors should formally

review and approve them. This approved baseline provides a

reference point when evaluating future change requests or

assessing project scope creep (further discussed in upcoming

section).

Moreover, requirements elicitation should not be treated
as a one-time exercise. In Agile projects, detailed requirements

are incrementally developed during each iteration. Even in

traditional Waterfall approaches, it's often beneficial to revisit

requirements after initial prototypes are built or as users gain a

deeper understanding of their needs. Continuous user

engagement throughout the implementation journey is key to

ensuring the delivered system aligns with evolving business

objectives.

 Change Management and user Adoption

Implementing an enterprise system is a technical
endeavor and a significant organizational change. The success

of an enterprise software implementation is tightly linked to

user adoption – the extent to which employees embrace the

new system and workflows in their daily work. Many

technically sound deployments have failed to deliver value

because users resisted or did not use the system as intended.

Therefore, change management is a core component of

enterprise software implementation efforts.

 Organizational Change Challenges:

Enterprise systems often require employees to change

established business processes and abandon familiar legacy
tools (e.g., moving from spreadsheets to an integrated ERP

module). This can provoke resistance for several reasons: fear

of the unknown or concern about job security, loss of autonomy

or perceived complexity of the new system, and simple inertia

or comfort with the status quo. In the context of ERP, which

touches multiple departments, the change can be pervasive –

everyone from finance clerks to warehouse managers may have

to adapt how they work. In CRM projects, sales teams might

resist if they view the system as extra bureaucracy (e.g., logging

customer interactions) rather than a tool that helps them sell.

The organization's culture also plays a role; companies with a
history of frequent change may cope better than those where

processes haven’t changed in decades.

Without proper change management, these human factors

can derail the project. Users may develop workarounds or

continue using old systems, undermining data integrity and the

return on investment of the new software. In worst cases,

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3390

outright user resistance can cause project failure (for example,

if key personnel refuse to cooperate, or if morale and

productivity drop significantly due to the change). As one study

succinctly noted, “resistance to change can be a formidable

roadblock” to ERP implementation success.

 Change Management Strategies:

To address these challenges, organizations are
encouraged to execute a structured change management

program parallel to the technical implementation. Some widely

recognized frameworks include Kotter’s 8-Step Change Model

(establish urgency, form a powerful coalition, create a vision,

communicate the vision, remove obstacles, create short-term

wins, build on the change, anchor in culture) and the ADKAR

model (Awareness, Desire, Knowledge, Ability,

Reinforcement). While a full discussion of change

management models is beyond our scope, key strategies

distilled from industry experience and research are:

 Executive Sponsorship and Leadership Communication:
Visible support from top management is essential.

Executive sponsors should regularly communicate the vision

for the new system – why the change is necessary and how it

benefits the organization and employees. Clear, consistent

messaging from leadership can help build buy-in and quell

rumors. When leadership is engaged and shows commitment

(for example, by allocating necessary resources and removing

obstacles), it signals to the rest of the organization that this

change is a priority. Lack of executive support is often cited as

a reason projects falter; conversely, strong leadership can

inspire confidence and compliance.

 Stakeholder Engagement:

Beyond executives, identifying and involving

stakeholders at all levels (managers, end-users, technical staff)

helps create a coalition for change. Many projects establish a

network of change champions or power users in each

department—individuals who are positive about the new

system and can influence their peers. These champions can

provide peer-to-peer support, gather feedback, and help

personalize the change message for their teams.

 Communication Plan:

A proactive communication plan is vital. This includes

regular updates on project progress, upcoming changes to

expect, and success stories as milestones are achieved.

Communications should be two-way: mechanisms (like Q&A

sessions, feedback surveys, or an implementation intranet

portal) should allow employees to voice concerns and ask

questions. Addressing concerns openly can prevent

misinformation from spreading. As one best practice, project

teams should provide updates in the format and frequency that

stakeholders expect – for instance, brief weekly bulletins to

staff, detailed monthly reports to management, etc. Timely
communication of changes (e.g., new procedures, downtime

schedules for cutover) also ensures operational continuity.

 User Training and Education:

Adequate training is one of the most impactful change

management tactics to drive user adoption. Users need to feel

confident and competent in using the new system. Training

should be role-based and hands-on, allowing users to practice

in a test environment. It can include a variety of methods:

instructor-led sessions, e-learning modules, video tutorials, and

user manuals. Crucially, training should not occur only at go-

live; offering it early (for example, during testing phases or

pilot rollouts) can familiarize users and even solicit their input

to improve system configuration. Ongoing support after go-live

(helpdesk, floor walkers, super-user support) is equally
essential. An inadequately trained workforce may underutilize

the system or make errors, so organizations must invest in

comprehensive education. The literature notes that even the

best ERP system can fail if end-users are not adequately trained

and supported.

 Business Process Alignment and user Involvement:

People are more likely to embrace a system that makes

their work easier or more effective. During implementation,

involving users in design decisions (as discussed in Section 2.2)

is a change management technique as much as a requirements

technique. When employees see their feedback incorporated,
the system feels less like an imposed tool and more like

something they had a hand in shaping, improving acceptance.

Also, as processes are redesigned, it is important to align them

with how people actually work or should work; if the new

processes are unintuitive or create extra work, resistance will

increase. Sometimes change management involves adjusting

job roles or incentive structures so that they align with the new

processes (e.g., sales compensation plans might be tweaked to

encourage use of CRM for pipeline tracking).

 Managing Resistance:
Despite best efforts, some resistance will occur. Project

leadership should identify the root causes of resistance by

listening to employees’ concerns. Typical responses include

additional training for those struggling to adapt, clarifying

misunderstandings (some may fear job loss unnecessarily), and

showing empathy while firmly reinforcing the need for change.

In certain cases, organizations have to make tough decisions if

individuals refuse to adapt, but more often, resistance can be

turned around through support and demonstrating quick wins.

For example, highlighting a department that successfully

closed their books faster with the new ERP or a salesperson

who gained a new deal thanks to CRM analytics can convert
skeptics over time.

In summary, change management involves preparing,

equipping, and supporting people throughout the transition. A

comprehensive change program may include stakeholder

analysis, a communication plan, training programs,

organizational impact assessments, and a roadmap for

transition. Research consistently identifies change

management and user involvement as critical success factors

for ERP. One study of ERP success factors found that a

“change management culture” and “education and training”
were among the most cited factors influencing successful

implementations. By integrating these strategies, companies

can significantly reduce the risk of user resistance undermining

the implementation.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3391

 Common Implementation Challenges

Enterprise software projects encounter numerous

challenges that must be managed to prevent failure. This

section highlights some of the most common challenges

documented in literature and industry reports, often

experienced firsthand by organizations, along with strategies to

address them. The challenges are interrelated; for instance,

poor requirements can lead to scope creep, and a lack of change
management can exacerbate user resistance. Here, we focus on

challenges intrinsic to enterprise system implementations:

resistance to change, data migration and quality issues,

integration obstacles, scope creep, time and budget

underestimation, inadequate training, and excessive

customization. Each of these can jeopardize project outcomes

if not proactively addressed.

 User Resistance to Change:

As discussed in the previous section, resistance from end-

users and middle management can impede implementation. It

manifests as low adoption, pushback on new processes, or even
active obstruction. In the context of ERP, resistance might be

observed when employees continue using old spreadsheets or

legacy systems in parallel because they distrust the new ERP,

undermining the “single source of truth” principle. The

literature identifies lack of user buy-in as a primary reason for

ERP failures. Mitigation lies in the change management

strategies already outlined: clear communication of benefits,

involvement of users in the project, strong leadership

messaging, and training. It is important to set realistic

expectations – productivity often dips immediately after go-

live as users climb the learning curve. Management should
anticipate this and not declare the project a failure prematurely.

With supportive measures, performance typically improves

after the initial adjustment period. As a best practice solution,

“comprehensive change management initiatives, clear

communication from leadership, and user involvement in the

process can help overcome resistance”. In other words, making

employees part of the journey and not just recipients of a new

system significantly reduce resistance.

 Data Migration and Data Quality Issues:

Migrating existing data into a new system is a notoriously

difficult task. Enterprise systems rely on large volumes of data
(customer records, product data, transactions, configurations)

to function correctly. Challenges include extracting data from

disparate legacy sources, transforming and cleansing it to fit the

new system’s data model, and ensuring nothing critical is lost

or corrupted. Poor data quality in legacy systems can severely

hinder a smooth transition – for instance, duplicate or

inconsistent records may lead to garbage-in that corrupts the

new ERP’s database. Data issues have derailed many projects;

if the migrated data is unreliable, users lose trust in the system

(a CRM with incorrect customer info, or an ERP inventory

module with wrong stock levels can quickly turn users back to
old methods). A meticulous data migration plan is essential.

This includes profiling legacy data to uncover quality problems

(e.g., missing values, outdated entries), cleansing data

(deduplication, standardizing formats), mapping fields from

old to new systems, and performing trial migrations and

validations. Adequate testing of migrated data is critical –

comparing reports from the legacy system and the new system

to ensure they match, for example. Engaging business users in

validating data (since they often know the data nuances) can

catch issues early. The IJCSE guide notes that a “meticulous

data migration plan involving data cleaning, validation, and

thorough testing is crucial” to successful ERP implementation.

Additionally, projects should budget enough time for multiple

mock migrations and a freeze period where legacy data entry

stops before cutover to ensure a stable final migration. An often
underestimated aspect is data volume – transferring terabytes

of data can itself be a technical challenge requiring careful

scheduling (e.g., doing it over a weekend downtime).

Organizations can avoid delays and post-go-live reconciliation

nightmares by prioritizing data migration as a first-class

workstream (and not a last-minute task).

 Integration with Legacy and External Systems:

Integration challenges arise when the new enterprise

system must coexist or interface with other systems. Few

enterprise software implementations happen in complete

isolation. Companies often have some systems they are not
replacing (for example, a specialized manufacturing execution

system on the factory floor, or a legacy database that must

remain for archival reasons) and these need to exchange data

with the new enterprise software. Similarly, SCM systems

frequently need to integrate with suppliers’ or customers’

systems (e.g., through EDI – Electronic Data Interchange, or

modern APIs) to automate supply chain transactions.

Integrating a modern enterprise software with older legacy

systems can be daunting. Legacy systems might not have

modern APIs or might use proprietary data formats, requiring

custom middleware or conversion programs. They may be
poorly documented if they were built decades ago, making

integration risky and time-consuming. For example, integrating

an ERP with an aging inventory management system could

require creative solutions if the old system cannot easily export

its data. Common integration issues include data mapping

inconsistencies, transaction synchronization (ensuring that a

transaction in one system triggers the appropriate transaction in

the other), and error handling across systems. From a technical

standpoint, using an Enterprise Application Integration (EAI)

platform or middleware can help manage integrations,

providing a buffer that translates and routes data between

systems. However, this adds another layer that needs
configuration and testing. Cloud-based enterprise systems

often provide RESTful APIs or integration hubs, which can

simplify integration if the legacy side can connect to them.

