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Abstract: Medical image fusion is to synthesize multiple medical images from single or different imaging devices. This 

paper aims to improve imaging quality with accurate preserving for accurate diagnosis and treatment. This work plays an 

important role in the fields of surgical navigation, routine staging, and radio-therapy planning of malignant disease. 

Nowadays, computerized tomography (CT), magnetic resonance imaging (MRI), single-photo emission computed 

tomography (SPECT) modalities, and positron emission tomography (PET) are focused using medical image fusion. Bones 

and implants are clearly reflected by CT Image. High-resolution anatomical details for soft tissues are recorded using 

MRL images. However, the MRI image is not sensitive to the diagnosis of fractures compared to CT image. SPECT image 

is utilized to study the blood flow of tissues and organs by nuclear imaging technique. Our proposed work is Multi-Modal 

Based Medical Image fusion for directly learning image features from original images. Medical image fusion is a powerful 

tool that enhances the clinical value of individual imaging modalities, leading to better patient outcomes. As imaging 

technology advances and computational techniques evolve, the role of image fusion in modern medicine continues to grow. 
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I. INTRODUCTION 

 

Medical Image Fusion refers to the process of 

combining information from multiple medical images, 

typically from different imaging modalities, to create a 

single composite image that provides a more 

comprehensive view of the anatomy or pathology. This 

fusion can help to improve diagnostic accuracy, treatment 

planning, and overall patient care. The common Imaging 
Modalities used in fusion are CT (Computed 

Tomography): Provides detailed cross-sectional images of 

the body’s internal structures, offering high spatial 

resolution but limited soft tissue contrast.MRI (Magnetic 

Resonance Imaging): Offers superior soft tissue contrast, 

particularly useful for imaging the brain, spinal cord, and 

muscles, but with lower spatial resolution compared to 

CT.PET (Positron Emission Tomography): Provides 

functional information about metabolic activity and tissue 

function, commonly used for detecting cancer. SPECT 

(Single Photon Emission Computed Tomography): 
Similar to PET, but uses different tracers to provide 

functional information about organs and tissues. 

Ultrasound: Provides real-time imaging and is used for 

soft tissues, including during procedures like biopsies. 

The main benefits of Medical Image Fusion are Improved 

Diagnosis: Combining the anatomical detail from 

CT/MRI with the functional or metabolic data from 

PET/SPECT can lead to better understanding of the 

disease state. Enhanced Visualization: Increases the 

clarity and understanding of complex or ambiguous 

images, aiding clinicians in making more informed 

decisions. Precise Treatment Planning: In radiation 

therapy, image fusion helps accurately plan the targeting 

of tumors while minimizing exposure to surrounding 
healthy tissue. Surgical Planning and Navigation:[3] 

Provides 3D reconstructions that help in planning 

complex surgeries, like brain surgery or organ 

transplantation. The main techniques for Medical Image 

Fusion are Intensity-Based Fusion: Directly combines 

pixel intensities from different images. This method is 

often used in simple fusion tasks where the images are 

aligned spatially[5]. Feature-Based Fusion: Focuses on 

aligning specific features (e.g., edges, points, or contours) 

from the images before combining them. This technique 

is more robust in cases where the images may not align 
perfectly. Transform-Based Fusion: Uses transformations 

(such as rigid or non-rigid registration) to align images 

from different modalities before merging them into one 

composite image. Wavelet Transform: A more advanced 

technique that breaks down images into multiple 
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frequency components, which can then be combined at 

different scales for improved fusion. Deep Learning 

Approaches: Recent advancements in artificial 

intelligence and deep learning are being applied to image 

fusion, where convolutional neural networks (CNNs) or 

generative adversarial networks (GANs) are used to fuse 

images in a way that preserves important anatomical and 

functional details. 
 

II. RELATED WORK 

 

Medical image fusion using deep learning has 

revolutionized the ability to combine multiple imaging 

modalities, enabling the creation of high-quality fused 

images that provide comprehensive structural and 

functional information. This integration is crucial for 

diagnosis, treatment planning, and monitoring of diseases. 

Here are some of the main deep learning models and 

techniques applied in medical image fusion. 

 
 Convolutional Neural Networks (Cnns):  

CNNs are widely used in image fusion due to their 

power in extracting spatial features. In medical image 

fusion[4], CNNs help capture intricate details from 

different modalities, such as MRI and CT.  

