
Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr695

IJISRT25APR695 www.ijisrt.com 1797

AI Smart Real Time Code Autocompletion,

Error Fixing, Code Conversion and

Optimization-Fixerbot

Drishya P1; Sheerin Farjana M2; Jagath M D3; Dinesh M4

1Assistant Professor, CSE Department, SNS College of Engineering, Coimbatore
2IV year CSE, SNS College of Engineering, Coimbatore
3IV year CSE, SNS College of Engineering, Coimbatore
4IV year CSE, SNS College of Engineering, Coimbatore

Publication Date: 2025/04/30

Abstract: As software development continues to evolve, developers are increasingly relying on advanced tools to enhance

their coding efficiency. One such tool is the AI-powered autocompletion system, which helps to speed up coding by

predicting and suggesting code snippets in real-time. While existing autocompletion tools offer basic suggestions, they often

lack accuracy, context-awareness, and the ability to suggest meaningful optimizations. In addition, error detection and

fixing, along with performance optimization, are crucial aspects of efficient software development. Developers often spend

a significant amount of time identifying and correcting errors in their code, which can be tedious and error-prone. This

project proposes an AI Smart Code Autocompletion, Error Fixing, and Optimization tool designed to significantly improve

developer productivity by addressing these challenges. The tool leverages advanced machine learning algorithms and

natural language processing to offer highly accurate and context-aware code suggestions, reducing the need for manual

coding efforts. It goes beyond basic autocompletion by providing error detection and real-time error fixing, helping

developers resolve issues before they impact the development process. Moreover, the tool incorporates performance

optimization techniques, ensuring that suggested code not only works correctly but is also efficient and optimized for

better performance. With features such as intelligent autocompletion, automatic error fixing, and optimization suggestions,

this tool streamlines the coding process and enhances software development productivity. The system supports multiple

programming languages, offering flexibility and adaptability for developers working across different coding environments.

It also provides a comprehensive analysis of the code, ensuring logical consistency and robustness while optimizing

performance. By reducing coding time, minimizing errors, and improving the efficiency of the code, this AI-powered tool

enables developers to focus on more critical tasks, resulting in a more effective and productive development cycle.

Keywords: AI-Powered Autocompletion, Code Optimization, Error Fixing, Machine Learning, Software Development Productivity,

Context-Aware Suggestions, Intelligent Coding, Performance Optimization, Real-Time Error Detection, Programming Languages,

Code Analysis, Logical Consistency, Error Resolution, Developer Tools, Automated Coding Assistance.

How to Cite: Drishya P; Sheerin Farjana M; Jagath M D; Dinesh M (2025). AI Smart Real Time Code Autocompletion, Error

Fixing, Code Conversion and Optimization-Fixerbot. International Journal of Innovative Science and Research Technology,

10(4), 1797-1803. https://doi.org/10.38124/ijisrt/25apr695

I. INTRODUCTION

In the ever-evolving world of software development,

developers are under constant pressure to write clean,

efficient, and bug-free code while meeting tight deadlines.

With the growing complexity of programming languages

and development frameworks, managing syntax errors,

logic flaws, and performance optimization becomes

increasingly challenging. While traditional development

tools provide some assistance, they often fail to offer the

level of intelligence and automation needed to streamline

the coding process and reduce manual effort. The result is a

development cycle that is prone to errors, inefficiencies,

and slower project completion times. To address these
challenges, the AI Smart Code Autocompletion, Error

Fixing, and Optimization project introduces an intelligent,

AI-powered tool that significantly enhances the coding

experience. This tool combines real-time autocompletion,

error detection, and optimization into one seamless

platform, empowering developers to write code faster, with

fewer mistakes, and greater performance. The

autocompletion feature predicts and suggests code snippets

as the developer types, saving valuable time and reducing

the risk of syntax errors. These suggestions are context-

aware, ensuring they align with the developer's intentions

and coding style. Beyond simple autocompletion, the tool

https://doi.org/10.38124/ijisrt/25apr695
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25apr695

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr695

IJISRT25APR695 www.ijisrt.com 1798

incorporates advanced error detection capabilities. It

continuously monitors the code for bugs and

inconsistencies, providing immediate suggestions for fixing

errors as they arise. This feature eliminates the need for

developers to spend excessive time debugging, allowing

them to focus on higher-level tasks and logic development.

