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Abstract: Accurate and interpretable tumor classification remains a critical challenge in medical image analysis. In this 

study, we conduct a comprehensive evaluation of ten state-of-the-art convolutional neural network (CNN) architectures, 

including InceptionV3, Xception, MobileNetV2, DenseNet121, NASNetMobile, VGG16, VGG19, ResNet50, ResNet101, and 

EfficientNetB0, on a curated dataset of tumorous and nontumorous images. Each model’s performance was rigorously 

assessed using standard classification metrics: accuracy, precision, recall, and F1-score. InceptionV3 emerged as the top-

performing model with an accuracy of 97.75%, while EfficientNetB0 showed the lowest at 56.50%. Beyond raw 

performance, we prioritized model transparency by applying five explainable AI (XAI) methods—Grad-CAM, Saliency 

Maps, Integrated Gradients, Vanilla Gradients, and SmoothGrad—to visualize and interpret the models’ decision-making 

processes. These visualizations revealed critical insights into model attention and class-specific feature relevance, reinforcing 

the importance of explainability in medical diagnostics. The results not only highlight the superiority of modern CNNs in 

medical imaging tasks but also emphasize the value of interpretability tools for building trust and accountability in clinical 

AI applications. 
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I. INTRODUCTION 

 

The intersection of artificial intelligence (AI) and 

medical imaging has revolutionized the landscape of brain 

disease detection by offering unprecedented opportunities for 

early and accurate diagnosis [26]. Traditional diagnostic 

methods often rely on subjective evaluations and may lack 

the sensitivity to detect abnormalities indicative of early-

stage neurological disorders [27]. These conventional 

approaches, though widely used, are limited in their ability to 

process large-scale data or recognize hidden patterns in 

complex brain structures, which often results in delayed 

diagnoses and suboptimal treatment planning. AI, 

particularly machine learning and deep learning, has emerged 

as a powerful paradigm for analyzing vast and intricate 

neuroimaging datasets like MRI, CT, PET, and EEG, 

enabling researchers and clinicians to uncover important 

features and relationships associated with various brain 

pathologies [25, 28]. These algorithms can automatically 

learn the representations from raw data without need for 

features, offering a more objective and consistent method of 

detecting neurological abnormalities. Techniques such as 

convolutional neural network (CNN), recurrent neural 

network (RNN), and transformers have shown remarkable 

promise in identifying conditions like Alzheimer’s disease, 

Parkinson’s disease, brain tumors, epilepsy, and stroke at 

early stages with high accuracy and sensitivity [25]. In 

addition, the integration of AI with multimodal data, such as 

clinical records, genomics, and biochemical markers has 

improved the potential for precision medicine, allowing 

personalized disease and risk hierarchy. However, while these 

AI-driven models have demonstrated significant 

performance in research, their implementation in clinical 

practice remains challenging due to the nature of their 

decision-making processes [29]. Without clearing insights 

into how a model arrives at a diagnosis, clinicians may be 

hesitant to trust or adopt such technologies, especially when 

lives are on the line. This gap in interpretability has led to the 

emergence of explainable artificial intelligence (XAI), a 

growing field dedicated to enhancing the transparency, 

interpretability, and fairness of AI systems. 
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XAI aims to demystify complex AI models by providing 

explanations in human-understandable terms, such as 

heatmaps, feature importance rankings, decision rules, and 

natural language justifications. These interpretable outputs 

not only build user trust but also support model validation, 

error analysis, and regulatory approval processes [30]. For 

clinicians, XAI provides an opportunity to verify AI-

generated diagnoses against medical knowledge and improve 

collaborative decision-making. For patients, it helps in 

understanding how and why certain diagnoses or treatment 

recommendations are made, fostering better engagement and 

informed consent. Furthermore, the implementation of XAI 

aligns with current ethical and legal frameworks demanding 

algorithmic accountability, transparency, and bias mitigation 

in healthcare technologies. In addition to interpretability, XAI 

contributes to system robustness by revealing vulnerabilities 

and ensuring that models are making decisions based on 

medically relevant features rather than correlations. This is 

particularly crucial in brain disease diagnosis, where slight 

variations in imaging or artifacts can lead to drastically 

different outcomes if not properly accounted for. 