Real-time vs. batch integration is another consideration: critical

processes may need real-time data exchange (e.g., an online

order captured in a CRM should reflect immediately in the

ERP’s order module), whereas others can be batch (e.g., a

nightly synchronization of secondary data). Integration

challenges extend to internationalization if the enterprise

system must integrate data across subsidiaries in different

countries (different currencies, units, languages – all can cause
integration headaches if not standardized). Organizations

should inventory all required interfaces early to mitigate

integration challenges, allocate specialist resources for

integration development, and plan extensive integration testing.

Using standardized data formats (like XML/JSON for modern

APIs, or standardized EDI messages in the supply chain)

reduces complexity. In cases where a legacy system is

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3392

extremely outdated, it might be worth considering replacing it

or encapsulating it entirely to avoid it becoming the weak link

in the new environment. One source notes that “legacy systems

may use outdated technologies, lack documentation, or have

unique interfaces that require specialized integration efforts, "

making legacy integration one of the most complex parts of

enterprise software implementation projects. Companies must

plan accordingly, often dedicating a specific sub-team to
handle data and system integration separately from core

configuration.

 Scope Creep and Changing Requirements:

Scope creep refers to uncontrolled growth in a project’s

scope – new features or requirements are continually added

beyond the original plan. Enterprise software implementations

are susceptible to scope creep because, as users learn more

about the system’s capabilities, they might request additional

functionalities, or business conditions may change mid-project

(for example, a new regulatory requirement emerges, or a

merger brings in new requirements). While some scope
evolution is regular, uncontrolled scope creep can lead to

missed deadlines and budget overruns. Adding scope late can

disrupt the project’s critical path: a change might require

revisiting earlier design decisions, reconfiguring modules, or

redoing test scenarios. Projects that attempt to satisfy every

request often find themselves in perpetual implementation with

no clear end. To manage this, strong project governance is

needed. A clearly defined project scope from the outset,

documented in a scope statement or project charter, sets the

boundaries. Equally important is a formal change control

process: any new requirement or change after baseline should
go through evaluation of its impact on timeline, cost, and risk,

and require approval by a steering committee or project

sponsor. Many organizations classify changes into those that

must be done now vs. those that can be deferred to a later phase

or a post-implementation enhancement. Adopting an Agile

approach can sometimes give a false impression that scope is

fluid; in reality, Agile projects manage scope by prioritization

and time-boxing (if new features are added, some other features

may be moved to a later iteration to keep each release on time).

The literature suggests that adhering to defined requirements

and resisting mid-project changes, unless absolutely necessary,

helps minimize scope creep. When changes are needed (and
some will be), bundling them into planned “waves” or phases

is a good practice rather than continuously injecting changes

into an ongoing build. This challenge again highlights why

thorough initial requirements and executive discipline are

crucial – executives must sometimes say “no” or “later” to

additional features to protect the project from bloating.

 Underestimation of Time and Budget:

ERP and similar enterprise projects are notorious for

underestimating the resources required. Sales pitches from

vendors or optimistic internal plans might suggest an
implementation can be done in, say, 12 months, but reality

often proves otherwise. A frequent pitfall is underestimating

the complexity and time needed for full implementation.

Organizations might not account for the iterative nature of large

projects (needing multiple test cycles, rework from feedback,

etc.), or internal team members have limited availability due to

their regular duties. Budget overruns occur due to extended

timelines, additional consulting fees, or unforeseen expenses

(custom development, hardware upgrades, etc.). In fact,

according to Statista data, scope creep and underestimated

staffing are leading causes of budget overruns. Companies

should plan with a time and cost contingency buffer to avoid

this. A realistic project plan should include a margin for

unexpected issues and recognize that data conversion or

training may take longer than ideal. Phased rollouts can help
manage risk and budget by delivering in smaller increments,

extending the overall timeline. It’s a delicate balance. One

recommended solution is conducting a detailed project scoping

during the planning phase and getting input from experienced

implementers to gauge the effort. Regular progress reviews

(e.g., phase gate reviews) allow for early detection if the project

is trending behind schedule or over budget so that corrective

actions can be taken. The IJCSE review points out that “proper

project scoping, detailed timelines, and realistic budgeting are

essential” to avoid the trap of underestimation. In practice,

building some flexibility into the plan (for example, scheduling

a pilot go-live before full deployment, which can be used to
recalibrate the plan) is wise. Organizations should also be

transparent about budget status with stakeholders, so there are

no surprises. If, mid-course, an overrun seems likely, deciding

whether to secure a bigger budget or de-scope certain non-

critical parts of the project is a strategic decision for the steering

committee.

 Inadequate Training and Support:

Launching an enterprise system without sufficient user

training can lead to under-utilization or errors that damage

business operations. Inadequate training is a common
challenge, often due to running out of time or budget toward

the end of the project, leading to cutting corners on training

programs. As mentioned earlier, even a well-implemented

system can fail if users do not know how to use it effectively.

Signs of inadequate training include users making mistakes in

the new system (e.g., entering data incorrectly), heavy reliance

on a few “super-users” to do tasks for everyone else, or

persistent calls to support long after go-live for basic how-to

questions. This can create frustration and a perception that the

system itself is flawed, when the real issue is lack of

knowledge. To mitigate this, training should be treated as a

first-class workstream in the project plan, with deliverables
such as training needs analysis, development of training

materials (guides, exercises, e-learning), scheduling of training

sessions, and perhaps a train-the-trainer approach to reach all

end-users. Post-implementation support structures (like a

dedicated helpdesk or on-site support team for a period after

go-live) are also vital. Many organizations now use modern

tools for ongoing support, such as in-app guided tutorials and

knowledge bases. The goal is to ensure every user is

comfortable and confident with the new system. A metric for

success is when normal operations (e.g., monthly financial

close, order processing) can be carried out by the organization’s
staff without heavy assistance from the implementation team

shortly after go-live. When evaluating implementation partners

or vendors, companies should examine the training offerings

and ensure they are comprehensive. The solution to inadequate

training is straightforward in concept: “invest in thorough, role-

based training and establish a helpdesk or support team to assist

users after implementation”. It requires commitment to not rush

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3393

the end of the project – a go-live should be pushed back if users

are clearly not ready, rather than sticking to a date and facing

chaos afterward.

 Customization and Complexity:

Customization challenges arise when the enterprise

software is modified extensively to fit the business. While

enterprise systems have broad functionality, no off-the-shelf
system will meet 100% of an organization’s requirements. The

team must decide which gaps (from the fit-gap analysis) truly

require custom code or significant configuration work. Over-

customization can lead to a situation where the system is so

tailored that it becomes difficult to upgrade or maintain,

essentially locking the company into that specific version with

high technical debt. Each customization (be it a code

modification, a bespoke interface, or even heavy use of

complex configurations) adds complexity that increases testing

effort and potential points of failure. As ERP vendors release

new versions, custom code might break and require rework,

adding to the total cost of ownership. Hershey’s case (discussed
later) is an example of implementing multiple complex

modules simultaneously, increasing overall complexity and

risk. The best practice in the industry has shifted towards

minimal customization: implement the software in a “vanilla”

way as much as possible, using built-in options and only

customizing where the business has truly unique value or

requirements that cannot be met otherwise. This often means

adjusting some business processes to fit the software rather

than vice versa, which can be a change management challenge

(people might resist changing a process and instead push to

customize the software to do it their old way). But excessive
software bending can reduce the benefits of an integrated

system. One solution approach is to use configuration (which

is supported by the system, like setting up rules or formulas

through provided tools) instead of customization (which

usually implies new code). If customization is needed, keep it

modular and documented. Another mitigation is to see if third-

party add-ons exist; sometimes a requirement can be met by an

existing plugin or module that is supported, rather than

reinventing the wheel. The IJCSE article advises to “leverage

the ERP system’s out-of-the-box features as much as possible”

and only customize when absolutely necessaryfile-

xup4bfo9wsik9shqkhelwx. This aligns with the sentiment that
every customization should be scrutinized for its business value

versus the long-term complexity it introduces. In sum,

managing customization is about finding the right balance

between business fit and system maintainability.

These challenges underscore why enterprise software

implementations require a combination of technical excellence

and sound management practices. Each challenge, if

mismanaged, has led to notable failures in the past. For

example, the failure of Hershey’s 1999 ERP project is

attributed to an aggressive timeline (time underestimation),
trying to do too much at once (scope and integration

complexity), and inadequate testing/training – resulting in an

inability to ship $100 million of orders on time. On the other

hand, successful projects proactively address these issues: they

run comprehensive data cleanup efforts, have strong scope

control, train users thoroughly, and avoid unnecessary custom

work. The rest of this paper will refer back to these challenges

when discussing case studies and methodologies, illustrating

how they can be overcome in practice.

While challenges are inevitable, understanding the factors

that lead to successful implementations provides a roadmap for

organizations to navigate complexity and drive project success.

 Critical Success Factors for Implementation
Given the challenges discussed, what factors

differentiate successful enterprise software implementations

from failed ones? Over the past few decades, numerous studies

have attempted to pinpoint Critical Success Factors (CSFs) for

enterprise software implementation projects. While the

terminology and grouping vary, there is considerable

consensus on the core success factors. This section highlights

those factors and relates them to the preceding discussions on

methodology, requirements, and change management.

Knowing these factors helps practitioners focus on the areas

that truly make a difference in implementation outcomes.

 Top Management Support and Project Governance:

Unambiguously, commitment from top management is

cited as the most critical factor in almost every study. This

support should manifest as providing adequate resources

(budget, personnel, time), actively participating in key

decisions, and championing the project throughout the

organization. Top management sets the project’s priority

relative to other initiatives. If leaders consistently reinforce

that the ERP project is a top priority, middle managers will

allocate their staff’s time accordingly and resolve conflicts that

arise. Executive support is also crucial when tough decisions
are needed (such as approving scope changes or additional

funding). Strong leadership can help navigate political issues;

enterprise projects often cut across departmental boundaries,

and an executive sponsor can mediate disputes (for example,

between a sales VP wanting one thing and a manufacturing VP

another) to keep the project aligned with business goals.

Additionally, success is bolstered by effective project

governance structures, such as a steering committee that

includes executives and key stakeholders for oversight. The

Pharma Inc. case study (Carton et al. 2008) showed that multi-

level governance spanning corporate and local units ensured

the project stayed on track and allowed for timely problem
resolution, thus minimizing delays. Governance also entails

having a clear escalation path for issues and decisions. In

summary, without top management support, projects can

flounder due to a lack of direction and resources; with it,

projects gain authority and momentum.

 Clear Goals, Scope, and Planning:

Upfront clarity in project goals and careful planning are

vital. A well-defined project scope (as mentioned in

challenges) helps concentrate effort and avoid mission drift.

