
Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 575

An Efficient Software Methodology with

Structured Decision-Making Technique for the

Software’s Design

Jubayer Ahamed*
Dept. of Computer Science

American International University-Bangladesh

Dhaka, Bangladesh

Sumshun Nahar Eity

Dept. of Computer Science

American International University-Bangladesh

Dhaka, Bangladesh

Barno Biswas
Dept. of Computer Science

American International University-Bangladesh

Dhaka, Bangladesh

Farhana Afroz

Dept. of Social Science

American International University-Bangladesh

Dhaka, Bangladesh

Abstract:- Selecting an efficient methodology is crucial

for ensuring project success in the various fields of

software development. Software projects are often

complex, requiring structured decision-making to address

varying technical and non-technical challenges. The

efficient project design requires a systematic and flexible

methodology with structured decision-making technique

in the fast-changing area of software development. The

complicated nature of current software systems, coupled

with diverse stakeholder demands and constant technical

progress, requires a decision-making framework that

effectively combines creativity and precision. Our study

defines how effective software methodology is and tries to

propose an efficient model with decision-making

technique for the software’s design. It identifies some

issues from previous research and examines a sequential

model that focusses on enhancing software design

processes, improving decision-making across various

project contexts and providing the solutions of the issues.

The methodology highlights improving the efficiency of

the software design process by distinctly defined phases,

applying tools such as UML diagrams and stakeholder

involvement to guarantee clarity and adaptability.

Utilizing a systematic decision-making approach enables

teams to adeptly manage restrictions, dependencies and

resource limitations. Moreover, it enhances scalability

and versatility, producing it appropriate for various

sectors and project dimensions. This study focuses on the

necessity of synchronizing new design ideas with practical

implementation, providing an efficient model for

producing flexible and effective software design solutions

modified to satisfy evolving user requirements.

Keywords:- Software Methodology; Decision-Making

Approach; Software Design Solutions; Hybrid Framework;
Decision Nature.

I. INTRODUCTION

The rapid advancement of technology and the growing

demand for excellent software have transformed the

planning, development, and delivery of software projects. As

businesses aspire for accelerated time-to-market and flexible

user experiences, the selection of the optimal software

development process has emerged as a critical determinant of

project success. The design phase of a software project,

which establishes the groundwork for the eventual product,

demands a systematic process that corresponds with project
goals, team skills and customer requirements. Nevertheless,

selecting the appropriate approach is not simple, as each

project contains distinct requirements regarding scope,

resources, timeframes, and complexity. It is essential to

provide a framework that integrates an effective software

methodology with a strong decision-making approach to

enhance the design and implementation of software projects.

Software methodologies like Agile, Scrum, Waterfall,

and Lean present unique benefits and drawbacks. Agile

prioritizes adaptability and ongoing cooperation, whereas
Waterfall offers a systematic, linear methodology [1].

Conversely, Scrum emphasizes iterative development via

time-constrained sprints. Despite the widespread use of these

approaches, their effective application to specific projects

needs careful consideration of several criteria, including

project nature, team competence, and risk tolerance. The

impracticality of a one-size-fits-all strategy has resulted in

the development of hybrid models that integrate many

approaches to address complicated project requirements.

These hybrid methodologies necessitate organized decision-

making frameworks to ensure their successful selection and

application [2].

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 576

Decision-making techniques, including decision

matrices, analytic hierarchy processes (AHP), and multi-

criteria decision analysis (MCDA), provide structured

approaches to evaluate and choose strategies based on

established project objectives and limitations. These

frameworks assist project managers in evaluating several

variables, including time, cost, complexity, and stakeholder

expectations, so assuring coherence between the selected
approach and the intended project results. Effective decision-

making not only reduces risks but also ensures improved

resource utilization and project efficiency during the design

phase, where essential architectural and functional decisions

are established [4].

This study analyzes how effective software

methodology, when integrated with systematic decision-

making technique, can improve the design and development

of software projects. It aims to discover the factors that

influence methodology selection and analyze decision-

making models which promote effective project design. This
research seeks to offer insights into creating an integrated

model that matches methodology selection with strategic

project objectives, so ensuring efficient and high-quality

software design.

In section 2, we discuss the previous works on software

methodology with structured decision-making technique for

the software’s design and the design thinking (DT) using

software methodologies. The proposed methodology section

will be described in Section 3. In section 4, we set the

conclusion part.

