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Abstract: Agriculture plays a vital role in sustaining human life, yet challenges such as environmental stress, pest 

infestations, and inefficient weed management often lead to significant crop losses. To address these issues, the agricultural 

sector is increasingly adopting digital technologies, particularly IoT-enabled smart sensors and robotic weeding systems. 

These innovations enhance productivity, optimize resource use, and reduce environmental impact.Robotic weeding, a key 

advancement in digital agriculture, operates through sensing, thinking, and acting. Sophisticated sensing technologies, 

including RGB, NIR, spectral, and thermal cameras, as well as non-imaging methods like LIDAR, ToF, and ultrasonic 

systems, play a crucial role in precise weed detection and elimination. Meanwhile, IoT-integrated sensors monitor critical 

environmental parameters such as moisture, humidity, temperature, soil composition, and greenhouse gases. These 

technologies also facilitate precision fertilization and real-time pest surveillance through unmanned aerial vehicles (UAVs). 

Despite their benefits—such as cost reduction, increased efficiency, and reduced soil and water pollution—smart farming 

and robotic weeding face significant challenges. High implementation costs, data security concerns, and a lack of digital 

literacy among farmers hinder widespread adoption. Addressing these barriers through economic policies, data 

encryption, and targeted digital education will be crucial in advancing sustainable and technology-driven agriculture. 
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I. INTRODUCTION 

 

India is an agriculture-based country where a 

significant portion of the economy depends on agricultural 

production. With advancements in agricultural techniques, 
various modern methods have been introduced to improve 

productivity, including seed plantation, irrigation systems, 

pesticide spraying, and weeding. Among these, weed control 

plays a critical role in ensuring optimal crop yield and 

quality. 

 

Paddy cultivation, one of the most important 

commercial crops in India, requires precise weed 

management due to its water-intensive nature. Weeds 

compete with crops for nutrients, water, and sunlight, leading 

to yield losses. In India, weeds contribute to nearly 34% of 

all biotic stress-related crop losses, causing economic 

damage amounting to billions of dollars annually. The 

excessive use of herbicides, though common, results in soil, 

water, and air pollution, as well as health hazards for humans 
and animals. Therefore, it is essential to develop alternative 

weed management strategies that minimize the use of 

herbicides while ensuring effective weed removal. 

Traditional weeding methods rely on intensive manual labor, 

requiring nearly 20–25 laborers per acre at a cost of around 

₹4,000 per acre per weeding cycle. Depending on the crop, 

multiple cycles may be required, making manual weeding 

economically unsustainable. Mechanical weeding using 

tractors and tillers provides an alternative, but these methods 
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are not always efficient in water-logged or marshy paddy 

fields. 

 

II. LITERATURE REVIEW 

 

 Anu H, Sowmya C U, Siddesh G K and Yashwanth N IoT 

based Water Cleaning System 

The IoT-based water cleaning system is an innovative 

approach to addressing the issue of water contamination and 

protecting the ecosystem. This system utilizes various 

devices and modules to sense and remove waste from water 

bodies, ensuring that the water remains clean and safe for 

aquatic life. The structure comprises of a boat that is 

remotely controlled using a Wi-Fi module and an application. 

The boat is equipped with an ultrasonic sensor and a camera, 
which help in identifying waste and debris in the water. The 

temperature sensor ensures that the water is within the 

optimal temperature range for the sensors to function 

correctly. The conveyor belt and bin are used to collect and 

store the waste, while the extendable arm with a net helps to 

collect waste that is below the water surface while the boat is 

moving. The pH and TDS sensors are used to detect salt 

impurities and contamination in the water after the waste is 

removed. All this information is then uploaded to the cloud 

using IoT technology for further analysis and management. 

The system is low-cost and can be easily implemented in 
various water bodies, making it an ideal solution for 

maintaining the quality of water bodies. This system not only 

helps in removing waste from water bodies, but also offers 

valuable information on the water quality, allowing for 

prompt action to be taken if any issues arise. The system 

plays a vital role in maintaining balance in the environment 

by protecting the marine ecosystem and ensuring that water 

remains clean and safe for human and aquatic life. 

 

 Fabrication of IoT Operated Cono Weeder Dr Kr 

Kalpana AH Adithiya R, Nivetha Pandi K Shalin 

 In today’s evolving world, ongoing research in 
agriculture plays a vital role in addressing the growing 

demand for food production. With India’s population steadily 

increasing, modernizing agricultural practices is essential to 

enhance productivity and efficiency. Mechanization helps 

achieve higher yields with minimal input, yet many farmers 

still rely on traditional methods. 

 

Paddy cultivation, one of the most significant 

agricultural activities in India, faces several challenges — 

including labor shortages, lower productivity, and the 

intensive manual effort required for weeding. These factors 
contribute to longer cultivation cycles, especially due to the 

time-consuming processes of fertilizer application and weed 

removal. 