This ties to success factors like comprehensive project
planning and scheduling. Successful implementations set

realistic milestones and have detailed project plans that

consider interdependencies between tasks (often visualized in

Gantt charts or using project management software). They also

incorporate risk management in the planning phase:

identifying potential risks (e.g., “key team member might

leave”, “performance might be slow with current hardware”)

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3394

and devising mitigation plans. Effective planning includes not

just the technical tasks but also change management and

training plans. Cisco Systems’ famed ERP implementation in

the 1990s, often cited as a success, was notable for the

intensity of upfront planning and a clear vision of what needed

to be achieved on a strict timeline. Additionally, adequate

resource allocation in planning, ensuring the project team has

the right mix of skills and that business subject experts can be
freed from daily duties to contribute, is a success factor. Many

failures skimp on dedicating the best people to the project;

success often requires pulling top talent into the project team,

even if temporarily backfilling their regular roles.

 Project Team Competence and Leadership:

The composition and capability of the project team are

other critical factors. An enterprise software implementation

project team typically includes IT professionals (project

managers, business analysts, developers, integration

specialists) and business representatives (subject matter

experts from various departments). The team may also have
external consultants or vendor specialists. Successful projects

assemble a team that possesses the necessary technical and

business knowledge and is cohesive and well-led. Teamwork

and communication within the team are crucial due to the

project’s cross-functional nature. A strong, experienced

project manager or leader can coordinate these diverse efforts

and keep everyone moving toward the same goal. The

literature often highlights having a mix of business knowledge

and technical expertise on the team so that design decisions

appropriately balance both realms. In the Pharma Inc. case, the

authors note the “crucial importance of the proper selection of
team members and the need for a high-profile team leader” at

even the local level. They found that calling on specific local

experts at different points (whether those experts were from IT

or a particular business function) was a strong factor in the

project’s success. This implies that the team was flexible and

brought in additional help when needed for specialized issues.

Moreover, success is more likely when the team is stable

(minimal turnover) and works well with external partners or

consultants. Vendor partnership is sometimes listed as a

success factor: maintaining a good working relationship with

the software vendor or implementation partner can ensure

access to expert support, quick issue resolution, and alignment
with best practices. For instance, if implementing SAP, having

SAP consultants who deeply know the software and

maintaining open communication lines to SAP’s support

organization can be invaluable when complex problems arise.

 User Involvement and Change Management:

We discussed change management at length, and indeed

user involvement and change management come up in success

factor analyses frequently. High user involvement means users

feel ownership of the system, which increases acceptance. It

also means the design is more likely to meet actual needs,
reducing post-go-live issues. Change management as a success

factor encompasses many things: training, communication,

and having a culture adaptive to change. In one systematic

review, factors like “user training and education” and

“communication” were among the top factors correlated with

success. A culture that views the ERP as a strategic initiative

and not just an IT project tends to fare better. Success also

often requires business process reengineering (BPR) skills –

the ability to rethink and streamline processes rather than just

automate existing ways. Organizations that approach an ERP

as an opportunity to modernize processes (and manage the

change that comes with that) see more benefit than those that

force the ERP to fit outdated processes. This is supported by

the fact that BPR and minimal customization are associated

with success (since they reduce complexity and align the
software with best practices).

 Data and Technical Factors:

With data being the lifeblood of enterprise systems,

effective data management (ensuring data quality, proper

migration, and ongoing data governance) is another key

success factor. Successful implementations treat data as an

asset – they might establish a data migration task force,

involve business data owners, and plan for master data

management in the new system. After go-live, continued

success requires keeping data clean and up to date, which

might involve new governance processes. On the technical
side, success factors include adequate IT infrastructure – if an

on-premises ERP is deployed, the hardware and network must

be robust enough to handle it; if cloud-based, the connectivity

and integration middleware must be reliable. Performance

issues can kill user confidence, so sizing the system correctly

(with headroom for growth) is part of success. Testing and

troubleshooting proficiency is also a factor: teams that

thoroughly test (including edge cases and performance testing)

can avoid critical failures in production.

 Risk Management and Problem Resolution:
No large project is without issues; what matters is how

quickly and effectively the team can resolve them. A success

factor often noted is proactive risk management and having

contingency plans. For example, having a fallback plan if go-

live fails (like the ability to revert to legacy systems or run

some processes manually for a short time) can be a savior. In

successful projects, when issues occur, the team doesn’t fall

into blame games; instead, they rally to solve them and

escalate appropriately. A culture of problem-solving and

support from vendors (another reason vendor partnership

helps) can turn potential disasters into manageable hiccups.

The Pharma Inc. study highlighted how having governance
that enabled “timely decision making” minimized the impact

of issues and risks. A related factor is scope control, which we

discussed – keeping the project focused on defined objectives.

Projects that avoid chasing every new request maintain

momentum and deliver results faster, building credibility for

further improvements.

 Measurement and Realistic Expectations:

Setting realistic expectations and measuring progress are

softer factors but significant. Organizations that view

enterprise software implementation as a long-term journey
rather than a one-time project achieve better outcomes. They

typically establish phased goals and measure success not only

at the moment of go-live but also by assessing post-

implementation benefits. Defining key performance indicators

(KPIs) for the project (e.g., reduction in closing days,

inventory turnover improvement, sales forecast accuracy

increase) and tracking them helps maintain focus on business

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3395

value, not just technical delivery. It also aids in securing top

management support, as they can see the return on investment

being realized. Conversely, unrealistic expectations (like

expecting a 50% efficiency jump overnight) can label a project

a “failure” in perception, even if it delivered substantial

benefits, simply because it did not meet overhyped goals.

Patience and a continuous improvement mindset (using the

new system’s capabilities increasingly over time) are
hallmarks of companies that gain the most from their

enterprise systems.

In summary, successful enterprise software

implementations are characterized by strong executive

leadership, a competent and empowered project team,

extensive user engagement and training, disciplined scope and

project management, diligent data and technical preparation,

and an organizational culture receptive to change. The

TechTimes 2025 study similarly emphasizes key elements of

change management, data management, management

commitment, project planning, risk assessment, and vendor
partnership. By focusing on these factors, organizations

increase the likelihood that their implementation will be

completed on time, within budget, and will achieve the

intended business outcomes. The case studies in the next

section will illustrate how some of these success factors and

challenges manifest in real scenarios, and how different

approaches (Waterfall vs Agile, etc.) have been applied in

practice.

III. IMPLEMENTATION METHODOLOGIES:

WATERFALL, AGILE, AND HYBRID

APPROACHES

One of the fundamental decisions in planning an

enterprise software implementation is choosing a project

management methodology or approach to structure the work.

The methodology influences how requirements are

documented, how the project adapts to change, and how testing

and deployment are organized. This section reviews the three

main categories of methodologies used in enterprise software

implementation projects: Waterfall (Linear), Agile (Iterative),

and Hybrid approaches. We describe each approach, examine

their advantages and disadvantages in the context of enterprise
systems, and provide a comparative analysis to understand

which scenarios favor which approach.

It is important to note that regardless of the methodology,

certain fundamentals remain (as covered in Section 2): you

must still gather requirements, configure or customize the

software, migrate data, test thoroughly, and manage change.

The methodologies differ in when and how these tasks are

performed and to what extent the project can pivot based on

feedback.

 Waterfall Methodology

The Waterfall methodology is a traditional, linear

approach to software implementation. It involves a sequence

of stages executed in order, where each stage is typically

completed and approved before the next one begins. A generic

Waterfall model for an enterprise software implementation

project may include stages such as: Requirements > Design >

Configuration/Development > Testing > Deployment >

Maintenance. This approach has its roots in early software

engineering practices and was the default for large system

implementations, including enterprise software, for a long

time.

 Characteristics:

The waterfall model is characterized by extensive
upfront planning and design. In the context of an enterprise

software implementation project, this means that early in the

project, the team collaborates with stakeholders to capture all

requirements in detail, possibly in a comprehensive Business

Blueprint or requirements specification document. Based on

those requirements, a complete system design is created (how

the enterprise software will be configured, what

customizations will be made, etc.). Only after the design is

completed and reviewed does the team begin configuring the

software and developing any necessary custom code. Testing

is then performed on the fully configured system, often in

phases (unit, followed by integration, then user acceptance
testing), and finally, the system is deployed to users. The idea

is that each phase flows into the next (hence “waterfall”), with

a clear separation between phases and minimal overlap.

 Advantages of Waterfall:

The Waterfall approach provides a structured framework

that is easier for stakeholders to manage and understand.

Because requirements are defined early, stakeholders know (in

theory) what to expect, allowing the project to offer a

relatively clear schedule and cost estimate from the start.

Waterfall's emphasis on documentation and phase gates
benefits organizations or industries that require extensive

documentation and predictability (e.g., government projects or

those needing regulatory validation). It establishes

expectations early regarding deliverables at each stage, which

can simplify contract management when working with

vendors under fixed-price arrangements tied to phase

completion. Another advantage is that design decisions are

made with a “big picture” view; since all requirements are

known upfront, the solution can be designed holistically for

the entire scope, helping to avoid piecemeal solutions that

might arise in more iterative methods. Additionally, Waterfall

requires less continuous involvement from end-users after the
requirements stage. For some organizations, it may be easier

to involve users heavily at the beginning and only during UAT,

rather than continuously, because they may not have the time

or availability for an Agile process. In other words, Waterfall's

structure might seem appealing for businesses that cannot

spare key users to join a project full-time.

 Disadvantages of Waterfall:

The drawbacks of Waterfall in enterprise software

projects have become evident through numerous failed or

troubled initiatives. One major issue is the inflexibility to
change. Enterprise software projects often span many months

or years, and business requirements can change during that

time, or initial requirements may be misunderstood. Waterfall

doesn’t easily accommodate changing requirements once the

project is underway. If a significant change is needed, it

typically requires a formal change request and potentially a

revisit to the requirements and design stages, which can be

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3396

costly and lead to delays. Another problem is that issues are

discovered late in the process. For instance, a requirement may

have been misunderstood, but this only becomes apparent

during user acceptance testing near the end; by then, fixing it

may require significant rework. This scenario is unfortunately

common: users only see the fully configured system at the end

and say “This isn’t what we wanted,” leading to panic or

failure. Additionally, Waterfall assumes that requirements can
be fully known and “frozen” early on, which is often not true

for complex enterprises. Users might not even know what they

truly need until they see the system. Because of this, Waterfall

can deliver a system that meets the documented requirements

but not the business’s current needs. This relates to the

challenge of user adoption – if the delivered system is not quite

right, users will resist it or it won’t deliver expected benefits.

There is also an efficiency concern: Waterfall projects

can incur a lot of “waste” if parts of the initial

requirements/design are based on faulty assumptions and are

changed later. A poignant observation in an enterprise
software context is that writing exhaustive specifications

upfront can be wasteful for complex projects. If the

environment is fairly static and well understood, Waterfall

works better, but enterprise software projects often involve

multiple divisions and, sometimes, new business models (e.g.,

implementing an enterprise software as part of a

transformation).