The real-time feedback ensures that issues are identified

and corrected early in the development process, leading to
more stable and reliable code. Moreover, the tool offers

performance optimization suggestions, analyzing the code

for inefficiencies. It evaluates algorithms, data structures,

and control flow, providing recommendations to improve

runtime efficiency, reduce resource consumption, and

enhance overall application performance. By automating

these tasks, the tool helps developers write more efficient

code and avoid common performance pitfalls. With this

integrated approach to coding assistance, the tool

transforms the development process, reducing errors,

improving productivity, and ultimately delivering high-

quality software solutions in less time.

II. LITERATURE SURVEY

 Ayman Odeh, Nada Odeh, Abdul Salam Mohammed

2024 “A Comparative Review of AI Techniques for

Automated Code Generation in Software Development:

Advancements, Challenges, and directions”

In software development, Artificial Intelligence (AI) is

increasingly transforming the process of translating

software requirements into functional code, especially

during the implementation phase. This phase traditionally
requires significant manual effort, but AI-powered

Automated Code Generation (ACG) techniques can

streamline the process, reducing both time and errors,

thereby boosting productivity. This paper provides a

comprehensive review of various AI techniques used for

ACG, examining both traditional and advanced methods. It

highlights the current state of AI in ACG and the challenges

developers face, such as AI’s limitations in understanding

complex requirements and ensuring the correctness and

efficiency of generated code. The review evaluates several

AI algorithms, including machine learning, natural

language processing, and deep learning. The effectiveness
of these methods is assessed using criteria like accuracy,

efficiency, scalability, correctness, and generalization.

These metrics help measure the performance of AI in

different contexts, such as generating code for large

systems or handling diverse programming languages and

paradigms. The paper also explores the strengths and

weaknesses of these techniques, noting that while some

methods excel in automating basic tasks, they struggle with

more complex algorithms and context-specific logic. It

emphasizes the need for further advancements to improve

AI’s reliability and adaptability in generating production-
quality code. Finally, the paper discusses potential future

directions, proposing more sophisticated AI models to

handle complex systems and the development of

customizable, transparent tools for better control over

generated code. AI-based ACG tools are expected to

revolutionize software development, making it more

efficient and accessible for developers at all levels.

 Junghyun Kim, Kyuman Lee, and Sanghyun Choi, 2020

Machine Learning-Based Code Auto-Completion

Implementation for Firmware Developers

The transition from statistical methods to machine

learning-based approaches in natural language processing,

aided by artificial intelligence, has influenced many fields,

including software engineering. A key application of this

shift is the development of deep learning-based language
models to help software engineers write code more

efficiently. While many research groups have attempted to

create code auto-completion tools, certain challenges have

necessitated in-house solutions. For instance, security-

sensitive companies like Samsung Electronics may avoid

commercial tools due to the risk of source code leaks.

Moreover, commercial tools may not be ideal for specific

domains, such as SSD firmware development, where

predicting unique code patterns and styles is crucial. To

overcome these challenges, this research proposes a hybrid

approach that combines machine learning techniques with

advanced design methods to create a tailored code auto-
completion framework for firmware developers. The

system aims to enhance efficiency by predicting the next

code elements based on the developer's input. Sensitivity

analysis of the framework showed that deterministic design,

although structured, could reduce prediction accuracy by

producing unexpected results. On the other hand, the

probabilistic design provides a list of potential next code

elements, allowing developers to select from reasonable

options. This improves prediction accuracy and overall

development speed. This approach seeks to provide a more

effective tool for firmware developers, optimizing the code-
writing process while ensuring the accuracy and relevance

of predictions, particularly in the domain of SSD firmware

development.

 By Yang Qianyi, 2021 Exact Evaluation of AI-

Generated Python Code: A Comparative Think around

over Energetic Programming Tasks

In afterward a long time, AI-based code colleagues

have finished up compelling gadgets in program

progression, updating code period and quality. Be that as it

may, their ampleness shifts, and understanding their

qualities and inadequacies is crucial for perfect utilize. This
consider evaluates the capabilities of four driving AI code

collaborators: GitHub Copilot, Microsoft Copilot, Tabnine,

and ChatGPT. The explore centers on whether the AI-

generated code is valuable, compelling, and practical, as

well as recognizing ranges for alter. Qianyi's consider

compares AI-generated code based on four key estimations:

rightness, cyclomatic complexity (McCabe complexity),

capability, and code assess. Rightness was measured by the

rate of error-free code; McCabe complexity assessed the

assistant complexity of the code; efficiency centered on

execution execution; and code gauge was based on the
number of lines made. The rebellious were attempted with a

standard set of 100 programming prompts for solid

comparison. The study's revelations allow a few bits of

information. GitHub Copilot fulfilled the most hoisted

rightness rate, making error-free code 42% of the time.