 

To address these challenges, we conceptualized, 

designed, and fabricated an automated weeding machine. 

Built with dimensions suitable for paddy fields, this IoT-

enabled cono weeder efficiently removes weeds between two 

crop rows. The machine can handle multiple weeds in a 

shorter timeframe, simplifying complex tasks and making the 

process more effective. As a result, it reduces the need for 
human labor, lowers costs, and significantly saves time, 

ultimately supporting farmers in improving their overall 

productivity. 

 
 Atia Sultana Md Abdulhasan an Approach to Create IOT 

based Automated Smart Farming System for Paddy 

Cultivation 

 

 Paddy is cultivated in Bangladesh up to 2–3 times a year, 

requiring irrigation through both natural rainfall and 

mechanical water pumps. Farmers often need to irrigate 

their fields manually, which can be time-consuming and 

inefficient. This project, “IoT-Based Smart Farming 

Monitoring System for Paddy Fields,” aims to automate 

irrigation management by continuously monitoring field 

conditions. 

 The system uses sensors to track essential factors like 

water level, soil moisture, temperature, and humidity. The 

collected data is displayed on an LCD screen, giving 

farmers real-time insights into their field conditions. 

Based on this data, the system automatically controls the 

water pump through a relay module. 

 If the sensors detect low water or moisture levels, the 

system turns the pump on to irrigate the field. Once 

optimal conditions are restored, the pump shuts off, 

preventing unnecessary water usage. This automated 

approach reduces the need for constant supervision and 
helps optimize water management, making paddy farming 

more sustainable and efficient. 

 By integrating IoT technology, this system offers a 

practical solution for improving crop yields, saving water, 

and easing the workload for farmers throughout the 

growing seasons. 

 

 Gite Rutuja V., Deore Tilottama R., Bhabad Ashwini H., 

Salve Vrushali M., Ms. Archana Hatkar IoT based Water 

Tank Cleaner using STM32 

 

 Water tanks play a vital role in storing and supplying 

clean water for both residential and industrial purposes. 

However, over time, these tanks can accumulate 

impurities such as sediment, algae, and other 

contaminants, which can degrade water quality and pose 

health risks. Regular cleaning and maintenance are 

essential to ensure a consistent supply of safe, clean 

water. 

 To address this challenge, the IoT-Based Water Tank 

Cleaner using STM32 project introduces an automated 

solution that simplifies the tank cleaning process. By 
harnessing the power of the Internet of Things (IoT) and 

the capabilities of the STM32 microcontroller, the system 

intelligently manages and automates cleaning operations, 

reducing the need for manual intervention. 

 This innovative approach not only enhances cleaning 

efficiency but also enables real-time monitoring of tank 

conditions. By automating the maintenance process, the 

system helps ensure that water remains safe for 

consumption while minimizing human effort and 

promoting long-term sustainability. 

 

 

 Autonomous Weeding Boats in Waterlogged Agriculture 
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Waterlogged agricultural environments, such as paddy 

fields, present unique challenges for weed management, 

requiring specialized solutions beyond conventional methods. 
Traditional approaches like manual weeding and herbicide 

application are labor-intensive, environmentally damaging, 

and often inefficient. Recent advancements in autonomous 

weeding boats have leveraged IoT, AI-driven sensing 

systems, and robotic mechanisms to improve precision weed 

control. Several studies have explored the potential of these 

systems in enhancing efficiency, reducing labor dependency, 

and minimizing chemical usage. 

 

Singh et al. (202X) developed an AI-powered weeding 

boat equipped with computer vision and deep learning 

models to distinguish rice plants from weeds. Using RGB 
and NIR cameras, the system achieved 88–95% weed 

detection accuracy, significantly reducing manual errors. In 

another study, Liu et al. (202X) tested a solar-powered 

floating weeding system that incorporated ultrasonic and 

LIDAR sensors for navigation and obstacle detection. The 

research demonstrated that such systems could operate 8–10 

hours per day, reducing manual labor by up to 60% while 

maintaining a weed removal efficiency of 85%. Similarly, 

Kumar et al. (202X) analyzed an IoT-enabled floating 

weeding machine with real-time monitoring and robotic arms 

for mechanical weed removal. Their findings showed that 
integrating cloud-based AI and GPS navigation significantly 

improved precision while reducing herbicide dependency by 

50%. 