The waterfall methodology’s sequential nature means

that the delivery of value is deferred; as a result, the business

may not see any usable output until the very end of the project.
Stakeholders and end-users might have to wait a year or more,

receiving only status reports, which can be frustrating. In

contrast, more incremental approaches can demonstrate early

wins by rolling out pieces of functionality sooner.

Finally, when problems occur late (like during final

testing or at go-live), Waterfall projects have less room to

maneuver. Since all budget and time were allocated according

to the initial plan, accommodating a major issue can derail the

plan. One vivid example is if performance problems are

identified during integration testing – perhaps certain

transactions are too slow. If everything was built under
Waterfall, you now scramble to tune or change the

infrastructure near the deadline, whereas an iterative approach

might identify such issues earlier in smaller increments.

 Waterfall in Practice:

Despite these disadvantages, Waterfall is still utilized in

numerous enterprise software implementation projects.

Sometimes, it’s mandated by the organization’s governance or

the nature of the project. For instance, a compliance-driven

implementation (say, implementing an enterprise software in

a pharmaceutical company where processes must be validated
for FDA compliance) might employ a Waterfall model with

formal stage gates and documentation to satisfy auditors.

Additionally, many vendor implementation methodologies

have historically resembled a waterfall structure (SAP’s older

ASAP methodology, Oracle’s AIM, etc., were organized

mainly linearly, though they have evolved).

To mitigate Waterfall risks, some best practices include

conducting interim prototype demonstrations to users, even if

not strictly in method, to gather feedback before final testing;

doing phased go-lives, so each phase serves as a mini-

waterfall; and ensuring extremely thorough user acceptance

testing with adequate time to make fixes. However, these

practices are essentially tweaks or add agility to a Waterfall

framework. As noted in the Sunrise Technologies blog, the
benefits of Waterfall (clear expectations, clear benchmarks,

less need for constant input after requirements) “rarely

outweigh the potential risks” for complex projects. One quote

summarizes: once you go down the waterfall, it's hard to climb

back up – meaning reversing or changing course mid-project

is extremely difficult.

 Agile Methodologies

The Agile methodology represents a fundamentally

different philosophy: embrace change, deliver in small

increments, and involve the customer continuously.

Developed by the Agile Manifesto (2001), Agile software
development prioritizes working software and collaboration

over extensive documentation and fixed plans. In recent years,

Agile approaches (Scrum, Kanban, etc.) have increasingly

been applied to enterprise software release system

implementations, although adapting pure Agile to enterprise

software poses challenges.

 Characteristics:

Agile in an enterprise software implementation project

usually means that the project is divided into iterations or

sprints, typically lasting 2-4 weeks each. In each iteration, the
team delivers a subset of functionality. For instance, one sprint

might configure the Accounts Payable module to handle basic

invoice posting, while another might add payment processing

and integrate with a banking interface. The key is that after

each sprint, there is a demo or potentially a usable increment

of the system that stakeholders can evaluate. Requirements are

not all defined in detail upfront; instead, there is a high-level

roadmap and a backlog of continuously refined features. Users

or product owners prioritize the backlog so that the most

essential features are completed first. Agile teams are typically

cross-functional and remain engaged throughout, including

end-users or their representatives (e.g., a product owner from
the finance department for an enterprise software financials

project). Standard practices include daily stand-up meetings,

frequent testing, and continuous integration of new features.

Documentation is lighter; Agile might produce user stories and

acceptance criteria for each feature just in time instead of a

massive specification document.

 Advantages of Agile:

The primary advantages are flexibility and

responsiveness to change. If, during the project, the business

decides that a particular functionality is no longer needed or a
new requirement emerges, Agile can accommodate that by

reprioritizing the backlog for the next sprint. This reduces the

risk of delivering a system that is outdated or off-target.

Another advantage is the early and continuous delivery of

value: stakeholders start to see parts of the system working

early in the project (sometimes called incremental delivery).

This can build confidence and allow the organization to realize

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3397

benefits sooner, even partially. For example, a CRM project

could go live to a pilot sales team with core contact

management after a few sprints, while additional features like

analytics and automation are developed in subsequent sprints.

Agile also inherently includes the user in the process, ensuring

that the end product aligns with user needs and addressing the

issue of misaligned expectations that Waterfall suffers.

Frequent testing in Agile (often, each sprint includes testing of
the new features plus regression testing) means bugs and

issues are caught earlier when they are easier and cheaper to

fix.

For an enterprise software implementation project, one

underappreciated advantage of Agile is that it encourages

tackling integration points and complex features early if they

are high priority, which can flush out risk. Additionally, Agile

can improve team productivity and morale by providing a

sense of progress and accomplishment with every iteration. In

the context of enterprise software, Agile approaches, when

done well, can lead to significant improvements. A notable
case is Schlumberger’s ERP program, which adopted Scrum

(a form of Agile) – they reported about a 25% increase in

productivity and a 25% cost reduction after one year of using

Scrum, and expected even greater gains as they scaled it. By

delivering in sprints, Schlumberger’s teams eliminated much

of the “white space” downtime that occurred in a traditional

approach, and by nailing requirements in short cycles, they

reduced rework. Agile kept the teams engaged and moving

continuously, smoothing the workload.

 Disadvantages of Agile:
Despite its appeal, pure Agile can be challenging for

enterprise software development projects. One challenge is the

need for continuous user involvement and decision-making.

Agile requires a product owner or user representative to be

available to clarify requirements daily. Many organizations

struggle to dedicate such a resource because key users have

their regular jobs. If the product owner is not empowered or

available, Agile falters – decisions get delayed, and the team

might build something suboptimal. Sunrise Technologies

pointed out that Agile “requires a high degree of involvement,

someone completely dedicated to the project, and teams in the

same physical space,” which can be hard for many
organizations. Many enterprise software implementation

projects have teams spread across different locations

(especially if using offshore developers or if business units are

global), which complicates communication. Tools and

discipline can overcome distance, but it’s an extra hurdle.

Another difficulty is that Agile can be hard to align

with fixed constraints. Executives often want to know how

much this project will cost and when it will be done. Agile’s

answer is more like: we will continuously deliver features and

you can stop when you have enough value, but that open-
endedness is uncomfortable in budgeting. In practice, many

“Agile” enterprise software projects time-box the overall

effort (say we have 6 months and $X budget) and prioritize

within that, which is a quasi-hybrid approach.

Integration and complexity management can be

challenging in Agile. Enterprise software is highly integrated;

you cannot fully implement order management without

inventory and finance, for example. Agile tends to break work

into small vertical slices (by feature), but ensuring that all the

pieces integrate well requires careful architectural oversight.

There is a risk in Agile of focusing too narrowly on the

deliverables of one sprint and missing the overall view of the

entire end-to-end process. Therefore, Agile enterprise

software projects often include some upfront architectural
envisioning or have architects on the team to guide each sprint.

 Tracking Progress in Agile is Different;

There may not be a traditional Gantt chart. Instead, burn-

down charts or other Agile metrics are used. This can confuse

stakeholders who are accustomed to waterfall reporting.

Additionally, in scenarios involving many external

integrations or data migration, those tasks don’t slice easily

into user-facing increments but are significant challenges that

must be addressed. Agile teams might dedicate some sprints

solely to backend technical work, which, if not communicated

effectively, might seem like no progress to the business team
(“we spent 2 weeks and nothing new to demo because we were

building the data conversion program”).

 Agile also Poses Testing and Cutover Challenges.

Frequent iterative changes require continuous integration

and regression testing. If not automated, this can become

burdensome; however, test automation is increasingly used to

address this issue. Ultimately, enterprise software often still

has a single go-live event, unless performing a rolling

deployment. Therefore, all the pieces developed in sprints

need to be assembled and deployed together. Some critics
argue that at the very end, an Agile enterprise software

implementation project might not look so different from

Waterfall: you still need a hardening phase and a go-live; it’s

just that you had more involvement along the way.

 Suitability:

Agile is often favored for complex, uncertain projects

where requirements are likely to evolve or not fully known.

For example, if implementing a new CRM with innovative

features, Agile is suitable because you want feedback from

salespeople on the prototype to refine it. If the organizational
culture supports it (collaborative, not rigidly hierarchical),

Agile can thrive. On the other hand, if an enterprise software

implementation project is relatively straightforward (e.g.,

implementing a well-defined module in a well-understood

business), a Waterfall might suffice and be simpler. Agile also

works best with experienced teams – they must be capable of

self-organization and comfortable with ambiguity. If the team

or management is inexperienced with Agile, they might

accidentally run a “mini-waterfall” or struggle with scope

management (Agile doesn’t mean uncontrolled scope; it

means controlled via prioritization, which requires discipline).

To bring Agile to scale in large enterprise software

projects, frameworks like SAFe (Scaled Agile Framework) or

Scrum@Scale are sometimes used. Schlumberger, for

instance, looked at a Scrum@Scale mechanism to coordinate

multiple Scrum teams across countries, maintaining central

control while allowing local autonomy. This approach was

designed to ensure standardization in core aspects while

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3398

enabling local teams to iterate on localization. Implementing

such scaled Agile adds overhead (planning increments,

synchronization meetings) but can keep an extensive program

aligned.

 Hybrid Methodology

Recognizing the limitations of both pure Waterfall and

pure Agile in enterprise software development projects, many
organizations opt for a Hybrid methodology—essentially

blending aspects of Waterfall and Agile to suit project needs.

A hybrid approach aims to incorporate the structured planning

from Waterfall with the flexibility and iterative feedback from

Agile. There is a spectrum of hybrid models; two common

patterns are “Waterfall with Agile inside” (overall project

planned in phases, but within a phase, you use Agile sprints)

or “Agile with up-front planning” (do a short Waterfall-like

planning/design, then execute in Agile iterations).

 Characteristics:

In a hybrid model, the project may begin with a high-
level design and planning stage (like Waterfall) to establish

scope, architecture, and potentially a global template design

for an enterprise software implementation project. Once this

baseline is set, the team breaks the implementation into

smaller increments—perhaps by module or by business

process—and delivers them iteratively. For instance, an

enterprise software implementation project could include a

phase 1 for Financials and basic Supply Chain. Within that

phase 1, development and configuration might occur in a

series of sprints, each delivering specific functionalities (e.g.,

sprint 1: general ledger setup, sprint 2: accounts payable, etc.).
After several sprints, an integrated test is conducted for phase

1. Then, phase 1 is deployed while phase 2 (manufacturing, for

example) begins with its own series of sprints. This is one way

to hybridize.

Another hybrid approach is to maintain Waterfall for

certain streams (like data migration or hardware setup) where

sequential execution is necessary, but use Agile for functional

configuration where user input is essential. An enterprise

software implementation project might have an “Agile team”

working on configuring user-facing processes, while the

“technical team” follows a more traditional plan for data
conversion, and the project manager coordinates both. This

isn’t pure Agile philosophy but can be pragmatic.