II. BACKGROUND STUDY

A. Software Architecture, Design Processes and

Methodologies

M. Adil, I. Fronza et al. [3] demonstrated the process of

software design and modeling as applied by students during

the online software engineering course. Their research dealt

with the distributed teams of students performing software

design activities with the aid of Scrum and other

collaborative software tools [3].

I. Lytra, C. Carrillo et al. [4] described the use of

quality attributes in guiding software architecture design

decisions. The building and rationale for high quality systems

using such attributes were also discussed by the authors [4].

Another study described the huge troubles faced during

the migration from Waterfall to Agile approaches [5]. M.

Stoica, B. Ghilic-Micu, M. Mircea, and C. Uscatu et al. [6]

focused on the explanation of how it is great to change from

the Waterfall model to Agile development and from the

usage of Scrumban helps to improve project versatility and
teamwork.

T. Natarajan, S. Pichai et al. [7] outlined an action

research study, on an extensive implementation analysis of

the movement from Waterfall to Agile approaches in

software development. The methodological limitations of the

study consisted of a contextual nature of the collected data,

which could be a limitation to the generalizable results [7].

Another research [8] analyzed how enforcement of
standard prescriptive forms of documentation affects the

creativity and open-endedness of the SW development

process by opinionating that standardized forms may hamper

necessary intellect and restrict the search for originality. J.

Ahamed and D.Nandi et al. [9] described a new decision-

making method to enhance the software architecture design.

The paper highlighted decision-making in architecture

because it outlines the structure and nature of software

systems.

K. Kilova, V. Lazarova et al. [10] proposed a modern

approach to designing software architecture for monitoring
and quality assessment in higher education. Also, another

study [11] addressed challenges in the software design

process and proposes a sustainable procedural model aligned

with Capability Maturity Model Integration (CMMI). This

model maps out incremental stages from initial design to

optimized processes which guide software teams to improve

design reliability, efficiency, and scalability within the

Software Development Life Cycle (SDLC) [11].

F. K. Y. Chan and J. Y. L. Thong et al. [12] focused on

analyzing factors affecting the adoption of agile
methodologies within organizations. It explored the existing

frameworks, user acceptance challenges, and the benefits and

limitations of agile methods in software development. One

study [13] analyzed trends and characteristics within agile

methodologies. It has provided a comprehensive review of

agile frameworks, particularly in software development and

focused on popular models like Scrum, Kanban, and Extreme

Programming (XP).

K.N. Mohammed and S.C. Karri et al. [14] explored the

Agile methodology for construction project management that

has been associated with major problems, such as schedule
delays and budget overruns. They also applied Agile

practices that are normally used in IT projects to construction

since construction projects experience some effects of design

changes and process changes. It recommends sprints and a

structured framework for managing changes within

construction projects to ensure greater coordination and

adaptability.

A.A.A. Adenowo and B.A. Adenowo et al. [15]

analyzed a critical review of two prominent software

engineering methodologies, named the Waterfall model and
the Object-Oriented approach. It points out that the waterfall

model is structural and sequential in nature; thus, it is ideal

for projects whose requirements are already well-defined.

The paper has been effective in comparing the Waterfall

model and the OO approach, but it has failed to provide a

detailed exploration on hybrid models, which possess

positive features of both methodologies [15].

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 577

V. Chandra et al. [16] discussed and analyzed famous

software development methodologies: the Waterfall, Agile,

and Spiral models. The author has examined each

methodology's framework and its corresponding phases and

key characteristics with a focus on aspects such as flexibility,

cost-efficiency, and risk management. Future studies might

consider the use of actual case studies or quantitative

methods for evaluating a success rate, costs, and time of
delivery for each approach. It is also likely that hybrid

models will yield other insights into adaptation to evolving

project demands.

S. Balaji and Murugaiyan et al. [17] analyzed three

major SDLC models: Waterfall, V-Model, and Agile. Each of

the models is assessed for the most important parameters like

project size, client requirements, and flexibility. The study

provided only an overview of SDLC models but does not

delve deeply into the hybrid models that are combinations of

these approaches [17]. One study [18] has done a detailed

analysis of the Agile and Waterfall models in SDLC and
compared both according to their advantages, limitations, and

specific applications in software quality engineering.