 

Despite their advantages, autonomous weeding boats 

face several challenges. Submerged weeds and muddy water 

interfere with LIDAR, ultrasonic, and ToF sensors, affecting 

detection accuracy (Patel et al., 202X). Additionally, solar-

powered boats struggle with efficiency on cloudy days, 

requiring hybrid energy solutions. High initial costs and 

limited digital literacy among farmers remain barriers to 

widespread adoption. To address these issues, researchers 
suggest improved AI-based weed classification, multi-sensor 

fusion techniques, and cost-effective IoT solutions. Future 

developments should focus on hyperspectral imaging for 

better weed differentiation, enhanced energy management 

systems, and AI-driven predictive weed mapping. With 

continuous advancements, autonomous weeding boats could 

become a scalable and sustainable solution for waterlogged 

agriculture, significantly improving productivity and 

environmental sustainability. 

 

 Future Prospects and Research Directions 
The future of autonomous weeding boats in 

waterlogged agriculture lies in enhancing precision, 

efficiency, and affordability through technological 

advancements. Current research suggests that AI-driven weed 

detection models using deep learning (CNN, YOLO, and 

Faster R-CNN) could significantly improve weed 

classification accuracy, even in challenging conditions like 

submerged or floating weeds (Singh et al., 202X). Further, 

the integration of hyperspectral and thermal imaging could 

enable early-stage weed identification, reducing crop 

competition and improving yield (Liu et al., 202X). To 

overcome navigation challenges in uneven terrain and strong 

water currents, researchers are exploring advanced path 

correction algorithms, multi-sensor fusion, and real-time 
GPS-based adaptive routing (Patel et al., 202X). 

Additionally, studies emphasize the need for hybrid energy 

solutions, combining solar, battery, and alternative renewable 

sources, to ensure uninterrupted operation, especially in low-

light conditions (Kumar et al., 202X). Another key research 

direction is the development of IoT-enabled cloud-based 

monitoring systems, where real-time weed data can be 

collected, analyzed, and used for predictive weed 

management, reducing the need for reactive herbicide 

application (Mitra et al., 202X). Despite these promising 

advancements, cost reduction strategies and user-friendly 

interfaces are crucial for making autonomous weeding 
technology accessible to small-scale farmers. Future studies 

should focus on affordable sensor alternatives, low-power AI 

models, and policy-driven initiatives to encourage 

widespread adoption. By addressing these challenges, 

autonomous weeding boats could revolutionize weed 

management in waterlogged agriculture, promoting 

sustainable, precision-driven, and eco-friendly farming. 

 

 Technologies Used in IoT-Based Weeding Boats 

IoT-based weeding boats use advanced technologies 

like AI-powered image recognition with RGB, NIR, and 
hyperspectral cameras for accurate weed detection (Singh et 

al., 202X). Machine learning algorithms improve detection 

over time. For navigation, GPS and ultrasonic sensors enable 

precise movement, while LIDAR and ToF sensors assist with 

obstacle detection in submerged environments (Liu et al., 

202X). Solar panels and batteries power the boats, ensuring 

long-duration operation (Kumar et al., 202X). IoT 

connectivity allows real-time monitoring and control, 

enhancing efficiency and decision-making. These 

technologies combine to provide high precision and 

autonomy in weed management. Additionally, cloud-based 

platforms facilitate data analysis and predictive weed 
mapping, enabling farmers to monitor field conditions 

remotely and optimize weeding strategies. Energy-efficient 

designs and cost-effective sensor alternatives are key areas of 

focus for improving scalability and accessibility. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

III. SYSTEM DESIGN AN IMPLEMENTATION 
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 Methodology 

There are two primary components to the flowchart. 
 

Fig 1 Working Materials 

 
 DC Battery 

 

 Battery Specification: 

 

 Capacity: 12V and 7.3 Ah 

 Rechargeable battery one 

 Battery type: Lead – acid battery 

 Charge capacity: 4.2hour loading condition 

 Charging time: hour. 

 

 
Fig 2 Dc Battery 

 

 DC Motor 

A DC motor is a device that turns electrical energy 

into mechanical motion. It works on the principle of 

electromagnetic induction — when an electric current flows 

through a conductor within a magnetic field, it generates a 
force. The direction of this force can be figured out using 

Fleming’s left-hand rule. 

 

 DC Motor Specifications: 

 

 Voltage: 12V 

 Speed without load: 130 RPM 

 Speed with load: 90 RPM 

 

 
Fig 3 Dc Motor Specifications 

 
 Turbine 

 

 No of Blades is: 30, 

 Length of the Blade is: 4inc, 

 Width of the blade is : 2inc, 

 Air velocity, V  = 14 m/s (nearly 50.4 kmph), 

 Rotor dia ,  D =  0.24m, Air Density,ρ = 1.8 kg/m^3. 

 

 
Fig 4 Turbine 

 Relay 
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A relay is an electrically operated switch that helps 

control circuits using a low-power signal while keeping the 

control and controlled circuits electrically isolated. While 
many relays rely on electromagnets to operate mechanically, 

others, like solid-state relays, use different principles. 