 

This study aims to provide a comprehensive overview 

of recent advances in AI-driven brain Tumor detection, with 

a particular focus on the integration and impact of explainable 

artificial intelligence techniques in this domain. It seeks to 

explore the full spectrum of AI methodologies including 

Convolution Neural Networks alongside state-of-the-art XAI 

frameworks with visualizations and evaluate their 

effectiveness across different brain tumor disease [31]. The 

review will cover both structural and functional imaging 

modalities and highlight applications in the detection and 

classification of brain tumors [32]. In doing so, it will 

critically assess the strengths and limitations of current 

approaches, identify key datasets and evaluation benchmarks 

used in the field, and examine ongoing challenges including 

model generalizability, fairness, interpretability trade-offs, 

and deployment constraints in real-world clinical 

environments. By synthesizing the latest developments, this 

review aims to support researchers, clinicians, and developers 

in designing more accurate, transparent, and clinically viable 

AI solutions for brain disease detection. 

 

II. LITERATURE REVIEW 

 

Brain tumor classification using deep learning has seen 

significant advancements, but challenges remain in achieving 

high impact across diverse datasets. Deep learning (DL) 

techniques, particularly convolutional neural network 

(CNN), have become integral in analyzing medical images, 

offering automated solutions for improved diagnostics [1, 2]. 

Early detection of brain tumors is critical for better patient 

outcomes, and accurate classification and segmentation are 

essential for personalized treatment strategies [3]. However, 

achieving consistently high accuracy in brain tumor 

classification remains a challenge [4]. 

 

Several factors contribute to the challenges in achieving 

high accuracy. Variations in tumor size, shape, and location, 

as well as limitations in medical image quality, can affect the 

performance of automated classification methods [5]. 

Moreover, manual examination of brain tumors is time-

consuming, and AI-based methods can potentially reduce 

diagnostic errors [2,6]. Transfer learning, which leverages 

pre-trained models, has emerged as a strategy to improve 

classification accuracy [7]. Data augmentation, including 

techniques like rotation and flipping, helps to expand the 

training datasets and improve model generalization [7, 8]. 

 

Deep learning models, including CNNs, are used to 

classify MRI images for brain tumor detection [9]. A typical 

deep learning architecture involves deep feature extraction 

through convolutional and pooling layers, followed by 

classification using fully connected layers [10]. The 

evolution of these techniques has led to significant 

advancements in brain tumor detection and classification 

[11]. The application of deep learning improves the accuracy 

of brain tumor recognition, underscoring the importance of 

optimizing training parameters and dataset size [10]. A few 

studies have aimed to improve the accuracy of brain tumor 

classification using various deep-learning approaches. 

Preprocessing steps, such as noise removal and contrast 

enhancement, are crucial for improving the quality of MRI 

images [1, 5]. Methods like adaptive median filtering can 

reduce noise while preserving essential anatomical details 

[12, 13]. 

 

The development of computer-aided diagnosis systems 

using deep learning shows promise in the medical field [8]. 

Brain tumors are classified into types such as Glioma, 

Meningioma, and Pituitary tumors, using MRI scans with 

deep learning algorithms [14]. To enhance the tumor 

visibility, contrast enhancement and median filters can be 

employed during preprocessing. Data augmentation is also 

crucial to expand the training dataset and prevent overfitting 

[5]. 

 

Despite these advances, several challenges remain. One 

significant issue is the complexity of brain tumor 

identification, which necessitates thorough assessment across 

multiple modules [1]. Collecting real medical images is time-

consuming, creating a need for synthetic images to expedite 

the process with high accuracy [16]. A possible reason is 

insufficient quality training datasets, model overfitting, bias 

in data representation, or a lack of optimized feature 

extraction methods. These limitations through multimodal 

approaches and robust pre-processing pipelines could lead to 

higher accuracy in brain tumor classification tasks and 

clinical applications. Explainability is key in medical AI and 

for transparency Grad-CAM helps to trust the model’s 

decisions, which is crucial for patient care [19]. 

 

Recent advancements in biomedical signal analysis and 

deep learning have significantly improved diagnostic 

accuracy and interpretability in brain-related disorders. 