B. Software Design thinking (DT) using Software

Methodologies

Software Design Thinking (DT) can be combined with

software development methods like Agile, Scrum, and

Extreme Programming (XP). This can help connect software

solutions with what end users want. Several studies show that

combining DT with standard development frameworks can

be helpful.

Canedo et al. [19] analyzed how decision-makers felt

about using Design thinking (DT) tools in Agile software

projects. In the end, they found that DT improved teamwork

and results that were focused on the user. The study only

looked at short-term projects, though, which makes me

wonder if DT can keep working well in large-scale, long-

term Agile projects.

Steinke and Al-Deen et al. [20] investigated DT along

with the Waterfall and Agile methods. However, their study

was limited to theoretical frameworks and did not include
any real-world validation in big enterprise settings. This

suggests that there is a need for more real-world industry

applications.

Parizi et al. [21] made a tool that helps people choose

which Design thinking (DT) frameworks to use for gathering

software requirements. This study gave information about

which techniques work best, but it didn't investigate how well

these tools can be used in large, complicated business

processes.

Through iterative prototyping and involving users,
Pereira and Russo et al. [22] highlighted the part that DT

plays in making Agile software development better. The

study showed that DT and Agile work well together, but it

didn't look at any of the problems that might come up

because DT is iterative and works so quickly in Agile

settings.

Previous research, like [19], [21], mostly looked at

small projects or certain types of organizations. But when the

project is large, then it will be faced with some difficulties.

Sohaib et al. [23] examined how DT could be used with
Extreme Programming (XP) and found that it increased

creativity and satisfaction with customers. But their work was

not directed at how to handle problems that come up when

DT's focus on exploration and XP's focus on fast delivery

clash.

Wangsa et al. [24] examined how Design thinking (DT),

Agile, and Design Sprint work and compared them. The study

focused on DT's strength in human-centered design but didn't

give any useful advice on how decision-makers can choose

between these approaches based on the needs of the project.
That is why they will need useful decision models that can

help teams choose the best methods. Gama et al. [25]

investigated how DT is used in hackathons and found that DT

tools help people be more creative when they must compete

for time. But their study only looked at the short-term effects

of hackathons [25]. This means that we cannot say much

about the long-term effects of DT methods used in these

settings.

C. State-of-the-Art Innovations in Software Methodology

with Structured Decision-Making Technique

This section highlights ten of the most innovative and
impactful recent contributions, summarizing their

approaches, proposed systems, key findings, and

observations.

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 578

Table 1: A Comparative Analysis of Different Research Works

Category Relevant Studies Description Identified Gaps

Agile Adoption and

Challenges

Chan et al. [12],

Trihardianingsih et al. [13],

Adenowo et al. [15]

Difficulties in implementing

Agile in non-technical sectors

and scaling practices in larger

organizations.

Need for frameworks

addressing non-technical

contexts and large-scale Agile

scaling challenges.

Hybrid Methodologies Balaji et al. [17], Pargaonkar et

al. [18]

Comparison of Waterfall,

Agile, and hybrid

methodologies for different

project contexts.

Limited exploration of hybrid

models' effectiveness and

their application in industry-

specific scenarios.

Methodological Efficiency Balaji et al. [17], Pargaonkar et

al. [18]

Challenges in optimizing SDLC

methods for specific regulatory

and risk-heavy industries.

Need for exploration of SDLC

adaptations, especially for

regulated fields.

Scalability in Large

Projects

Canedo et al. [19], Parizi et al.

[21]

Challenges in applying DT

effectively in large-scale, long-

term software projects.

Limited studies on how DT

scales in enterprise-level and

complex projects.

Lack of Real-World

Validation

Steinke and Al-Deen [20] Most studies use theoretical

frameworks or case studies

without real-world validation.

Need for empirical evidence

and real-world industry

applications in various

sectors.

Decision-Making Support Sohaib et al. [23], Wangsa et al.

[24].

Difficulty in choosing

appropriate methodologies

based on project requirements.

Absence of specific decision

methodological framework to

help teams select suitable

methods for specific needs.

Balancing Creativity and

Delivery

Sohaib et al. [23] Conflict between DT’s

exploratory nature and fast

delivery in XP or Agile

settings.

Need for frameworks to

balance creativity and speed

in delivery-focused methods.

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 579

III. PROPOSED METHODOLOGY

The proposed model integrates iterative and flexible software development processes with structured decision-making

techniques. It is designed to address scalability, adaptability, and decision-making challenges in software projects of varying

complexity.