ChatGPT made the most complex code, with a McCabe

complexity score of 2.92, and additionally performed the

https://doi.org/10.38124/ijisrt/25apr695
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr695

IJISRT25APR695 www.ijisrt.com 1799

best in terms of efficiency. Tabnine conveyed the most brief

code, while GitHub Copilot and ChatGPT made the longest.

Qianyi concluded that AI-based code colleagues hold

extraordinary potential for making strides code time and

progression adequacy but are not in any case competent of

totally supplanting human engineers, especially for

complex errands. These disobedient are fruitful for less

troublesome coding assignments and monotonous shapes
but require help change to handle complex program

cleverly. The consider prescribes that overhauling

dependence organization and coordination the qualities of

unmistakable devices might through and through advance

the field.

 Ayman Odeh, Nada Odeh, “Exploring AI Innovations in

Automated Software Source Code Generation: Progress,

Hurdles, and Future Paths”

In today’s rapidly evolving software development

landscape, the need for fast, efficient, and high-quality code

generation has become a significant challenge. Automated
Software Source Code Generation (ASSCG) has emerged

as a promising solution to address this challenge, offering

benefits such as speed, accuracy, and scalability. This paper

examines the role of automated code generation in modern

software development, focusing on the transformative

potential of AI innovations and the challenges that

accompany its implementation. The research highlights the

critical role ASSCG plays in accelerating the development

process, reducing human error, and enabling developers to

focus on higher-level tasks. By leveraging AI technologies

such as deep learning and evolutionary algorithms, ASSCG
can enhance the efficiency and precision of code generation.

These AI-driven approaches optimize code generation by

learning from vast amounts of data and adapting to the

evolving needs of software projects. The paper also

identifies several hurdles that developers face in

implementing ASSCG, including the challenge of

maintaining code quality, ensuring compatibility across

programming languages, and integrating AI solutions into

existing development workflows. Furthermore, the study

emphasizes the need for continued research and

development to overcome these obstacles and unlock the

full potential of AI in automated code generation. Finally,
the paper explores future directions for ASSCG, suggesting

that advancements in machine learning models, improved

algorithms, and better integration with development tools

will play a pivotal role in shaping the future of automated

code generation. By addressing the challenges and

leveraging AI’s transformative capabilities, the field of

software development can achieve unprecedented levels of

efficiency and innovation.

 Tilen Hlis, Luka Cetina, Tina Beranic, Luka Pavlic

(2023) “Evaluating the Usability and Functionality of
Intelligent Source Code Completion Assistants: A

Comprehensive Review”

As artificial intelligence advances, intelligent source

code completion assistants have become more powerful,

addressing challenges that traditional assistants struggle

with. Conventional tools present suggestions in alphabetical

order, requiring developers to manually search for the most

relevant options. To overcome this limitation, AI-powered

assistants analyze code context and extract patterns from

related projects to provide more relevant suggestions. This

paper presents a systematic literature review of intelligent

code assistants, evaluating four prominent tools. GitHub

Copilot stood out for offering complete code suggestions,

marking a major advancement in assisting developers.

Despite these capabilities, a survey among developers
revealed mixed results. While intelligent assistants were

expected to be highly useful, feedback indicated usability

improvements are necessary. Interestingly, experienced

developers found these tools more beneficial than less

experienced ones. Additionally, the research uncovered a

surprisingly low net promoter score (NPS) for intelligent

assistants, indicating that their reception among developers

is less favorable than expected. This suggests that while AI-

driven assistants offer significant potential, their usability

and adoption remain key challenges. The study emphasizes

the need for further development and refinement to

improve these tools' usability. Enhancing user experience,
refining suggestion accuracy, and ensuring seamless

integration with development workflows will be crucial in

maximizing their effectiveness. In conclusion, while

intelligent assistants hold promise for improving source

code completion, they must become more user-friendly and

efficient, particularly for novice developers. Future

advancements in AI, better algorithms, and improved

interfaces will be essential for increasing their adoption and

effectiveness in modern software development.