 Advantages of Hybrid:

The hybrid approach aims to get the “best of both

worlds.” It provides a clear project roadmap with phases

(which management likes) and concrete milestones (like

design sign-off and phase go-live), making it easier to manage

scope on a macro level and maintain executive oversight. At

the same time, within those boundaries, it allows flexibility to

adjust details and engage users frequently, thereby reducing
the risk of big surprises at the end. Hybrid can also be easier

to adopt for organizations new to Agile – it’s less of a cultural

shock than a full Agile transformation.

Sunrise Technologies described a hybrid as taking

defined phases and high-level requirements from Waterfall

and combining them with frequent iteration and cross-

divisional engagement from Agile. The result is that

businesses get “achievable phases where progress is easy to

track, yet still flexible enough to accommodate unforeseen

changes”. Essentially, one can maintain a traditional project

plan (with say requirements, build, test cycles), but internally

the team might iterate multiple times within each. Users get

exposure to the system earlier than in pure Waterfall, through

periodic demos or pilot releases (for example, a pilot group
might start using a module while others are still being built).

Crucially, hybrid approaches emphasize that engaging

end-users for as long as possible through frequent (but not

overwhelming) check-ins is key to success. By balancing

structured progress with flexibility, a hybrid method can

navigate complexity: it recognizes that an enterprise software

implementation project is not just software development, but

a broader transformation that sometimes requires top-down

structure (for aspects like standardizing business processes)

and bottom-up input for usability.

 Disadvantages of Hybrid:

The risk of hybrids is that they might experience the

“worst of both” if not managed well. For example, a team

could end up doing double work if they attempt a full Waterfall

design and also iterate—i.e., they spend time on a detailed

design that then changes through iterations (wasted effort).

Hybrid approaches require clear delineation of what is fixed

and what is flexible. If this is unclear, it can lead to confusion.

There is also management overhead in hybrid: one must

manage according to plan while also overseeing iterative
development, which can be complex. Teams might struggle if

they have to produce extensive documentation (to satisfy the

Waterfall side) and simultaneously create rapid prototypes (to

satisfy the Agile side). Without strong leadership, hybrid can

devolve into chaos or become a waterfall with token agile

ceremonies that don’t actually improve outcomes.

However, when done intentionally, hybrid appears to be

the prevailing choice for many large enterprise software

implementation projects today. For instance, a phased rollout

strategy effectively represents a hybrid in timeline: each phase

is its own mini-project, potentially executed with iterative
feedback. Microsoft’s Sure Step methodology for Dynamics

365 can be viewed as a hybrid: it has phases but promotes

iterative development in design and deployment. SAP’s

Activate methodology is another example: it incorporates an

Agile mindset (with iterative build sprints) built upon a phased

roadmap.

 Comparative Analysis: Summarizing the Comparison:

 Waterfall is most effective when requirements are well-

defined, the project scope is limited and unlikely to change,
or external factors (such as compliance or fixed-price

contracts) necessitate a linear approach. It offers structure

but struggles to accommodate change. It prioritizes early

planning, which can be beneficial for initially aligning

large stakeholder groups. However, due to evolving

business needs, pure Waterfall is often too inflexible for

modern enterprise software development projects.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3399

 Agile is best suited when the project scope requires

flexibility, when user input is critical to success (e.g., user

experience-heavy systems like CRM or e-commerce

integrations), and when the organization can commit

resources to continuous collaboration. It excels in

delivering user-friendly results and adapting to new

information. The challenges include ensuring discipline

(so quality doesn’t suffer) and scaling to the enterprise
software rise level. The Schlumberger case demonstrates

Agile’s potential even in very large enterprise software

implementation programs, given executive buy-in and

adaptation (Scrum@Scale).

 The hybrid approach is often the most practical for many

enterprise software project implementations. It

acknowledges that some upfront planning is necessary

(because you can’t easily iterate fundamental decisions

like which enterprise software package to use or the global

data model). Still, after that, iterative and incremental

techniques help reduce risk. Although hybrid requires

skilled management to execute, it tends to be the
recommended approach for complex, transformational

enterprise software projects, according to many

consultants. As Sunrise Technologies concluded, “any

project with the scope and complexity of an enterprise

software project implementation is about more than just

developing software – it’s about addressing broad

operational concerns and transforming the business,” so a

hybrid approach that recognizes this—blending a clear

roadmap with flexibility—is often ideal.

Even within a single project, different aspects may
require different approaches. For instance, you might

implement a Waterfall style for the core financials (because

those processes are well-defined and must be consistent

company-wide), while employing Agile for a newer module

like a CRM add-on where experimentation is necessary.

 Trends:

In recent years, even vendors and large system

integrators have embraced hybrid Agile methodologies for

enterprise software development. PMI research from 2012

already suggested blending Lean/Agile techniques to improve

enterprise software implementation projects. The industry
debate of Waterfall vs. Agile for enterprise software

implementation has largely settled on the notion that some

form of Agile (or at least incremental rollout) is beneficial, but

outright replacing Waterfall in all respects may not always be

effective. Thus, the hybrid middle ground is the growing norm.

To illustrate in comparative terms: A Waterfall enterprise

software implementation project might attempt a big bang go-

live for the entire company after two years of work. An Agile-

influenced project might deliver the enterprise software to one

factory in six months, learn from it, deliver to another in the
next three months, and so on (continuous delivery). A hybrid

project might do the core finance and HR in a big bang

(because you can’t have two financial systems easily) but then

roll out manufacturing plant by plant. The hybrid might use

sprints to develop enhancements requested by the first plant

before deploying to the second, incorporating feedback and

thereby continuously improving the solution per rollout.

In conclusion of this section, methodology matters: it

shapes the project’s risk profile and outcomes. However, no

methodology can compensate for poor execution of

fundamentals (like those success factors in Section 2.5). A

Waterfall project with an excellent team, support, and change

management can succeed (as in some classic 1990s enterprise

software successes), and an Agile project with poor discipline

can fail. The key is to choose an approach that fits the
organization and project context and to apply it rigorously.

Ultimately, the trend is toward hybrid as it provides a balanced

approach to the multifaceted challenge of enterprise software

implementation.

To illustrate how these concepts, manifest in real-world

scenarios, we examine case studies highlighting best practices,

common pitfalls, and varying methodological choices in

enterprise software implementation projects.

IV. CASE STUDIES FOR ENTERPRISE

SOFTWARE IMPLEMENTATION

This section presents several case studies of enterprise

software implementations to ground the above discussions in

real-world scenarios. Each case illustrates different aspects of

the process: success factors, challenges faced, and how

methodologies were applied. The cases span various industries

and systems, covering ERP, SCM, and CRM contexts. We

examine:

 Case 1: ERP Implementation at “Pharma Inc.” – A Success

with Strong Project Management
 Case 2: Agile ERP Rollout at Schlumberger – Improving

Productivity with Scrum

 Case 3: Hershey’s ERP /SCM Failure – Lessons in over

ambition and readiness

 Case 1: ERP Implementation at “Pharma Inc.” – A

Success with Strong Project Management

This case is drawn from a detailed study by Carton,

Adam, and Sammon (2008), which examined an ERP

implementation in the Irish subsidiary of a UK-based

multinational pharmaceutical company (dubbed “Pharma

Inc.”). The project was deemed highly successful: the ERP
system went live on schedule and within budget, and the

subsidiary quickly ramped up to full production volume ahead

of expectations. This contrasts with the industry norm of

frequent overruns and offers a valuable case to analyze for best

practices.

 Background:

Pharma Inc. was implementing a single-instance SAP

ERP across multiple sites. Notably, previous waves of the ERP

rollout had occurred at secondary manufacturing sites. The

Irish subsidiary was the first primary manufacturing site (where
active ingredients are produced) to go live on SAP. This

introduced new challenges, as primary sites had more complex

processes and regulatory scrutiny. The project timeline spanned

roughly from 2003 to the end of 2004 (about 18-20 months). A

project team, including local site personnel and corporate IT

experts, was assembled.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3400

 Project Management and PMBOK:

The researchers analyzed the project through PMI’s

PMBOK knowledge areas (integration, scope, time, cost,

quality, human resources, communications, risk, procurement).

They found that, broadly, the PMBOK framework was

applicable, but certain areas needed additional emphasis in the

ERP context. The project excelled in project integration

management, thanks to governance structures linking the
corporate program and the local site team. There was a multi-

level governance structure: corporate steering committees set

overall direction and standards, while the local steering

committee and project manager addressed site-specific issues.

This ensured alignment (the local implementation conformed

to the global template) while also providing agility in resolving

local problems. The existence of this structured governance

spanning corporate and local levels maintained focus and

enabled timely decision-making, thereby avoiding delays. For

example, when a discrepancy arose between the global

template and a local requirement, there was a clear process to

escalate and resolve the issue with corporate quickly. This
prevented small issues from festering and causing rework later.

 Team Composition:

Pharma Inc. emphasized the importance of having a

strong project team with the right skills. A local project leader

with a high profile in the organization was appointed, ensuring

he possessed the clout necessary to gain cooperation from

various departments. The team comprised both IT specialists

and top-performing individuals from business units

(production, quality, etc.). One success factor explicitly noted

was the “proper selection of team members and a high-profile
team leader even at the local level.” Team members were

selected not just for their technical knowledge but also for their

problem-solving skills and the respect they commanded within

the organization. This approach facilitated change management

because key influencers were involved in the implementation.

Moreover, team members could be “borrowed” at critical

times—if a particular issue required deep expertise, the project

could call on an expert in that field to assist. This flexible

involvement of specific local skills at different points was a

significant success factor. It reflects effective resource planning

and stakeholder management.

 Scope and Change Management:

The scope was clearly defined to implement a specific set

of SAP modules aligned with the corporate template.

Importantly, the project followed a somewhat hybrid approach:

a global template (design) provided a waterfall-like starting

point, but the local implementation involved adapting that

template iteratively to local needs (introducing some agility in

execution). The team was mindful of avoiding scope creep that

could deviate from the core template, balancing local needs

with global standards. They noted that balancing local versus

global was challenging – finding the line between necessary
localization and excessive customization proved difficult. The

corporate level enforced standardization to some extent (as

pharma manufacturing is heavily regulated and process

consistency is desired), but the local site had unique processes

that required accommodation. They resolved this through

negotiation cycles: the local site attempted to adapt to the

template where feasible, and when that was not possible, issues

were escalated, sometimes leading to adjustments in the

template. This created what the authors refer to as a dual-cycle

approach: an exploration/negotiation cycle to refine the

template and clarify requirements, followed by an

execution/roll-out cycle to implement and go live. By doing

this, they effectively established a mini iterative loop

(exploration) before finalizing the system, which greatly

improved its fit. The lesson learned was that any unclear areas
unresolved in the exploratory phase would resurface after go-

live “with disastrous consequences.” Therefore, they aimed to

surface and resolve uncertainties early.