Fig 1: Proposed Software Model

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 580

A. Model Description

The diagram of our proposed methodology shows a

systematic software development process, divided into

continuous phases. Below is a comprehensive explication of

each phase:

 Initial Phase

 Define the Type of Software:

This phase highlights the identification of the software's

purpose, domain, and overarching needs for development

(e.g., web application, mobile application, or enterprise

solution).

 Requirements Analysis

 Individual User:

This phase collects precise requirements from end-users

or stakeholders, highlighting user demands, functionality, and

expected outcomes.

 Model Designing

 Different types of UML (Unified Modeling Language) :

This phase includes the development of visual

representations of the software system through UML

diagrams, including use case diagrams, sequence diagrams,

class diagrams, and activity diagrams, to help with

comprehension and communication of the system

architecture.

 Decision Nature

 Decision type:

Specifies the different kinds of decisions that need to be

taken, such as those addressing the architecture or the

prioritization of features.

 Constraints:

Prioritizes determining constraints such as financial

constraints, technological constraints, the availability of

resources, or regulatory requirements.

 Finalize a UML Diagram:

The UML diagram(s) are refined and confirmed in order

to confirm that they are aligned with the requirements and

constraints.

These three terms have described some attributes and

taken a final decision based on the attributes. Those attributes

are given below:

 Dependency: Those decisions that have an impact on

other parts or systems.

 Artifacts: Activities that result in actual outcomes, such as

documentation, diagrams, or prototypes, are examples of

actual outputs.
 Stakeholders: In the process of decision-making, it

guarantees that every significant factor are taken into

consideration.

 Time Length: Defines the project deadlines clearly.

 Implementation Phase:

 Finalize the Type of Programming:

It chooses the programming language(s) and

development frameworks that are most appropriate for

putting the software into action, considering the requirements

and the design of the system.

 Testing Phase

 Different Types of Testing:

The application is tested using a variety of methods,

including the following, to ensure that it satisfies quality

standards. The testing types are given below:

 Unit Testing

 Integration Testing

 System Testing

 User Acceptance Testing (UAT)

 Final Phase

 Deployment:

The last phase involves delivering the software to the

end-user or deploying it to the development environment, so

providing it accessible for use.

B. Overview and Key Features of the Proposed Methodology

In this section, we explain how our proposed

methodology will solve the issues that we found in our
background study in this section. We are going to add a table

to discuss this clearly. Also, we will try to discuss some key

features of our proposed methodology.

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 581

Table 2: Overview of the Proposed Methodology

Identified issue from Section 2 How it will be solved using our proposed model

Need for frameworks addressing non-technical contexts

and large-scale Agile scaling challenges [12] [13] [15].

Our proposed model has used UML diagrams in model designing

phase to set the Agile processes to a scale. It focuses on the

dependencies between teams and iterations. Our model considers the

time length, stakeholder communication and industrial dependencies.

Based on this, it defines constraints for non-technical and Agile

scaling needs. After that, it will finalize the programming type in the

implementation phase to integrate Agile-friendly frameworks. In the

testing phase of our model, it will add scalability and collaboration
testing to verify compatibility with large-scale teams.

i) Limited exploration of hybrid models' effectiveness

and their application in industry-specific scenarios.

ii)Need for exploration of SDLC adaptations, especially

for regulated fields [17] [18].

Our proposed model follows the step-by-step procedure. It goes

sequentially. After finalizing user’s need, designing process and

decision type, this model will finalize the project type based on the

industry specific scenario and user’s choice. So, it supports in-depth

analysis based on the phases-to-phases analysis.

Limited studies on how DT scales in enterprise-level and

complex projects [19] [21].

Our proposed model identifies the project’s complexity and enterprise-

level scaling in the initial phase. Then it will collaborate with

individual users to identify specific design thinking (DT) scaling

requirements in the next phase. In the model designing phase, our

model focuses on the dependencies and constraints in scaling DT.

After that, it tries to involve all relevant stakeholders to ensure the

feasibility of DT scaling in the decision nature. Then it selects scalable

and modular programming frameworks.

Need for empirical evidence and real-world industry
applications in various sectors [20].

Our proposed model identifies and explains the type of software to
focus on generating data for empirical studies and applications across

sectors.

In the requirements analysis phase, it will select cross-sector

requirements through user interviews.

Absence of specific decision methodological framework

to help teams select suitable methods for specific needs

[23] [24].