 Juan Cruz-Benito, Sanjay Vishwakarma, Francisco
Martin-Fernandez, Ismael Faro (2021) “Automated

Source Code Time and Auto-Completion Utilizing

Significant Learning: Comparing and Looking at

Current Tongue Model-Related Approaches”

In afterward a long time, significant learning-based

tongue models have picked up thought for their capacity to

create human-like substance. A key application of these

models is in programming, where they empower code auto-

completion, period, and examining. In show disdain toward

of extending captivated, there is a require of observational

considers comparing particular significant learning

structures for programming-related assignments. This paper
analyzes diverse neural orchestrate models, tallying Typical

Stochastic Point Dive (ASGD) Weight-Dropped LSTMs

(AWD-LSTMs), AWD-Quasi-Recurrent Neural

Frameworks (QRNNs), and Transformer models, in

building lingo models for source code. Utilizing a Python

dataset for code period and mask-filling errands, the makers

evaluate these models with trade learning and unmistakable

tokenization strategies. The consider highlights execution

contrasts, qualities, and imprisonments of each plan, giving

bits of information into their real-world congruity.

Revelations reveal that while a few models surpass desires
in specific errands, others fight with capability and

accuracy in honest to goodness programming

circumstances. The think almost underscores the require for

development evaluation of significant learning-based

tongue models for computer program planning applications.

Additionally, gaps in methodology and commonsense

execution challenges are recognized, proposing that no

https://doi.org/10.38124/ijisrt/25apr695
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr695

IJISRT25APR695 www.ijisrt.com 1800

single illustrate rules over all errands. In conclusion, the

paper emphasizes the potential of significant learning for

computerized code period and auto-completion but in

addition highlights essential locales for upgrade. Future

movements in appear adequacy, precision, and flexibility

will be essential for making these systems more down to

earth in real-world programming errands. Empower ask

around and refinement are basic to move forward the
practicality of lingo models in program headway.

 Existing System:

The existing system of Fixer Bot, an AI-powered

Real-Time Code Autocompletion, Error Fixing, Code

Conversion, and Optimization tool, is designed to

streamline software development by automating various

coding tasks. It assists developers by predicting code,

fixing errors, converting code, and optimizing performance

across multiple programming languages such as Python,

Java, and C++. This automation reduces manual effort,

minimizes human error, and accelerates the coding process.
The Autocompletion feature analyzes real-time inputs and

provides context-aware suggestions to help developers

write code faster and with fewer mistakes. The Error Fixing

module detects syntax, logical, and runtime errors, offering

AI-driven corrections to enhance code quality. The Code

Conversion component translates code seamlessly between

different programming languages while maintaining logical

integrity and functionality. Additionally, the Optimization

module evaluates the written code, identifies inefficiencies,

eliminates redundancies, and suggests performance

improvements to ensure scalability and maintainability. By
integrating autocompletion, error detection, conversion, and

optimization, Fixer Bot provides a comprehensive AI-

driven development assistant. It enhances productivity,

ensures high-quality code, and supports best coding

practices, empowering developers to focus on building

efficient, secure, and optimized software solutions.

 Proposed Approach:

Fixer Bot is an AI-powered gadget sketched out to

move forward the computer program enhancement plan by

giving real-time code autocompletion, sagaciously botch

settling, reliable code change, and beneficial optimization.
Leveraging fabricated experiences, machine learning, and

characteristic lingo taking care of (NLP), Fixer Bot

computerizes complex coding errands, diminishes human

botches, advances code quality, and animates progression

workflows. One of Fixer Bot’s center highlights is real-time

code autocompletion, which predicts and prescribes critical

code pieces as originators sort. The AI appear analyzes the

setting, as of now composed code, and expand structure to

offer correct and adroitly proposals, making a contrast

originators compose code speedier while minimizing

sentence structure botches. The Bumble Settling module

recognizes and settle dialect structure, coherent, and

runtime botches utilizing AI-driven examination. By

leveraging significant learning and plan affirmation, Fixer

Bot recognizes potential issues in the code and proposes

therapeutic measures, checking best sharpens for advanced

code unflinching quality. It highlights hazardous zones and

gives context-aware clarifications to offer help engineers

get it and resolve botches capably. The Code Alter highlight
enables steady elucidation of code between various