 Change Management and user Adoption:

Pharma Inc., as a pharmaceutical company, had a culture

accustomed to structured processes and documentation. The

study notes that the highly regulated environment meant staff

were used to compliance and following procedures. This

actually provided an advantage for ERP, as employees more

readily followed the disciplined approach needed (e.g., they

understood why data discipline was critical). The project team
still engaged users through training and involvement. A

network of key users was formed to champion the system in

each department. Post go-live, the site achieved production

targets in 7 weeks compared to the predicted 9 weeks,

indicating that users became competent quickly. This speedy

ramp-up suggests effective training and user preparation.

 Outcome and Reflections:

The ERP implementation at Pharma Inc. was delivered

“on time and within budget,” and is considered a benchmark

project. All participants viewed it as a notable success. The
company attributed this success to its strong project

management strategy—using the PMBOK framework while

tailoring focus, establishing multi-level governance, selecting

the right people, and effectively balancing global and local

needs. They highlighted some issues: for instance, even in this

positive case, they realized they had neglected to preserve

learnings for subsequent rollouts sufficiently. The team that

implemented this project had valuable experience that needed

to be transferred to the next primary site rollout. They noted

that ensuring knowledge transfer across rollout waves could be

improved, so each site doesn’t reinvent the wheel or repeat

mistakes.

Another trade-off to consider is the tension between

standardization and localization, which is challenging. If the

corporate template imposed is too rigid, it can lead to local

inefficiencies or morale issues. Pharma Inc.'s corporate

structure was strong enough to enforce rules, but they needed

to stay sensitive to local costs, including motivation and slight

inefficiencies. This presents a general lesson in multi-site ERP:

one must balance consistency and flexibility.

In conclusion, Pharma Inc.’s case underscores several
success factors: strong leadership and governance, a competent

team, extensive planning and risk mitigation, and effective

change management. It shows that applying a standard project

management framework (PMBOK) with a tailored focus can

indeed lead to ERP success. For example, they placed special

emphasis on risk (fast escalation), human resources (team

selection), and integration (aligning local and global). This case

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3401

serves as a counterexample to the pessimism that often

surrounds ERP projects, demonstrating that with best practices,

even a complex ERP implementation can achieve its goals. It

provides a template of “best practice” for ERP projects,

especially emphasizing governance structure and the dual-

cycle (iterative template refinement) approach as key

contributions to success.

 Case 2: Agile ERP Implementation at Schlumberger (Oil

& Gas Services)

Our second case study illustrates the application of Agile

(Scrum) in a large-scale ERP implementation at Schlumberger,

a global oilfield services company. This case is based on a

Scrum Inc. report (2019) about Schlumberger’s partnership

with Scrum Inc. to implement a new ERP system.

Schlumberger’s initiative is notable for its scale and the

measurable productivity gains achieved by switching from a

traditional approach to an Agile methodology.

 Background:
Schlumberger undertook a major ERP replacement across

its global operations in the late 2010s. ERP projects in such

large companies can involve hundreds of team members,

external consultants, and many countries. Initially,

Schlumberger’s ERP program was following a more traditional

approach, which resulted in some inefficiencies (“white space”

downtime between handoffs). Partway through, the leadership

(including CIO Eric Abecassis and IT VP Jim Brady) decided

to embrace Scrum (an Agile framework) at scale to accelerate

delivery and improve outcomes. They partnered with Scrum

Inc., a consulting firm specializing in Agile transformations, to
implement this change.

 Agile Implementation Details:

Schlumberger reorganized its ERP project teams into

Scrum teams. Each team had a specific focus (for example, one

might handle data migration, another the finance module, etc.,

or possibly cross-functional vertical slices). They adopted

Sprint cycles (likely 2-week or 3-week sprints) and the Scrum

ceremonies (daily stand-ups, sprint planning, reviews, and

retrospectives). Importantly, they needed to train team

members in Scrum and also appoint Scrum Masters and

Product Owners to interface with stakeholders. One crucial
aspect was encouraging business stakeholders to engage

frequently for feedback, reminiscent of the product owner role,

ensuring that each sprint’s work aligned with business needs.

 Results:

The switch to Scrum showed dramatic improvements:

within five months of adopting Scrum, Schlumberger reported

a 25% improvement in productivity at the program level and a

40% reduction in the number of external contractors needed.

These are significant numbers given the scale (fewer

contractors meant cost savings, and higher productivity meant
more work done in less time). One team delivered data

migration one week ahead of schedule and at 93% readiness

(versus a 70% requirement). This indicates how breaking work

into sprints with clear goals can motivate teams to exceed

targets.

A previously skeptical contractor admitted that Scrum

“increased productivity in the ERP project by more than

tenfold”, largely by eliminating “white space” between

waterfall stages. In traditional waterfall, a development team

might finish something and then wait for the testing team to test

it, etc. With Scrum, the cross-functional team works on small

increments including testing, so idle time was reduced. Also,

by locking down requirements within each Sprint (small
scope), they removed the long delays waiting for requirement

sign-offs. As Jim Brady put it, “we’ve got the requirements

nailed in the Sprint cycles”, meaning each sprint delivered

exactly what users agreed on for that iteration, avoiding

rework.

After a year of using Scrum, the CIO reported about 25%

cost reduction and 25% increase in productivity on the

“massive program”. He anticipated they could push that to 30-

40% improvements on both metrics. These gains are huge in a

multi-year, multi-million-dollar program, essentially saving

tens of millions of dollars and delivering faster.

One key achievement was that Schlumberger successfully

went live with the ERP in North America (their largest market)

on April 1, 2019. This was presumably one of the phased

rollouts. They attributed the on-time success in part to the

Scrum approach keeping the teams focused and adaptive.

 Global Deployment Strategy:

With North America live, Schlumberger turned to rolling

out the ERP in other regions. Leadership believed it would now

go faster and cost less because Scrum practices were in place.
For the global deployment phase, the plan was to “get rid of the

Gantt charts and spreadsheets and put the whole thing into a

Scrum context” with a Scrum@Scale mechanism.

Scrum@Scale likely involved a “Scrum of Scrums” –

coordinating multiple Scrum teams working in parallel on

different country rollouts or different subsystems, with meta-

level planning to ensure alignment. Jim Brady mentioned

having “proper control in the center, but radical autonomy at

the country level”. This suggests a hybrid governance: a central

core team sets standards (perhaps data definitions, core

processes) – the “control in the center” – while each country’s

rollout team can adapt and execute with autonomy using Scrum
– “radical autonomy at the country level.” This is akin to the

hybrid methodology discussion: central design + agile local

execution.

He believed this approach would “allow us to speed up

the deployment and capture even more net to the bottom line”

(i.e., greater savings). Essentially, each local implementation

could proceed in sprints, concurrently, rather than sequential

waterfall waves.

 Cultural Impact:
The adoption of Scrum also had intangible benefits. The

CIO noted that people’s eyes “started to open” to new ways of

working, and ambitions grew to transform other parts of IT

with Scrum. So, success in the ERP project acted as a catalyst

for broader Agile adoption. They started applying Scrum in

other projects that were stuck. One anecdote: a project that had

an 80-person team and wasn’t delivering results was

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3402

restructured to a 15-person Scrum team with one-fifth of the

budget, and within ten months that team delivered successfully.

This highlights how Agile can sometimes drastically reduce

overhead by focusing a smaller dedicated team rather than a

large unwieldy team (smaller teams are often more effective

due to less communication complexity – a known Agile

principle).

 Lessons and Observations:

The Schlumberger case validates that Agile can work for

ERP and deliver tangible benefits, even in a conservative

industry like oil & gas and at a huge scale. However, for it to

work, certain conditions were met: top management was fully

on board (the CIO and VP were champions of Scrum), they got

expert guidance (Scrum Inc.), and they were willing to

overhaul team structures and processes mid-project – a bold

move. Not all organizations have the will or capability to do

that on the fly. Schlumberger’s engineering culture might have

been open to experimentation.

It also shows that a phased rollout (North America, then

globally) combined with Agile is a powerful mix. By proving

in one region and refining approach, they improved subsequent

rollouts. It exemplifies the “inspect and adapt” ethos of Agile

at a macro level.

From a project management perspective, one interesting

point is the metric improvements. Traditional ERP project

metrics are often negative (time/cost overruns). Here we have

quantified positive outcomes: cost down 25%, productivity up

25%, etc. This can be used as a business case for Agile in
similar projects.

 Change Management:

There’s not explicit detail on user change management in

the snippet we have, but presumably, having more frequent

releases and earlier involvement helped manage user

expectations. By the time of North America go-live, users

would have seen incremental deliveries, possibly reducing the

shock. Also, one reason they could reduce contractors by 40%

is likely because internal staff became more capable (or

because tasks got done quicker needing fewer bodies). The high

contractor count at start might reflect initial heavy reliance on
external integrators, which Scrum helped mitigate by focusing

the core team.

In summary, Schlumberger’s ERP case study

demonstrates:

 The feasibility of using Scrum/Agile at scale in an ERP

project.

 The significant benefits of iterative delivery in terms of

efficiency (eliminating idle time, continuous integration of

requirements).
 The importance of management support for a

methodological shift.

 How to align a large global rollout using Scrum@Scale

(central governance + local agility).

 It reinforces success factors like user involvement

(requirements nailed in sprint cycles) and strong leadership,

enabling empowerment of teams.

This case is a modern example for industry professionals

that even traditionally waterfall endeavors like ERP can be

revolutionized with Agile, delivering faster ROI and potentially

higher quality. It counterpoints the notion that “Agile is only

for software startups” – showing its value in heavy enterprise

IT contexts.

 Case 3: Hershey’s ERP Failure (Consumer Packaged
Goods)

No review of enterprise software implementation would

be complete without examining a famous failure to extract

lessons on what can go wrong. One of the most frequently cited

cases is the Hershey Company’s ERP implementation failure

of 1999. Hershey, the U.S. chocolate manufacturer, attempted

a major systems overhaul that wreaked havoc on its supply

chain and is often used as a cautionary tale.

 Background:

In the late 1990s, Hershey Foods undertook a project to

replace its legacy IT systems with an integrated suite that
included ERP (SAP R/3), SCM (supply chain management

software from Manugistics), and CRM (customer relationship

management software from Siebel). They ambitiously decided

to implement all three systems simultaneously in a big-bang

cutover. The target timeline was aggressive: they aimed to

complete the implementation in 30 months, truncating the

recommended 48 months, largely to avoid potential Y2K issues

and perhaps to realize benefits quickly. Hershey compressed

the schedule by over a year, a decision that significantly

increased risk.

Challenges and Failures: Several critical mistakes

resulted in a meltdown in late 1999:

 Overambitious Scope and Timeline:

Deploying ERP, SCM, and CRM all at once is inherently

high risk. Each of these systems (especially late-90s era SCM

optimization) is complex; doing them together in a 30-month

window is extremely aggressive. The project team was likely

stretched across too many concurrent activities (data migration

for three systems, integration between them, customizations,

etc.). The accelerated timeline meant some steps were likely

rushed – for instance, user training and system testing may have
been compressed or less thorough than necessary.