Recently introduced an automated EEG signal classification 

framework using hybrid deep learning models demonstrating 

enhanced performance in detecting neurological 

abnormalities by combining CNN and GRU architectures 

[15]. Complementing this, a proposed multi-scale attention 

fusion network for glioma grading in MRI images, effectively 

capturing both global and local features to achieve superior 

https://doi.org/10.38124/ijisrt/25jul042
http://www.ijisrt.com/


Volume 10, Issue 7, July – 2025                                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                                             https://doi.org/10.38124/ijisrt/25jul042 

 

IJISRT25JUL042                                                              www.ijisrt.com                                                                                             15  

classification accuracy and clinical interpretability [17]. In a 

related development, focus on enhancing explainability in 

AI-driven medical diagnosis through a human in the loop 

framework, ensuring trustworthy and clinically acceptable 

outcomes [18]. These studies collectively emphasize the 

growing importance of hybrid models, attention mechanisms, 

and explainable AI in advancing brain tumor and 

neurological disorder classification.

 

Table 1 Summary of Literature on AI-based Brain Tumor Detection and Associated Research Gaps 

Ref Approach Study Gap 

[1], [2] Deep learning (CNN-based) classification of MRI for 

brain tumor detection 

Lack of generalizability across datasets and 

insufficient interpretability 

[3] CNN with image enhancement techniques Difficulty in maintaining high accuracy due to image 

variability 

[4] General CNN-based tumor classification No consistent accuracy on complex tumor structures 

[5] GDD feature approximation with deep learning Sensitive to variation in tumor shape/size; lacks 

robust preprocessing 

[6] CNN-LSTM hybrid model for identification Model complexity increases without clear gains in 

transparency 

[7], [8] Transfer learning and data augmentation to improve 

classification 

Limited validation on diverse clinical settings; 

overfitting still possible 

[9] Fine-tuned EfficientNet for multigrade classification Model lacks explainability and contextual decision 

understanding 

[10], 

[11] 

CNN and U-Net architectures for segmentation Often ignores interpretability and real-world 

deployment feasibility 

[12], 

[13] 

CNN models with median filtering and contrast 

enhancement 

Focuses only on preprocessing, lacks multimodal 

feature integration 

[14] Deep learning for multi-class tumor classification 

(Glioma, Meningioma, Pituitary) 

Poor generalization on minority tumor classes 

[15] CNN-GRU hybrid for EEG signal classification in 

neurological disorders 

Application not MRI-based; lacks imagingfocused 

explanation 

[16] GAN-based synthetic image generation to increase data Risk of unrealistic medical patterns in synthetic data 

[17] Multi-scale attention fusion network for glioma grading High complexity model with limited inter- 

pretability in clinical practice 

[18] Human-in-the-loop framework with XAI Still lacks real-time deployment evidence in clinical 

workflows 

[19] Grad-CAM visualization for XAI in brain disease 

diagnosis 

Needs integration with multiple models and clinical 

feedback 

 

Although numerous studies have applied CNNs and 

hybrid models to brain tumor classification and 

segmentation, many lack a comprehensive evaluation across 

diverse architectures using standardized metrics. Moreover, 

the integration of explainable AI techniques (e.g., Grad-

CAM, Saliency Maps, Integrated Gradients) is often limited 

or underexplored, especially in clinical scenarios requiring 

transparency. This study addresses that gap by evaluating ten 

CNN models and enhancing interpretability through multiple 

XAI methods, thus providing a more holistic and trustworthy 

diagnostic aid. 

 

 

 

 

III. METHODOLOGY 

 

 Dataset Description 

The study employs a comprehensive brain tumor MRI 

dataset, which consists of annotated T1-weighted MRI 

images categorized into tumor and non-tumor classes. The 

dataset contains a total of N images collected from multiple 

medical sources, ensuring variability in tumor types, sizes, 

and locations, as well as imaging conditions. To rigorously 

evaluate the classification models, the dataset was split into 

training, validation, and testing subsets using a 70%-20%-

10% ratio, respectively. The training set forms the core for 

model learning, the validation set assists in hyperparameter 

tuning and early stopping, and the independent test set 

evaluates final model generalization. 
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Fig 1 Sample Images from the Dataset Showing Tumour and Healthy Brain MRI Data. 