 

 Single-Scale CNNs:  

These networks can be used to learn fusion rules and 

extract features at a single resolution, applying them 

across both modalities to create a fused image. 

 
 Multi-Scale CNNs:  

Multi-scale approaches capture details at different 

resolutions, which helps retain both high-frequency and 

low-frequency information. This is particularly useful in 

applications where different modalities, such as PET and 

CT, need to be merged to combine functional and 

anatomical details. 

 

 Residual Cnns:  

Using residual connections within CNNs, these 

networks can preserve critical features and retain essential 

information from each modality, reducing the risk of 
information loss during fusion. 

 

 Generative Adversarial Networks (Gans) 

GANs are a powerful tool in image synthesis and 

fusion, as they consist of a generator that creates fused 

images and a discriminator that learns to differentiate real 

and fused images, making the fused images more realistic 

and informative. 

 

 

 Fusiongan:  
This model is specifically tailored for image fusion. 

The generator combines multi-modality inputs, while the 

discriminator evaluates the fused image quality, guiding 

the generator to preserve critical information. 

 

 

 

 Conditional GANs (cGANs):  

These GANs use specific inputs as conditions to 

generate a fused output, allowing controlled fusion of 

images. For instance, an MRI can conditionally guide the 

fusion to focus on soft tissue, while a CT image 

emphasizes bone structure. 

 

 Cyclegan:  
CycleGANs can perform fusion when paired data 

(like MRI and CT scans of the same patient) are 

unavailable. By learning mappings between modalities, 

CycleGANs help in cross-modality translation while 

retaining the key details of each input. 

 

 Auto Encoders:  

Auto encoders, which are designed to learn compact 

representations of data, are often used in image fusion 

because they can reduce complex images to essential 

features and then reconstruct a fused image. 

 
 Stacked Auto encoders:  

These models stack multiple layers of encoders and 

decoders, learning low-dimensional representations from 

different modalities, which are then combined to form a 

comprehensive image. 

 

 Variational Auto Encoders (Vaes):  

By introducing a probabilistic layer, VAEs can 

capture uncertainty in the fused output. This is useful in 

cases where images have noise or missing information, 

such as ultrasound and MRI fusion, where ultrasound 
may lack detail or contain artifacts [10]. 

 

 Deep Feature Encoders:  

These specialized autoencoders focus on extracting 

deep features from each modality, combining them in a 

way that enhances relevant details in the fused image. 

 

 Attention Mechanisms:  

Attention mechanisms improve fusion quality by 

allowing models to selectively focus on important regions 

within each modality, preserving the critical features in 

the fused image. 
 

 Self-Attention Networks:  

Self-attention allows the model to focus on relevant 

regions in each image, enhancing fusion in areas with 

high clinical interest, such as tumor sites in brain MRI 

and PET fusion. 

 

 Cross-Modality Attention:  

In cross-modality attention, features from each 

modality guide the network to emphasize areas of 

interest. For example, in MRI-PET fusion, the model can 
learn to emphasize functional areas from PET while 

highlighting structural areas in MRI. 

 

 Transformer-Based Attention: 

 Transformer models, which are built around 

attention mechanisms, can be used for fusion by focusing 

on long-range dependencies within the image data, 
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allowing for better contextual understanding of multi-

modal information. 

 

 Hybrid Deep Learning Architectures: 

 Combining different deep learning models allows 

for improved feature extraction and fusion capabilities. 

 

 Cnn-Rnn Architectures: 
 This hybrid model combines CNNs for spatial 

feature extraction with RNNs (recurrent neural networks) 

to capture temporal changes or context in dynamic 

imaging, such as fusing real-time ultrasound with static 

MRI. 

 

 Cnn-Transformer Models: 

 Combining CNNs’ spatial feature extraction with 

transformers’ ability to model long-range dependencies 

has proven effective in high-resolution fusion tasks, such 

as combining 3D MRI and PET images for detailed tumor 

characterization. 
 

 GAN with Attention: 

 Adding attention layers to GANs can enhance their 

fusion abilities by helping the generator focus on 

important regions from each modality, especially in 

applications like fusing high-resolution MRI and PET for 

better visualization of brain structures. 