Our proposed model defines the need for a decision-support

framework in the scope of the software. Then it will identify team-

specific requirements and challenges in method selection. It focuses

on constraints and artifacts that inform decision-making. It specifies

the decision types and finalizes a UML model that guides method

selection. Then it creates a modular decision-support framework. Our

model validates the framework by simulating various team scenarios

in the testing phase of our proposed model.

Need for frameworks to balance creativity and speed in
delivery-focused methods [23].

Our proposed model chooses lightweight, flexible programming
frameworks to balance creativity and speed in delivery-focused

methods. It will test for balance between delivery speed and creativity

in diverse scenarios.

Now, some key features of our proposed methodology

are explained below:

 Hybrid Framework: Integrates Agile adaptability with

Design Thinking's emphasis on user-centered design,
delivering both innovation and rapidity.

 Structured Decision-Making: Utilizes decision-making

techniques during significant times to help teams in

determining the most effective strategy of action.

 Scalability: The methodology is versatile for both

individual efforts and large-scale organizational

conditions.

 Continuous Feedback Loop: Engages stakeholders at each

stage, facilitating immediate adjustments.

 Risk Management: Decision checkpoints reduce risks by

insuring that only well tested and validated increments are
implemented.

This proposed methodology addresses the weaknesses

noted in the literature by integrating an effective development

framework with systematic decision-making techniques. It

guarantees that software design is consistent with corporate
goals, reconciles innovation with expeditious delivery and is

scalable proficiently for extensive projects.

IV. CONCLUSION AND FUTURE WORK

Choosing an effective methodology is essential for

maintaining project success across diverse domains of

software development. Software projects frequently exhibit

complexity, enabling systematic decision-making to tackle

diverse technical and non-technical difficulties. An effective

project design implies a systematic and adaptable approach,

accompanied by a structured decision-making technique, in
the rapidly evolving field of software development. The

intricate structure of today's software systems, together with

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 582

numerous stakeholder requirements and ongoing

technological advancements, demands a decision-making

framework that adeptly integrates creativity and accuracy.

In this research, we explored a comprehensive

methodology integrating structured decision-making with

iterative software design processes to address the challenges

of modern software development. The proposed model
effectively balances flexibility and systematicity by

combining established frameworks, such as UML diagrams

and Agile methodologies, with robust decision-support

systems tailored to project-specific requirements. By

emphasizing phases like user-centered requirements analysis,

model designing, and decision validation, the methodology

enhances clarity, scalability, and adaptability across diverse

project contexts. Moreover, the model's scalability makes it

suitable for both small-scale and enterprise-level projects,

addressing gaps identified in existing literature. By focusing

on modular programming frameworks and continuous

feedback loops, the methodology ensures alignment with
dynamic user needs and technological advancements. This

holistic approach also bridges the divide between theoretical

constructs and practical application, offering a versatile

solution to contemporary software development challenges.

Future studies can expand on this framework by

integrating AI-driven decision-making tools to further

enhance adaptability and predictive capabilities.

Additionally, real-world validation across various industries

would solidify the methodology's applicability and efficacy.

This research contributes a flexible, scalable, and structured
model to the software development domain, making the way

for more efficient, user-centric, and resilient software

solutions.

REFERENCES

[1]. S. Saeed, N. Jhanjhi, M. Naqvi and M. Humayun,

“Analysis of Software Development Methodologies”, in

International Journal of Computing and Digital

Systems, Vol. 8, No.5, pp. 445-460, 2019.

[2]. M. Poppendieck and M. A. Cusumano, “Lean Software

Development: A Tutorial”, in IEEE computer Society,
pp. 26-32, 2012.

[3]. M. Adil, I. Fronza, and C. Pahl, "Software Design and

Modeling Practices in an Online Software Engineering

Course: The Learners’ Perspective," in *Proceedings of

the 2021 IEEE Global Engineering Education

Conference (EDUCON)*, pp. 1-8, 2021. [Online].

Available:

https://doi.org/10.1109/EDUCON45462.2021.9449093.

[4]. I. Lytra, C. Carrillo, R. Capilla, and U. Zdun, "Quality

Attributes Use in Architecture Design Decision

Methods: Research and Practice," in *Proceedings of
the 2022 IEEE International Conference on Software

Architecture (ICSA)*, pp. 1-10, 2022. [Online].