 

Before feeding into the models, all images undergo a 

standardized preprocessing pipeline. Initially, images are 

resized to a uniform dimension of 224×224 pixels to comply 

with the input requirements of the convolutional neural 

networks (CNNs). Intensity normalization is applied to scale 

pixel values into the [0,1] range, enhancing convergence 

stability during training. Furthermore, data augmentation 

techniques such as random rotation, zooming, horizontal and 

vertical flipping, and shifting are employed during training to 

increase data diversity and mitigate overfitting. 

 

 Model Training and Evaluation 

This study systematically investigates the performance 

of ten distinct state-of-the-art convolutional neural network 

(CNN) architectures for brain tumor classification using MRI 

images. The selected models include AlexNet, VGG16, 

VGG19, ResNet50, InceptionV3, DenseNet121, 

MobileNetV2, EfficientNetB0, Xception, and a custom 

designed CNN tailored for this task. Each CNN model is 

initialized with weights pretrained on ImageNet to leverage 

transfer learning benefits, thereby accelerating convergence 

and improving accuracy with limited medical data. The top 

layer of each network is replaced with a fully connected layer 

with a sigmoid activation function for binary classification 

(tumor vs. no tumor). 

 

Training is conducted on preprocessed images using the 

Adam optimizer with an initial learning rate of 10−4. Binary 

cross-entropy is employed as the loss function. To prevent 

overfitting, early stopping with a patience of 5 epochs 

monitors validation loss, restoring the best weights observed 

during training. A batch size of 32 is used, and models are 

trained for a maximum of 30 epochs. 

 

The trained models are evaluated on the independent 

test set using standard classification metrics, including 

accuracy, precision, recall, and F1-score. These metrics 

provide a holistic understanding of the model’s diagnostic 

ability, accounting for both sensitivity and specificity. 

 

 
Fig 2 Sample Images after Annotation for Preprocessing. 
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 Explainable AI Techniques 

To enhance model interpretability and build clinical 

trust, we apply four complementary explainable AI (XAI) 

techniques to each trained CNN: 

 

 Gradient-weighted Class Activation Mapping (Grad-

CAM): Produces visual heatmaps by utilizing the 

gradients flowing into the final convolutional layer, 

highlighting the regions in the MRI image that most 

strongly influence the model’s decision. 

 SmoothGrad: Improves gradient-based saliency maps by 

averaging noisy gradient samples, resulting in smoother 

and less noisy visualizations of feature importance. 

 

 
Fig 3 Image Width and Height Distribution of the whole Dataset. 

 

 Saliency Maps: Compute the gradient of the output class 

score with respect to input pixels, revealing the sensitivity 

of predictions to changes in each pixel. 

 Integrated Gradients: Calculate the average gradients as 

the input varies from a baseline (typically a black image) 

to the actual image, attributing the prediction output to 

each pixel in a theoretically sound manner. 

 

For each MRI test image, these methods generate 

heatmaps that are overlaid on the original images, allowing 

clinicians and researchers to visually verify which regions 

contribute most to tumor classification decisions. This multi-

faceted approach to explainability not only validates model 

predictions but also aids in discovering potential biomarkers 

and pathological features relevant to brain tumor diagnosis. 

In summary, this methodology combines rigorous CNN 

model benchmarking with state-of-the-art interpretability 

techniques to deliver both high classification performance 

and transparent decision explanations. The integration of 

diverse models and XAI tools ensures a comprehensive 

evaluation of automated brain tumor detection capabilities on 

clinically relevant MRI data. 

 

IV. RESULTS AND DISCUSSION 

 

This section presents the evaluation results of ten widely 

used convolutional neural network (CNN) models for tumor 

classification. The models were assessed using standard 

performance metrics including Accuracy, Precision, Recall, 

and F1-Score. Table 2 summarizes the results, sorted by 

accuracy in descending order. 