programming lingos while keeping up steady consistency

and convenience. Fixer Bot utilizes an AI-based center

representation approach to special code method of

reasoning and layout it accurately to the sentence structure

of the target lingo. By determinedly planning on unending

datasets over diverse programming lingos, Fixer Bot

overhauls the precision and adequacy of code alter. The

Optimization module evaluates the composed code to

recognize inefficient viewpoints, overabundance operations,

and locales for execution improvement. By analyzing

coding plans, Fixer Bot proposes elective calculations,
predominant data structures, and refactoring methodologies

to make strides viability, coherence, and reasonability. It

ensures that the made code takes after best coding sharpens

and remains versatile for future alterations. Fixer Bot

additionally planning security examination by

distinguishing potential vulnerabilities such as SQL mixture,

cross-site scripting (XSS), and buffer surges. It gives

noteworthy bits of information, endorses secure coding

sharpens, and cautions engineers around potential threats to

progress application security. Sketched out for reliable

integration into well known IDEs, web stages, and browser
extensions, Fixer Bot gives an intuitively client interface

(UI) that grants engineers to get to its highlights effortlessly.

It offers real-time feedback, inline suggestions, and

examining offer assistance, making it an crucial AI-driven

collaborator for program creators. By leveraging advanced

AI and machine learning, Fixer Bot changes the way code

is composed, repaired, changed over, and optimized. It

streamlines the progression plan, advances code quality,

diminishes examining time, and updates computer program

security—empowering engineers to build viable, secure,

and high-performing applications.

The AI-Based Real-Time Code Autocompletion,

Bumble Settling, Code Change, and Optimization - Fixer

Bot utilize case chart talks to the interaction between

engineers and system functionalities. Key performing

specialists consolidate originators and the Fixer Bot system,

with utilize cases such as code autocompletion, botch area

and settling, code alter, and optimization. The system

shapes input code, analyzes botches, gives cleverly

suggestions, changes over between tongues, and optimizes

execution.

https://doi.org/10.38124/ijisrt/25apr695
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr695

IJISRT25APR695 www.ijisrt.com 1801

 Use Case Diagram:

Fig 1 Use Case Diagram

 List of Modules:

 Code Compiler

 Supports multiple programming languages with real-

time error detection.

 Provides instant feedback on compilation status and

execution results.

 Choose Language

 Allows selection of preferred programming language

before coding.

 Ensures syntax highlighting and language-specific

optimizations.

 Run:

 Executes code instantly with real-time output and error

detection.

 Displays execution time and debugging insights.

 Translate

 Converts code seamlessly between different

programming languages.

https://doi.org/10.38124/ijisrt/25apr695
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr695

IJISRT25APR695 www.ijisrt.com 1802

 Maintains logic and functionality while offering AI-

driven improvements.

 Debug

 Identifies syntax, logical, and runtime errors.

 Suggests AI-powered fixes and optimizations.

 Generate Code

 Automatically generates structured and optimized code

snippets.

 Provides AI-powered suggestions for boilerplate code

and functions.

 Console

 Offers an interactive environment for executing

commands.

 Displays runtime outputs, debugging logs, and variable
states.

 Flow Diagram:

Fig 2 Flow Diagram

https://doi.org/10.38124/ijisrt/25apr695
http://www.ijisrt.com/

Volume 10, Issue 4, April – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25apr695

IJISRT25APR695 www.ijisrt.com 1803

III. RESULT

The AI-Based Real-Time Code Autocompletion, Error

Fixing, Code Conversion, and Optimization system, Fixer

Bot, enhances coding efficiency by automating critical

development tasks. This AI-powered tool ensures accuracy,

speed, and seamless integration across multiple

programming languages, including Python, Java, and C++.
The Autocompletion feature predicts and suggests relevant

code snippets in real time, reducing manual effort and

improving productivity. Error Fixing identifies syntax,

logical, and runtime errors while providing AI-driven

corrections to enhance code quality. Code Conversion

enables seamless translation between different programming

languages, preserving logic and functionality to facilitate

cross-language development. Optimization analyzes the

written code, detects inefficiencies, and suggests

performance improvements, ensuring scalability and

maintainability. With its AI-driven analysis, Fixer Bot not

only detects issues but also provides intelligent
recommendations to improve structure, performance, and

security. It integrates with popular IDEs, offering real-time

feedback to developers. Additionally, its debugging

capabilities assist in identifying and resolving runtime errors

efficiently. Designed for scalability and continuous learning,

Fixer Bot evolves with advancements in AI, ensuring

ongoing improvements in code accuracy, security, and

performance. By integrating these features, Fixer Bot

transforms software development, making it faster, error-

free, and optimized for modern programming needs.