Available:

https://doi.org/10.1109/ICSA54710.2022.00020.

[5]. F. Almeida, "Challenges in Migration from Waterfall to

Agile Environments," ResearchGate, 2017. Available:

https://www.researchgate.net/publication/Challenges_in

_Migration_from_Waterfall_to_Agile_Environments.

[Accessed: Nov. 02, 2024].

[6]. M. Stoica, B. Ghilic-Micu, M. Mircea, and C. Uscatu,

"Analyzing Agile Development – from Waterfall Style

to Scrumban," Informatica Economica, vol. 20, no. 4,
pp. 5-14, 2016. Available:

http://revistaie.ase.ro/content/80/01%20-

%20Stoica,%20Ghilic,%20Mircea,%20Uscatu.pdf.

[Accessed: Nov. 02, 2024].

[7]. T. Natarajan and S. Pichai, "Transition from Waterfall

to Agile Methodology: An Action Research Study,"

IEEE Access, vol. 12, pp. 49341-49362, 2024.

Available:

https://ieeexplore.ieee.org/document/10488855.

[Accessed: Nov. 02, 2024].

[8]. R. Mohanani, P. Ralph, B. Turhan, and V. Mandić,

"How Templated Requirements Specifications Inhibit
Creativity in Software Engineering," *IEEE Trans.

Software Eng.*, vol. 48, no. 10, pp. 4074-4086, 2022.

Available:

https://researchr.org/publication/MohananiRTM22

[Accessed: Nov. 02, 2024].

[9]. J. Ahamed and D. Nandi, "A Decision-Making

Technique for Software Architecture Design,"

International Journal of Mathematical Sciences and

Computing, vol. 9, no. 4, pp. 44-49, Dec. 2023.

Available: https://www.mecs-press.org/ijmsc/ijmsc-v9-

n4/v9n4-5.html. [Accessed: Nov. 02, 2024].
[10]. Kilova, Kristina, et al. "Modern Models and

Approaches for Design of Architecture of a Software

Application for Monitoring and Quality Assessment in

Higher Education." CBU International Conference

Proceedings.... Vol. 5. Central Bohemia University,

2017.

[11]. Al-Sarayreh, Khalid T., et al. "A sustainable procedural

method of software design process improvements."

Indonesian Journal of Electrical Engineering and

Computer Science 21.1 (2021): 440-449.

[12]. Chan, Frank KY, and James YL Thong. "Acceptance of

agile methodologies: A critical review and conceptual
framework." Decision support systems 46.4 (2009):

803-814.

[13]. Trihardianingsih, Liana, et al. "Systematic Literature

Review of Trend and Characteristic Agile Model."

Jurnal Teknik Informatika 16.1 (2023): 45-57.

[14]. Mohammed, Khaza Nawaz, and Karri Syam

Chambrelin. "An analytical approach in usage of agile

methodologies in construction industries–A case study."

Materials Today: Proceedings 33 (2020): 475-479.

[15]. Adenowo, Adetokunbo AA, and Basirat A. Adenowo.

"Software engineering methodologies: a review of the
waterfall model and object-oriented approach."

International Journal of Scientific & Engineering

Research 4.7 (2013): 427-434.

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/
https://doi.org/10.1109/EDUCON45462.2021.9449093
https://doi.org/10.1109/ICSA54710.2022.00020
https://www.researchgate.net/publication/Challenges_in_Migration_from_Waterfall_to_Agile_Environments
https://www.researchgate.net/publication/Challenges_in_Migration_from_Waterfall_to_Agile_Environments
http://revistaie.ase.ro/content/80/01%20-%20Stoica,%20Ghilic,%20Mircea,%20Uscatu.pdf
http://revistaie.ase.ro/content/80/01%20-%20Stoica,%20Ghilic,%20Mircea,%20Uscatu.pdf
https://ieeexplore.ieee.org/document/10488855
https://researchr.org/publication/MohananiRTM22
https://www.mecs-press.org/ijmsc/ijmsc-v9-n4/v9n4-5.html
https://www.mecs-press.org/ijmsc/ijmsc-v9-n4/v9n4-5.html

Volume 10, Issue 1, January – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.5281/zenodo.14716967

IJISRT25JAN620 www.ijisrt.com 583

[16]. Chandra, Vishal. "Comparison between various

software development methodologies." International

Journal of Computer Applications 131.9 (2015): 7-10.