 

Table 2 Performance Comparison of CNN Models on Tumor Classification 

Model Accuracy Precision Recall F1-Score 

InceptionV3 0.9775 0.98 0.98 0.9775 

Xception 0.9600 0.96 0.96 0.9600 

MobileNetV2 0.9500 0.95 0.95 0.9500 

DenseNet121 0.9300 0.93 0.93 0.9300 

NASNetMobile 0.9275 0.93 0.93 0.9274 

VGG16 0.8100 0.81 0.81 0.8100 

VGG19 0.7950 0.79 0.79 0.7931 

ResNet101 0.7675 0.77 0.77 0.7672 

ResNet50 0.6500 0.68 0.65 0.6400 

EfficientNetB0 0.5650 0.57 0.56 0.5321 

https://doi.org/10.38124/ijisrt/25jul042
http://www.ijisrt.com/


Volume 10, Issue 7, July – 2025                                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                                                             https://doi.org/10.38124/ijisrt/25jul042 

 

IJISRT25JUL042                                                              www.ijisrt.com                                                                                             18  

 Model Performance Overview 

Among the ten evaluated models, InceptionV3 achieved 

the highest performance with an accuracy of 97.75%, 

followed by Xception at 96.00% and MobileNetV2 at 

95.00%. These models consistently exhibited high precision 

and recall values, suggesting not only a strong ability to 

correctly identify tumorous and non-tumorous instances, but 

also to minimize both false positives and false negatives. For 

instance, InceptionV3 achieved a balanced precision and 

recall of 0.98, resulting in an F1-Score of 0.9775, which 

confirms its robustness and generalization capability across 

tumor classes. 

The middle-tier performers include DenseNet121 

(93.00% accuracy), NASNetMobile (92.75%), and VGG16 

(81.00%). DenseNet121 and NASNetMobile showed strong 

performance in all metrics, demonstrating both sensitivity 

and specificity. Although VGG16 showed balanced results 

(Precision: 0.81, Recall: 0.81, F1-Score: 0.81), its relatively 

lower accuracy compared to top-tier models indicates limited 

learning capacity or early convergence due to fewer layers or 

limited feature extraction power compared to deeper 

architectures. 

 

 
Fig 4 Training accuracy and loss progression of ten different convolutional neural network (CNN) architectures used in the study. 

The models include: (a) VGG16, (b) ResNet50, (c) DenseNet121, (d) MobileNetV2, (e) VGG19, (f) ResNet101, (g) 

EfficientNetB0, (h) InceptionV3, (i) Xception, and (j) NASNetMobile. Each plot illustrates the training behavior across epochs, 

capturing how quickly and smoothly each model converges. 
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Fig 5 Confusion matrices of ten different CNN architectures: (a) DenseNet121, (b) EfficientNetB0, (c) InceptionV3, (d) 

MobileNetV2, (e) NASNetMobile, (f) ResNet101, (g) ResNet50, (h) VGG16, (i) VGG19, and (j) Xception. 
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Fig. 6: Performance Metrics Distribution Across Deep Learning Models using Radar Chart Diagram 

 

VGG19 and ResNet101 performed slightly lower, with 

accuracies of 79.50% and 76.75%, respectively. These 

models exhibited decent F1-scores (0.7931 and 0.7672), 

which means they still maintained a relatively fair balance 

between precision and recall but were outperformed by more 

modern and optimized models like EfficientNet and 

Inception. 

 

On the lower end, ResNet50 and EfficientNetB0 

recorded the weakest results, with accuracies of 65.00% and 

56.50%, respectively. The F1-score of ResNet50 (0.64) 

reflects imbalanced classification performance, as it showed 

strong recall for class 1.0 (85%) but poor recall for class 0.0 

(46%), resulting in biased predictions. EfficientNetB0, 

despite being lightweight and optimized, surprisingly 

underperformed in this particular dataset with the lowest F1-

score (0.5321). This may be attributed to underfitting, 

improper feature extraction at early stages, or lack of model 

adaptation through transfer learning. 

 

 Interpretation of Metrics 

 

 Accuracy provides an overall measure of correct 

classifications but does not distinguish between types of 

errors. While InceptionV3 and Xception achieved the 

highest accuracy, the metric alone may not be sufficient in 

evaluating real-world tumor classification systems where 

false negatives (missing a tumor) are critical. 

 Precision measures the proportion of correctly identified 

positive cases. High precision values, as seen in 

InceptionV3, DenseNet121, and MobileNetV2, indicate a 

model’s ability to avoid false alarms (false positives), 

which is crucial in reducing unnecessary stress or invasive 

procedures for patients. 