 

 Multi-Modal Feature Extraction Networks 

Multi-modal feature extraction networks use 

separate branches to extract specialized features from 
each modality before combining them, preserving each 

modality’s unique attributes. 

 

 Feature Fusion Networks:  

These networks apply different branches for each 

modality, which are later merged through fusion layers. 

This architecture is particularly useful for modalities with 

stark differences, like fusing MRI and CT, where MRI 

provides soft tissue contrast and CT highlights bone 

structure. 

 

 Deep Fusion Modules: 
 Deep fusion modules integrate feature maps from 

each modality at multiple layers within the network. For 

example, in fusing CT and PET for oncology, deep fusion 

modules can repeatedly merge and refine feature maps, 

producing high-quality fused outputs that retain essential 

functional and structural information. 

  

 

 Self Supervised Learning : 

 Self-supervised learning is an effective way to train 

fusion models with minimal labeled data, which can be 
advantageous in medical imaging, where labeled datasets 

are often scarce. 

 

 Contrastive Learning: 

 In contrastive learning, pairs of similar and 

dissimilar images are used, where pairs from the same 

modality are marked as similar, and different modality 

pairs are marked as dissimilar. This enables the model to 

learn significant features that can later enhance fusion 

tasks. 

 

 Pretext Tasks: 

 Tasks like image rotation prediction or image patch 

jigsaw puzzles enable the model to learn robust 

representations without explicit labels. Once trained on 
these tasks, models can be fine-tuned for fusion to 

leverage learned spatial relationships. The Applications of 

Deep Learning in Medical Image Fusion are Deep 

learning-based image fusion has found applications across 

various clinical areas, including: 

 

 Neuroscience: 

 Fusion of MRI and PET for brain imaging provides 

detailed views of brain structures alongside functional 

activity, helping with disease localization and assessment 

of neurological disorders like Alzheimer’s and tumors. 

 
 Oncology: 

 Fusing CT and PET images enables precise tumor 

localization, staging, and monitoring, allowing clinicians 

to assess structural and metabolic data concurrently. 

 

 Cardiology: 

 Combining real-time ultrasound with MRI or CT 

can help visualize cardiac motion and structure 

simultaneously, aiding in the diagnosis and treatment of 

heart diseases. 

 
 Orthopedics: 

 Fusing MRI and CT images provides a detailed 

view of bone and soft tissue, which can be critical for pre-

surgical planning and treatment of musculoskeletal 

injuries. 

 

III. PROPOSED WORK 

 

In our proposed work deep learning has significantly 

advanced medical image fusion by creating high-quality, 

informative fused images from different modalities. 

These methods allow for a more holistic understanding of 
complex medical data and are poised to play an 

increasingly prominent role in personalized medicine, 

diagnostics, and treatment planning. Multi-modal feature 

extraction networks for medical image fusion utilize 

distinct feature extraction layers or "branches" for each 

imaging modality. Each branch is specifically trained to 

capture important features unique to that modality, such 

as high-contrast areas in MRI for soft tissue or high-

intensity regions in PET for metabolic activity. Once 

features from each modality are extracted, they are fused 

through a series of fusion layers that combine the 
extracted information to create a single, comprehensive 

output image. The Key Components of Multi-Modal 

Feature Extraction Networks are Feature Extraction 

Branches: Each modality (e.g., MRI, CT, PET) has a 

dedicated branch in the network, which processes the 

input image and extracts modality-specific features. For 

instance: An MRI branch could focus on soft tissue and 
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anatomical details. A CT branch could emphasize bone 

structures and high-contrast areas. A PET branch might 

highlight regions with high metabolic activity. Feature 

Fusion Layers: After feature extraction, fusion layers 

combine features from each modality. Fusion techniques 

may include concatenation, summation, or more complex 

strategies like attention-based weighting or learned fusion 

strategies. Multi-Scale Feature Integration: Many 
networks include multi-scale fusion, where feature maps 

from each modality are fused at different levels of 

granularity, enabling the final output to retain both high-

level (contextual) and low-level (fine-grained) details. 

Output Layer: The fused features are passed through a 

final output layer to create a comprehensive fused image 

that provides a clearer representation of the combined 

information. 

 

 Input Images 

 

 MRI Image: 
 High spatial resolution, highlighting soft tissue 

structures. 