[17]. Balaji, Sundramoorthy, and M. Sundararajan

Murugaiyan. "Waterfall vs. V-Model vs. Agile: A

comparative study on SDLC." International Journal of

Information Technology and Business Management 2.1

(2012): 26-30.
[18]. Pargaonkar, Shravan. "A Comprehensive Research

Analysis of Software Development Life Cycle (SDLC)

Agile & Waterfall Model Advantages, Disadvantages,

and Application Suitability in Software Quality

Engineering." International Journal of Scientific and

Research Publications (IJSRP) 13.08 (2023): 345-358.

[19]. E. D. Canedo and A. T. S. Calazans, "Design thinking

use in agile software projects: Software developers'

perception," in ICEIS (2), 2020. Available:

https://www.scitepress.org/Papers/2020/93875/93875.p

df

[20]. G. H. Steinke and M. S. Al-Deen, "Innovating
information system development methodologies with

design thinking," Proceedings of the 5th International

Conference on Applied Innovations in IT, 2018.

Available: https://opendata.uni-

halle.de/bitstream/1981185920/12695/1/ICAIIT%20V

%202_02%20Steinke_Al-Deen_LaBrie.pdf

[21]. R. Parizi et al., "Design thinking in software

requirements: What techniques to use? A proposal for a

recommendation tool," Conference on Software

Engineering-CIbSE, 2020. Available:

https://repositorio.pucrs.br/dspace/bitstream/10923/204
45/2/Design_Thinking_in_Software_Requirements_Wh

at_Techniques_to_Use_A_Proposal_for_a_Recommend

ation_Tool.pdf

[22]. J. C. Pereira and R. de F. S. M. Russo, "Design thinking

integrated in agile software development: A systematic

literature review," Procedia Computer Science, vol. 138,

2018. Available:

https://www.sciencedirect.com/science/article/pii/S1877

050918317484

[23]. O. Sohaib et al., "Integrating design thinking into

extreme programming," Journal of Ambient Intelligence

and Humanized Computing, vol. 10, no. 3, 2019.
Available:

https://opus.lib.uts.edu.au/bitstream/10453/126025/4/O

CC-121627_AM.pdf

[24]. K. Wangsa et al., "A comparative study between design

thinking, agile, and design sprint methodologies,"

International Journal of Agile Systems and

Management, vol. 15, no. 1, 2022.

[25]. K. Gama et al., "The developers' design thinking

toolbox in hackathons: A study on the recurring design

methods," International Journal of Human-Computer

Interaction, 2023.

https://doi.org/10.5281/zenodo.14621409
http://www.ijisrt.com/
https://www.scitepress.org/Papers/2020/93875/93875.pdf
https://www.scitepress.org/Papers/2020/93875/93875.pdf
https://opendata.uni-halle.de/bitstream/1981185920/12695/1/ICAIIT%20V%202_02%20Steinke_Al-Deen_LaBrie.pdf
https://opendata.uni-halle.de/bitstream/1981185920/12695/1/ICAIIT%20V%202_02%20Steinke_Al-Deen_LaBrie.pdf
https://opendata.uni-halle.de/bitstream/1981185920/12695/1/ICAIIT%20V%202_02%20Steinke_Al-Deen_LaBrie.pdf
https://www.sciencedirect.com/science/article/pii/S1877050918317484
https://www.sciencedirect.com/science/article/pii/S1877050918317484
https://opus.lib.uts.edu.au/bitstream/10453/126025/4/OCC-121627_AM.pdf
https://opus.lib.uts.edu.au/bitstream/10453/126025/4/OCC-121627_AM.pdf

	I. INTRODUCTION
	II. BACKGROUND STUDY
	A. Software Architecture, Design Processes and Methodologies
	B. Software Design thinking (DT) using Software Methodologies
	C. State-of-the-Art Innovations in Software Methodology with Structured Decision-Making Technique

	III. PROPOSED METHODOLOGY
	A. Model Description
	 Dependency: Those decisions that have an impact on other parts or systems.
	 Artifacts: Activities that result in actual outcomes, such as documentation, diagrams, or prototypes, are examples of actual outputs.
	 Stakeholders: In the process of decision-making, it guarantees that every significant factor are taken into consideration.
	 Time Length: Defines the project deadlines clearly.

	B. Overview and Key Features of the Proposed Methodology

	IV. CONCLUSION AND FUTURE WORK
	REFERENCES