 Recall assesses a model’s ability to identify all actual 

positives (i.e., tumors). High recall, particularly in 

Xception and DenseNet121, suggests strong sensitivity 

and is essential in medical scenarios where missing a 

tumor can have life-threatening consequences. 

 F1-Score, the harmonic mean of precision and recall, is 

especially valuable when evaluating models on 

imbalanced datasets or when false positives and false 

negatives carry unequal consequences. The best 

performing models maintained high F1-scores, indicating 

not just accuracy but also balanced decision making. 

 

To better understand the internal decision-making 

process of the trained CNN models, we applied five widely 

used post-hoc explainability techniques: Grad-CAM, 

Saliency Maps, Integrated Gradients, Vanilla Gradients, and 

SmoothGrad. These methods provide visual justifications by 

highlighting the important regions in the input images that 

most influenced the model’s predictions. This step is essential 

in medical imaging applications, where model transparency 

is critical for clinical trust and acceptance. 

 

 Grad-CAM (Gradient-Weighted Class Activation 

Mapping):  

Grad-CAM uses the gradients of the target class flowing 

into the last convolutional layer to produce a coarse 

localization heatmap, highlighting class discriminative 

regions. It effectively reveals which areas of the image were 

most influential in making the classification decision. In our 

case, Grad-CAM highlighted key tumor areas with high 

precision, aligning closely with radiological features. 
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Fig 7 Performance Metrics Distribution Across Deep Learning Models using Sankey Diagram 

 

 
Fig 8 Grad-CAM Visualization Showing Model Attention Over Tumorous Region. 

 

 Saliency Maps:  

Saliency maps compute the gradient of the class score 

with respect to the input pixels. They indicate how small 

changes in each pixel would affect the model’s prediction, 

offering fine-grained visual attribution. These maps are often 

noisy but provide insight into pixel-level sensitivity. In our 

experiments, saliency maps consistently emphasized the 

tumor edges and active regions. 

 

 
Fig 9 Saliency Map Illustrating Pixel-Level Importance across the Image. 
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 Integrated Gradients: 

This method integrates gradients along the path from a 

baseline image (e.g., black image) to the actual input, 

providing more stable and complete attributions. Integrated 

Gradients addressed the issue of noisy saliency maps by 

producing smoother and more focused heatmaps. In our 

results, the regions with the highest cumulative attribution 

matched well with known tumor zones. 

 

 Vanilla Gradients:  

Vanilla gradient visualizations are the simplest form of 

saliency, showing raw gradient information. Though 

susceptible to noise, they can provide fast insights and serve 

as a baseline. Our vanilla gradient outputs showed weak 

localization and high sensitivity to noise, making them less 

interpretable compared to other methods. 

 

 SmoothGrad:  

SmoothGrad combats noise in gradient-based maps by 

averaging gradients over multiple noisy samples of the input 

image. This results in clearer and less scattered explanations. 

In our study, SmoothGrad provided refined and human-

interpretable regions, especially useful for clinicians 

reviewing automated predictions. 

 

 
Fig 10 Integrated Gradients Visualization Showing Accumulated Attributions. 

 

 
Fig 11 Vanilla Gradient-Based Saliency Map 

 

 
Fig 12 SmoothGrad Visualization with Reduced Noise and Focused Attribution. 
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Collectively, these visualizations offer diverse yet 

complementary perspectives on model interpretability. 

GradCAM and Integrated Gradients emerged as the most 

intuitive and clinically relevant, while SmoothGrad enhanced 

clarity. These tools not only help validate model decisions but 

also facilitate clinical collaboration and future model 

refinement. 

 

 Discussion and Implications 

Deep learning and Machine Learning has been widely 

applied across numerous domains, including wind energy 

forecasting [21], depression prediction [20], and large-scale 

data analysis in fields such as bioengineering[22] and even 

light pollution analysis [3]. Researchers are exploring a 

variety of innovative approaches in emerging fields. For 

example, one recent study applied blockchain technology to 

halal supply chain management [24], demonstrating how 

blockchain can enhance transparency and efficiency in 

supply chains. This highlights the potential for leveraging 

novel techniques in comparatively less-explored areas, 

encouraging further investigation and adoption of cutting-

edge solutions. It has become a mainstream approach for 

researchers seeking to develop innovative solutions using 

artificial intelligence. As a subfield of machine learning, deep 

learning plays a critical role in tasks like disease prediction, 

detection, and classification—areas that have recently gained 

significant momentum in AI-driven healthcare research. 