IV. CONCLUSION AND FUTURE WORK

In summary, the AI-Based Real-Time Code

Autocompletion, Error Fixing, Code Conversion, and

Optimization - Fixer Bot enhances software development by

leveraging advanced AI techniques. It streamlines coding

workflows, reduces human errors, and improves efficiency

through intelligent autocompletion, real-time error detection,

seamless code conversion, and automated optimization. By

integrating AI-driven solutions, Fixer Bot enhances

accessibility, accuracy, and reliability across multiple

programming languages and development environments.
The incorporation of AI-based coding assistance can

transform the way developers write, debug, and optimize

code, ensuring faster development cycles and improved

software quality. Future advancements may include

enhanced deep-learning models for contextual code

suggestions, adaptive learning from user preferences, and

real-time collaborative coding enhancements. Additionally,

improved security analysis features can further strengthen

code integrity, detecting vulnerabilities and preventing

security risks. By continuously optimizing these AI-driven

capabilities and integrating them with evolving technologies,
Fixer Bot can contribute to a more efficient, intelligent, and

secure coding environment. Implementing these innovations

on a larger scale will drive digital transformation in software

development, making coding more intuitive, accessible, and

optimized while maintaining high standards of performance,

security, and scalability.

REFERENCES

[1]. C. B. Kenrad Weiss, "A Language-Independent

Examination Encourage for Source Code," in

Fraunhofer- AISEC, Germany, 2022.

[2]. X.X.X.Z.Y. L. a. P. D. Store Fan, "Direct Code

Examination in the Al Time: An Indepth Examination

of the Concept, Work, and Potential of Brilliantly
Code Examination," in Unsavory crawly Collect,

China, 2023.

[3]. N.FR.1.1 M. Christie Thottam, "Brilliantly Python

Code Analyzer (IPCA)," Wide Journal of creative

examine contemplations (UCRT), pp. 1-11, 2024.

[4]. N.M.S.SI.L.R.Z.RFA.R.T.N.N. H. W. a. H. H.

Chongzhou Tooth, "Clearing Tongue Models for

Code Examination: Do LLMS Really Do Their

work?," around the world Journals, vol. 1, pp. 1-18,

Walk 2024.

[5]. David A. Plaisted, Source-to-source graph and

program building, Journal of Computer program
Organizing and Applications, 2013, 6, 30-40.

[6]. P.M.N.G. Ms. Naziya Shaikh, "Advance of midway

Appear up up for Source to Source Adjust," IOSR

Journal of Computer Engineering

[7]. Camacho, Kim Mens, APPAREIL: A instrument for

building Computerized Program Mediators Utilizing

Clarified Etymological businesses, Proc. 23rd

IEEE/ACM Around the world Conference on

Mechanized Program Building (ASE 2008), pp. 489-

490, 2008.

[8]. P. J. L. Wallis, Balanced Lingo Adjust and Its Put in
the Move to Ada, Proc. 1985 each year ACM SIG

Ada around the world conference on Ada (SIGAda

‘85), Vol. 5, No. 2, 1985, pp. 275-284.

[9]. David A. Plaisted, Source-to-source clarification and

computer program organizing, Journal of Program

Building and Applications, 2013, 6, 30-40.

https://doi.org/10.38124/ijisrt/25apr695
http://www.ijisrt.com/

	 Tilen Hlis, Luka Cetina, Tina Beranic, Luka Pavlic (2023) “Evaluating the Usability and Functionality of Intelligent Source Code Completion Assistants: A Comprehensive Review”
	 Juan Cruz-Benito, Sanjay Vishwakarma, Francisco Martin-Fernandez, Ismael Faro (2021) “Automated Source Code Time and Auto-Completion Utilizing Significant Learning: Comparing and Looking at Current Tongue Model-Related Approaches”
	 Existing System:
	 Code Compiler
	 Choose Language