 

 PET Image:  

Lower spatial resolution, but highlights regions with 

high metabolic activity (e.g., potential tumor areas). 

 

 Feature Extraction Branches 

 

 MRI Branch:  

Processes the MRI input through several 
convolutional layers, extracting features related to 

anatomical structures. 

 

 PET Branch:  

Processes the PET input through its convolutional 

layers, emphasizing areas with metabolic activity. 

 

 Feature Fusion 

 

 Concatenation Fusion:  

The extracted features from the MRI and PET 
branches are concatenated to form a joint feature map. 

 

 

 

 Attention-Based Fusion:  

An attention mechanism weighs features from each 

modality, emphasizing PET data in regions with high 

metabolic activity and MRI features in regions with 

detailed anatomy. 

 

 Multi-Scale Fusion 

Fused feature maps are merged at different 
resolutions, allowing the network to combine both high-

resolution structural and functional details into a single 

output. 

 

 

 

 

 Output Layer 

A final convolutional layer processes the fused 

features to produce a single fused image, retaining 

essential information from both MRI and PET. 

 

The output of a multi-modal feature extraction 

network for MRI and PET fusion would be a fused image 

that provides the following insights: 
 

 Enhanced Anatomical Detail:  

Retains the soft tissue detail from MRI. 

 

 Metabolic Hotspots:  

Clearly highlights regions of high metabolic activity 

from PET, which might suggest areas of concern such as 

tumors. 

 

 Visual Representation of Sample Output 

 

 MRI Image (Input):  
Shows clear soft tissue structures, with limited 

functional data. 

 

 PET Image (Input):  

Displays regions of high metabolic activity but lacks 

structural clarity. 

 

 Fused Image (Output):  

Combines the anatomical detail from MRI with the 

functional hotspots from PET, providing a single, clear 

image that highlights potential tumor locations with 
accurate anatomical context. 

 

In practice, such fused outputs are highly beneficial 

in clinical settings, as they allow clinicians to see 

structural and functional data within a single image, 

enhancing diagnostic accuracy and aiding in treatment 

planning. 

 

For a multi-modal image fusion process, here’s what 

typical input images might look like for MRI and PET 

scans of the brain: 
 

 MRI Image (Input): 

 

 Description:  

This input image is grayscale, showing high-

resolution structural details of the brain. There is a clear 

differentiation between gray matter, white matter, and 

cerebrospinal fluid (CSF) spaces. It provides excellent 

anatomical information but lacks functional data, which is 

where the PET scan becomes valuable. 

 

 Characteristics:  

High spatial resolution, excellent for observing 

tissue contrasts but lacks metabolic information. 
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 PET Image (Input): 

 

 Description:  

The PET scan is usually in color, often with warm 

colors (e.g., reds,    yellows) representing areas of high 

metabolic activity, which can indicate regions of 

increased glucose uptake—often associated with tumor 

activity or other areas of interest. 
 

 Characteristics:  

Lower spatial resolution compared to MRI, but 

highlights functional metabolic processes in the brain. 

 

MRI – IMAGES 

 
 

PET IMAGES 

 
Fig 1 Input Image 

 

These two inputs as shown in figure 1, with MRI 

providing structural clarity and PET highlighting 

functional hotspots, are then processed by the multi-

modal feature extraction network. This fusion provides 

clinicians with an enhanced single output image 

combining both types of data, assisting in diagnosis and 

treatment planning. Here are sample input images 
typically used in multi-modal medical image fusion. The 

MRI image is in grayscale, showing detailed anatomical 

structures, while the PET image displays functional 

metabolic activity highlighted in warm colors, ideal for 

combining structural and functional insights in a fused 

output. 

 
Fig 2 Output Image 

The fused medical image as shown in figure 2  

combining MRI and PET data. It displays clear 

anatomical structures from the MRI with PET's metabolic 

activity areas overlaid, providing a comprehensive view 

often used in diagnostic imaging to locate and assess 

areas of concern such as tumors. 

 

IV. CONCLUSION 

 

Image Fusion is an essential technique to combine 

the input received from various imaging modality .  In 

this work, Brin images are taken as a input for 

computation. MRI images and PET images are given as 

input for the Machine learning techniques. Machine 

learning techniques with various kernel function are 

applied and the suitable for Gaussian kernel has been 

concluded for this fusion technique due to nonlinear data 

points.   
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