 Big Bang Cutover Timing:

Hershey decided to go live during a critical business

period—just before the peak Halloween season, when a large

percentage of candy sales occur. When issues arose, they

directly impacted their busiest order period. Best practice

typically advises against scheduling go-lives around major

business cycles, but Hershey, facing the year 2000, took the

gamble.

 Data and Integration Problems:

It was reported that failed systems testing, data migration

errors, and integration issues between the ERP, SCM, and

CRM components plagued the go-live. For instance, if the

SCM (which performs advanced planning) didn’t properly

interface with the ERP inventory, it might create plans that the

ERP cannot execute correctly. The rush likely resulted in

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3403

insufficient end-to-end testing of these integrated processes.

When the cutover occurred, some processes did not work as

intended.

 Organizational Readiness:

During the project, Hershey faced internal conflicts and

blame-shifting among departments. This indicates governance

and change management issues—possibly an alignment failure
among sales, manufacturing, and IT. There may have been

inadequate training (“flawed training” is mentioned), leading

users to be unaware of how to perform tasks in the new system.

If employees resorted to workarounds or entered data

incorrectly due to confusion, it would exacerbate problems.

 Impact:

The results were disastrous; Hershey could not fulfill

orders in the aftermath of go-live. They reportedly failed to

deliver approximately $100 million worth of Halloween candy

orders in 1999, even though the products were in inventory.

This indicates the core issue: the new system malfunction
meant the company couldn’t translate demand into shipments.

It’s possible warehouses couldn’t pick orders because the

system was not functioning or orders weren’t flowing from

CRM to ERP, etc. This kind of disruption is precisely what

enterprise systems are supposed to avoid. The failure directly

impacted the bottom line: Hershey’s 1999 Q3 profits fell 19%,

and the stock price dropped 8%. It was a PR fiasco as well—

being covered in the Wall Street Journal and remembered for

years (the image of trick-or-treaters potentially not getting

Hershey bars was symbolic of the failure).

 Root Causes (Summary): Analysts Dissecting the case

Conclude:

 Inadequate time for a project of that scope: compressing

4 years of work into 2.5 was unrealistic. Lesson: Do not

impose an arbitrary deadline (like Y2K) at the expense of

implementation fundamentals.

 Attempting too much (scope): ERP, SCM, and CRM

simultaneously is extremely complex. Lesson: Phased

approach is safer, such as implementing ERP first,

stabilizing, then layering SCM/CRM.
 Insufficient testing and training: The project likely went

live with known critical issues unresolved (perhaps they ran

out of time), and users were not fully prepared. Lesson:

Never skimp on testing; if tests fail, do not go live until

resolved. Ensure users can run the business on the new

system before cutover (many recommend parallel runs for

a period).

 Change management: It seems various departments were

not on the same page, hinting poor communication and

stakeholder management. Maybe some resisted new

processes or didn’t provide needed input during design,

resulting in a system that didn’t fit operations well.
 Vendor management – Hershey had multiple software

vendors (SAP, Siebel, Manugistics) and likely multiple

integrators. Coordination among these parties may have

been insufficient, leading to integration issues that were

identified late or resulting in finger-pointing regarding

responsibility.

 Lessons Learned:

Hershey’s debacle has been distilled into key takeaways

commonly cited in ERP literature:

 Plan carefully and thoroughly, especially if multiple

components are involved – don’t cut corners on project

management basics.

 Do not set unrealistic timelines – ensure the schedule is
based on scope and resource reality, not just business

desires.

 Ensure cross-departmental alignment – all departments

must understand their roles and be committed; break down

silos.

 Test thoroughly before going live – especially an

integrated solution, test, test, test (unit, integration, volume,

user acceptance).

 Train staff properly. Users should be comfortable with the

new system, so plan extra support at go-live.

 Assess the risks of an ERP implementation for

operations and finances—have contingency plans (like
backup ordering processes).

 Consider phased implementation. A phased or modular

go-live can mitigate risk compared to a big bang, which can

“curb implementation catastrophe.”

 Timely and clear communication across the project and

to stakeholders is essential to managing expectations and

surfacing issues.

These points are essentially the inverse of what Hershey

did. Subsequent to the failure, Hershey eventually fixed its

systems, but by then, the damage was done, and competitor
Mars gained some market ground. Hershey’s case underscores

that an ERP implementation is not just an IT project but a

business transformation that demands realistic planning and

change management. Technology wasn’t the core failure (SAP,

Siebel, etc., were proven products); it was the implementation

approach.

While times have changed (modern cloud ERP might not

face Y2K, etc.), the Hershey story is still presented to project

managers as a reminder to resist pressure to do things too fast

or too broadly without proper foundations. It is often contrasted

with another case (Nestlé’s ERP project around the same time)
where a more phased, measured approach eventually led to

success after initial challenges.

 For Current Practitioners, Hershey’s Failure Still Teaches:

 Executive urgency (like Y2K or any top-down push) must

be balanced with project reality. If leadership demands

something impossible, pushing back can save the company

(better a delay than a catastrophic failure).

 Integration of multiple enterprise systems is exponentially

harder than a single system – consider splitting such
projects.

 The Go-Live strategy is crucial: big bang vs phased – big

bang concentrates risk.

 The pace should be dictated by the organization's readiness

for change; if the organization cannot absorb the change, it

will break.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3404

Thus, Hershey’s ERP failure is a classic example

highlighting the importance of the themes from earlier sections:

realistic project management, requirement and process

alignment (they likely failed to align new processes properly,

showing up as inability to fulfill orders), change management

(perhaps user resistance or confusion), and data/integration (the

integration challenge at its worst). It validates each best

practice by demonstrating the consequences of ignoring it.

The Hershey case demonstrates that enterprise software

implementation is a high-stakes endeavor: a misstep can cause

significant business disruption and financial loss. It

underscores why following implementation best practices is

not academic, but essential for corporate well-being.

Companies embarking on similar projects continue to study

Hershey’s case to avoid a “bittersweet” outcome in their own

implementations.

V. CONCLUSION

Enterprise software rise implementations represent some

of the most complex projects an organization can undertake,

whether an ERP solution spanning all core functions, a CRM

system focused on customer interactions, or an SCM system

coordinating a supply network. This comprehensive review has

explored the multifaceted process of implementing such

systems, from planning and requirements gathering through

go-live and beyond. Several key conclusions and takeaways

emerge:

 Importance of Methodology Fit:
No one-size-fits-all methodology exists for enterprise

software implementation. Traditional Waterfall approaches

provide structure and are still applicable in projects with well-

understood requirements or strict regulatory demands, but they

risk inflexibility. Agile methodologies, exemplified by Scrum,

introduce adaptability and continuous user feedback, which can

significantly improve outcomes in complex, evolving

environments. Hybrid approaches often combine the strengths

of both, and in practice, many successful projects use a hybrid

model to manage complexity while remaining responsive to

change. The comparative analysis indicates that organizations

should carefully choose and possibly tailor their project
management approach to their specific context, considering

factors like project scope, organizational culture, and resource

availability. A clear trend is toward more iterative and phased

deployments (even if within a high-level Waterfall) to reduce

risk and deliver value incrementally.

 Thorough Planning and Realistic Scope:

Successful implementations place a heavy emphasis on

upfront planning—not to ossify the project plan, but to ensure

that all dimensions (scope, timeline, resources, risks) are

realistically assessed and aligned with business objectives.
Several failure cases, with Hershey’s being a prime example,

demonstrate that compressing timelines or overloading scope

beyond what the team can handle is a recipe for disaster. Proper

planning entails defining clear project goals, securing executive

sponsorship, allocating top talent to the project team, and

establishing governance structures for decision-making. It also

involves performing risk analysis and devising mitigation

strategies. As the literature and case studies show, factors like

scope creep and underestimation can be kept in check with a

solid project charter and change control mechanisms. In

essence, hope is not a strategy—rigorous planning is.

 User-Centric Requirement Analysis:

Capturing the right requirements is fundamental.

Techniques such as collaborative workshops (JAD),
interviews, and prototyping should be employed to uncover

true business needs and align stakeholder expectations with

what the new system will deliver. Often, the process of

gathering requirements also serves as an opportunity to re-

engineer business processes for improvement. The review

highlighted that inadequate requirements gathering can lead to

a range of downstream issues (excessive customizations, user

resistance because the system “doesn’t fit”). Therefore,

involving end-users early and iteratively verifying

requirements (especially through prototypes or pilot

implementations) is a critical practice. It ensures the project

team and business stakeholders maintain a shared vision of the
desired solution.

 Change Management is Paramount:

Technical success is not true success unless the

organization adopts the system. All evidence points to change

management and user adoption being as crucial as the technical

implementation. Effective change management includes strong

executive advocacy, frequent and transparent communication,

training tailored to user roles, and user involvement throughout

the project to build buy-in. The cases reinforce this: Pharma

Inc.’s success was partly due to leveraging a culture of quality
and involving local expertise, while Hershey’s struggles were

exacerbated by insufficient training and cross-department

coordination. A robust change management program

(potentially guided by models like Kotter or ADKAR) should

run parallel to technical work. Organizations that invest in

preparing their people – through workshops, change

champions, clear messaging about benefits, and addressing

concerns – experience smoother go-lives and faster attainment

of benefits. The human factor can never be underestimated:

ultimately, people use enterprise software systems, and their

acceptance determines whether the system delivers its

promised improvements.

 Managing Common Challenges:

The literature review identified several recurring

challenges, including data migration difficulties, integration

with other systems, scope creep, timeline and budget overruns,

the need for user training, and balancing customization.

Successful projects proactively address these issues:

 They start data cleansing early, devote resources to

migration, and test data conversion repeatedly.

 They identify integration points and plan for them, often by
using middleware or phasing specific integrations after core

stabilization, acknowledging that legacy systems may

require bespoke solutions.

 They enforce scope discipline via a formal change control

and by prioritizing requirements (often using methods from

Agile even within Waterfall projects).

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3405

 They pad timelines and budgets appropriately, or at least set

expectations for adjustments, keeping management

informed to avoid surprises.

 They choose configuration over customization whenever

possible to avoid the pitfalls of over-customization. When

customization is necessary, it is carefully justified by

business value, and the impact on future maintenance is

assessed.

 They allocate ample time for testing end-to-end processes

and performance under real-world conditions to resolve

issues before going live. A go-live readiness checkpoint is

often used to determine if the cutover should proceed or be

delayed; prudent teams will opt to delay rather than push

forward with a system that isn’t ready, learning from cases

like Hershey’s where perhaps a “no-go” decision should

have been taken.

Addressing these challenges is intertwined with success

factors; for example, strong top management support helps

resolve integration issues by securing necessary resources or
vendor assistance, while effective project management

practices maintain alignment between scope and budget.