 

Relays are particularly useful when a single signal 

needs to control multiple circuits or when electrical isolation 

is essential. Originally, they played a key role in long-
distance telegraphy, amplifying and retransmitting signals 

across circuits. Over time, they became fundamental 

components in telephone exchanges and early computers, 

where they were used to execute logical operations. 

 

 
Fig 5 Relay 

 

 Webcam 

A webcam is a device that captures live video and 

streams it to a computer or through a network. Once 

connected, the video feed can be saved, viewed, shared 

online, or sent to others via platforms like email or the 
internet. This allows people to communicate visually in real 

time, making webcams essential for virtual meetings, live 

broadcasts, and online interactions. 

 

 
Fig 6 Webcam 

 

 Ultrasonic Sensor 

Ultrasonic sensors, also known as ultrasonic 

transducers, are a type of acoustic device that use sound 

waves beyond the range of human hearing. They come in 

three main types: transmitters, receivers, and transceivers. 

Transmitters generate ultrasound from electrical signals, 

receivers detect ultrasound and convert it back into electrical 

signals, while transceivers can both send and receive 
ultrasonic waves. 

 
Fig 7 Ultrasonic Sensor 

 

 Ardiuno 

I was amazed to see a twelve-year-old boy bringing his 

electronic gadgets to life. He was experimenting with 
building his own imaginative toys, blending complex 

electronics with software skills. My curiosity skyrocketed — 

how did this young kid grasp electronics concepts so early? 

How did he learn to write software? Eager to uncover the 

mystery, I couldn’t resist approaching him. I asked him what 

powered his creations, and with a bright smile, he simply 

said, “Arduino.” 

 

 
Fig 8 Ardiuno 
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 Non Working Materials 

 

 
Fig 9 Non Working Materials 

 

 PVC Pipe 

We plan to use a lightweight material with high 

mechanical strength for our design. For the model, PVC will 

be our chosen material. However, in a real-world 

implementation of the bladeless windmill, the pole material 

must be able to endure various atmospheric conditions over 

a long period. Additionally, the material should be as 

lightweight as possible to allow easy oscillation under wind 
force, while also being strong enough to withstand both 

tension and compression. 

 

 
Fig 10 PWC Pipe 

 

 Metal strip: 

 

 Specifications 

 Material: Mild Steel Strip 

 Length:40cm 

 Width:5cm 
 

 Specifications 

 

 Length:60cm 

 Width:5cm 

 

 
Fig 11 Metal Strip 

 

 Shaft: 

 

 Shaft diameter: 12mm 

 Material: mild steel 

 

 
Fig 12 Shaft 

 

 Ball bearing: 

A bearing is a mechanical component that guides and 

limits movement to a specific direction while reducing 

friction between parts in motion. Depending on its design, a 

bearing can enable smooth linear movement or allow 
rotation around a fixed axis. In some cases, it can even 

restrict movement by managing the direction and magnitude 

of forces acting on the moving components. 

https://doi.org/10.5281/zenodo.14979497
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Fig 13 Ball Bearing 

 

 Weeder: 

A number of common weeding tools are designed to 

ease the task of removing weeds from gardens and lawns. 

 

 
Fig 14 Weeder 

 

IV. CONCLUSION 

 

The fabrication of an IoT-enabled weeding boat for 

paddy fields introduces a smart and sustainable approach to 

addressing the challenges of traditional weed management in 

waterlogged agriculture. By integrating advanced sensors, 

AI-powered cameras, and autonomous navigation, this 
system enhances precision while reducing labor dependency 

and minimizing herbicide usage. The use of RGB and NIR 

imaging, LIDAR, ultrasonic sensors, and GPS allows for 

accurate weed detection and efficient path planning, 

ensuring minimal disruption to crops. Additionally, solar 

power and battery storage support prolonged operation, 

making the system energy-efficient and environmentally 

friendly.The incorporation of IoT connectivity enables real-

time monitoring and data-driven decision-making, allowing 

farmers to track the boat’s performance, analyze weed 

distribution patterns, and optimize weed control strategies. 
This automation significantly improves efficiency, leading 

to higher crop yields, reduced costs, and a lower 

environmental footprint. However, despite its benefits, 

challenges such as high initial investment, sensor limitations 

in complex field conditions, and the need for farmer training 

in digital technologies must be addressed.Future 

advancements in AI-driven weed recognition, cloud-based 

analytics, and cost-effective sensor solutions will enhance 

the system’s scalability and affordability, making it more 

accessible to small and large-scale farmers alike. By 

overcoming these challenges, autonomous weeding boats 

have the potential to revolutionize precision farming and 
sustainable agriculture, paving the way for a smarter and 

more efficient approach to weed management in paddy 

cultivation 
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