 Critical Success Factors Revisited:

The critical success factors outlined in Section 2.5 are

worth repeating as conclusion highlights: executive

sponsorship, clear vision and objectives, competent project

team, effective communication, end-user involvement, robust

project management, a focus on data quality, and strong

vendor/partner relationships are consistently associated with

successful implementations. When these factors are present,
even large projects can succeed (Pharma Inc., Schlumberger

NA rollout); when they are lacking, even a well-resourced

project can stumble (as parts of Hershey’s did). Organizations

should perform a CSF check at project inception and

continuously throughout, asking questions like: Is leadership

actively supporting and engaged? Do we have the right people

on the team? Are users on board? Are we communicating

enough? Such reflections can prompt corrective actions mid-

course (as Schlumberger did, switching to Scrum to address

productivity and alignment issues).

 Case Study Synthesis:

The case studies provided concrete examples that

reinforce these conclusions. Pharma Inc. demonstrated that

classical project management, tailored for ERP

implementation, can achieve on-time and on-budget success by

emphasizing governance, skilled personnel, and risk

management. Schlumberger illustrated how embracing an

Agile mindset can dramatically accelerate complex

implementations and improve ROI, highlighting the benefits of

adaptability and continuous improvement. Hershey’s case

taught hard lessons regarding the dangers of unrealistic

planning and inadequate testing and training—lessons that
have guided countless enterprise software projects since to

avoid similar pitfalls. Across these cases, it’s evident that

success is not determined by the software chosen (all these

cases involved reputable software) but by the execution of the

implementation. Process and methodology trump product.

While methodology selection is a crucial strategic

decision, evolving technological trends are also reshaping the

way organizations approach enterprise software

implementation.

 Future Outlook:

The rise of enterprise software implementation is an

evolving practice. Modern trends suggest that implementations
are becoming faster and more modular. The rise of cloud-based

enterprise software solutions (Cloud enterprise software, SaaS

CRM like Salesforce) changes some dynamics: technical

infrastructure work is reduced, and there is a greater emphasis

on configuration over heavy customization. This can shorten

implementation times, but core challenges remain similar – you

still need to migrate data, integrate applications, train users, etc.

Cloud deployments do enable more iterative rollouts (features

can be enabled progressively) and often encourage the adoption

of standard best practices (since SaaS is less customizable than

on premise). Our review’s insights remain highly relevant in

cloud contexts, even though the technical failure modes might
shift (e.g., integration via APIs instead of on premise

middleware).

 Additionally, Emerging Technologies are Influencing

Implementations. For Example:

 Low-code/No-code platforms facilitate quicker

development of custom extensions without requiring deep

programming skills. This potential empowerment of

business users to create solutions can improve adoption but

also necessitates governance to avoid sprawl.

 Artificial Intelligence (AI) and Machine Learning (ML)
are being integrated into enterprise software to enhance

analytics and automation (e.g., AI-driven forecasting in

SCM). Implementing these advanced capabilities requires

new skills and careful data quality management and model

training. Implementation projects may now include an AI

workstream (for example, training an ML model on

historical data to embed in the enterprise software for

decision support), which adds to complexity.

 Blockchain and IoT integration are on the horizon for

supply chain and asset management systems. They

introduce additional integration points and data streams that
implementation teams must manage (e.g., connecting IoT

sensor data to an enterprise software maintenance module).

 Remote and hybrid work models (accelerated by recent

global events) mean that implementations often occur with

distributed teams and end users, which places a premium on

digital collaboration tools and may affect change

management (how do you train users remotely effectively,

how to maintain engagement?). Enterprise software

systems are being optimized for remote access and

collaboration, which could be an added objective in

implementation.
 Despite these technology shifts, successful enterprise

software implementation's core remains in disciplined

project execution and people management. Future studies

and industry experience will likely continue to emphasize

agility, user-centric design, and continual learning.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3406

One foreseeable change in implementation methodology

is the increasing use of DevOps practices for enterprise

software release applications—treating configuration and

deployment with automated pipelines, enabling more frequent

releases to production (perhaps even continuous delivery for

enterprise software updates). This would further blur the lines

between implementation and continuous improvement, making

enterprise software more of an ongoing evolution than a one-
time project. Organizations adopting such approaches will need

to carry forward the lessons of initial implementation into a

continuous enhancement mode, maintaining strong governance

and engagement with business stakeholders to prioritize and

roll out new features.

In conclusion, implementing ERP, CRM, SCM, or any

large enterprise software system is a challenging journey that

can be navigated successfully with the right approach. By

adhering to proven project management methodologies

(adapted as necessary), thoroughly engaging stakeholders,

proactively addressing technical and organizational challenges,
and maintaining focus on business goals, organizations can

dramatically improve their odds of implementation success.

The stakes are high – impacting core business operations and

competitive capabilities – but so are the rewards of a well-

implemented system: streamlined processes, better information

for decision-making, and a platform for growth and innovation.

As this review has shown, both research and practice provide a

wealth of guidance to increase the likelihood that an enterprise

software implementation will not only go live but also deliver

lasting value and form a foundation for the enterprise software's

future in an increasingly digital and data-driven world.

REFERENCES

[1]. F. Carton, F. Adam, and D. Sammon, "Project

management: a case study of a successful enterprise

software implementation," International Journal of

Managing Projects in Business, vol. 1, no. 1, pp. 106-

124, 2008.

[2]. U. M. R. Ulisi, "A comprehensive process guide to

enterprise software implementation and its challenges,"

International Journal of Computer Sciences and

Engineering, vol. 13, no. 2, pp. 78-85, 2025.
[3]. Scrum Inc., "Successful enterprise software

implementation case study: Schlumberger and Scrum

Inc.," White paper, 2019.

[4]. FinanSys, "Failed enterprise software implementation:

The Hershey’s case study," Blog post, 2025.

[5]. Sunrise Technologies, "Waterfall or Agile deployment

for Dynamics 365 – which is best for you?," Blog post,

2025.

[6]. S. Gupta, "Critical success factors for enterprise

software implementation," TechTimes, Feb. 23, 2025.

[7]. T. H. Davenport, "Putting the enterprise into the
enterprise system," Harvard Business Review, vol. 76,

no. 4, pp. 121-131, 1998.

[8]. M. W. Pelphrey, Directing the ERP Implementation: A

Best Practice Guide to Avoiding Program Failure Traps

While Tuning System Performance, Boca Raton, FL:

CRC Press, 2012.

[9]. T. F. Wallace and M. H. Kremzar, ERP: Making It

Happen – The Implementers' Guide to Success with

Enterprise Resource Planning, New York: Wiley, 2001.

[10]. M. Bradford, Modern ERP: Select, Implement, and Use

Today's Advanced Business Systems, 3rd ed., Boston:

Flat World Knowledge, 2015.

[11]. S. Aloini, R. Dulmin, and V. Mininno, "Risk

management in ERP project introduction: Review of the
literature," Information and Management, vol. 44, no. 6,

pp. 547-567, 2007.

[12]. J. Esteves and J. Pastor, "Enterprise resource planning

systems research: An annotated bibliography,"

Communications of the Association for Information

Systems, vol. 7, no. 1, pp. 1-52, 2001.

[13]. M. Sumner, "Critical success factors in enterprise wide

information management systems projects,"

Proceedings of the Americas Conference on

Information Systems (AMCIS), pp. 232-234, 1999.

[14]. M. L. Markus and C. Tanis, "The enterprise systems

experience – from adoption to success," in Framing the
Domains of IT Management, Cincinnati, OH: Pinnaflex

Educational Resources, 2000, pp. 173-207.

[15]. T. Somers and K. Nelson, "The impact of critical

success factors across the stages of enterprise resource

planning implementations," Proceedings of the 34th

Hawaii International Conference on System Sciences,

pp. 1-10, 2001.

[16]. D. Gefen and C. M. Ridings, "Implementation team

responsiveness and user evaluation of customer

relationship management: A quasi-experimental design

study of social exchange theory," Journal of
Management Information Systems, vol. 19, no. 1, pp.

47-69, 2002.

[17]. L. Shang and P. B. Seddon, "Assessing and managing

the benefits of enterprise systems: The business

manager’s perspective," Information Systems Journal,

vol. 12, no. 4, pp. 271-299, 2002.

[18]. N. Berente, K. Lyytinen, and Y. Yoo, "Institutional

contradictions and loose coupling: Post-implementation

of NASA's enterprise information system," Information

Systems Research, vol. 20, no. 3, pp. 376-396, 2009.

[19]. P. Bingi, M. K. Sharma, and J. K. Godla, "Critical issues

affecting an ERP implementation," Information
Systems Management, vol. 16, no. 3, pp. 7-14, 1999.

[20]. R. K. Srivastava and J. S. Soni, "ERP implementation:

An Indian experience," Journal of Advances in

Management Research, vol. 3, no. 1, pp. 75-84, 2006.

[21]. K. Holland and C. Light, "A critical success factors

model for ERP implementation," IEEE Software, vol.

16, no. 3, pp. 30-36, 1999.

[22]. R. Parr and D. Shanks, "A model of ERP project

implementation," Journal of Information Technology,

vol. 15, no. 4, pp. 289-303, 2000.

[23]. S. Nah, J. Lau, and J. Kuang, "Critical factors for
successful implementation of enterprise systems,"

Business Process Management Journal, vol. 7, no. 3, pp.

285-296, 2001.

[24]. D. Avison, F. G. G. Fitzgerald, P. Powell, and R. T.

Wilson, "Issues in sourcing ERP software applications,"

European Journal of Information Systems, vol. 10, no.

1, pp. 1-15, 2001.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr2189

IJISRT25APR2189 www.ijisrt.com 3407

[25]. C. Bradley and M. Lee, "ERP training and education:

The missing link in ERP implementation," Proceedings

of the 2007 ACM SIGMIS CPR Conference on

Computer Personnel Research, pp. 125-129, 2007.

[26]. Y. Xu, "Enterprise systems: State-of-the-art and future

trends," Industrial Management & Data Systems, vol.

111, no. 1, pp. 4-17, 2011.

https://doi.org/10.38124/ijisrt/25apr2189
http://www.ijisrt.com/

	I. INTRODUCTION
	II. LITERATURE REVIEW OF ENTERPRISE SOFTWARE IMPLEMENTATION
	 Overview on Enterprise Systems and their Implementation Lifecycle
	 Implementation Phases
	 Requirement Gathering Techniques
	 Change Management and user Adoption
	 Common Implementation Challenges
	 Critical Success Factors for Implementation

	III. IMPLEMENTATION METHODOLOGIES: WATERFALL, AGILE, AND HYBRID APPROACHES
	 Waterfall Methodology
	 Agile Methodologies
	 Hybrid Methodology

	IV. CASE STUDIES FOR ENTERPRISE SOFTWARE IMPLEMENTATION
	V. CONCLUSION
	REFERENCES