 

In this study, we conducted a comprehensive analysis of 

various convolutional neural network (CNN) architectures, 

evaluating their classification accuracy and comparing their 

performance based on prior research contributions. Our work 

aims to offer a consolidated perspective on the progress made 

so far in brain tumor classification using deep learning 

models. This study serves as a valuable resource for future 

researchers seeking to explore and benchmark CNN-based 

approaches for brain tumor detection and classification. The 

experimental results underscore several key observations: 

 

 Modern architectures outperform traditional ones: Models 

like InceptionV3, Xception, and MobileNetV2—

designed with advanced architectural optimizations such 

as depthwise separable convolutions and inception 

modules—significantly outperform older models like 

VGG16 and ResNet50. This supports the hypothesis that 

newer models are better at capturing complex patterns in 

high-resolution tumor images. 

 Depth and width trade-offs matter: Deeper networks do 

not always guarantee better performance. For instance, 

ResNet101 outperformed ResNet50, but still fell short of 

MobileNetV2, which is a much smaller model. This 

suggests that efficient feature reuse (as in DenseNet121) 

and architectural innovations are more impactful than 

mere depth. 

 Lightweight models can perform well: MobileNetV2 and 

NASNetMobile demonstrated high accuracy and F1-

scores while having low computational complexity, 

making them suitable for real-time or embedded medical 

applications, such as portable diagnostic devices or 

mobile health platforms. 

 Misclassification patterns must be studied: Despite high 

accuracy, certain models showed imbalance in per-class 

recall. For example, ResNet50 heavily favored class 1.0 

over 0.0. This emphasizes the need to visualize confusion 

matrices and perform class-specific evaluations before 

deployment. 

 

V. LIMITATIONS AND FUTURE WORK 

 

 While the Models Demonstrated Varying Degrees of 

Success, the Following Limitations were Observed: 

The dataset may contain inherent class imbalance or low 

variability, which can mislead the performance metrics. - The 

results are based on a single split; additional validation 

through cross-validation or stratified sampling would 

enhance reliability. - Interpretability and explainability (e.g., 

using Grad-CAM, Saliency Maps) should be incorporated to 

justify model predictions and build trust in real-world 

applications. 

 

Future work may explore hybrid architecture, domain-

specific fine-tuning, or ensemble methods to further improve 

performance and robustness. Additionally, integrating 

explainable AI (XAI) tools with these high performing CNNs 

would provide better transparency and actionable insights for 

medical professionals. 
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VII. CONCLUSION 

 

In this study, we conducted a comprehensive evaluation 

of ten prominent convolutional neural network (CNN) 

architectures for the classification of brain tumors using 

magnetic resonance imaging (MRI). These included both 

traditional and modern deep learning models such as VGG16, 

VGG19, ResNet50, ResNet101, DenseNet121, 

MobileNetV2, EfficientNetB0, InceptionV3, Xception, and 

NASNetMobile. Each model was rigorously trained and 

validated on a balanced dataset consisting of tumorous and 

non-tumorous MRI images. We assessed their performance 

across standard classification metrics — accuracy, precision, 

recall, and F1-score — and provided comparative insights to 

highlight their individual strengths and limitations. The 

results revealed that models like InceptionV3, Xception, and 

MobileNetV2 outperformed others, demonstrating 

exceptional classification performance with accuracy and F1-

scores exceeding 95%. DenseNet121 and NASNetMobile 

also exhibited strong capabilities, whereas deeper networks 

such as ResNet101 and newer models like EfficientNetB0 

showed moderate performance, likely influenced by dataset 

size, architectural complexity, and feature extraction 

efficiency. 
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Beyond raw performance metrics, we also emphasized 

the importance of explainability and transparency in AI 

models, particularly in critical applications like healthcare. 

To this end, we employed a suite of Explainable AI (XAI) 

techniques — including Grad-CAM, Saliency Maps, 

SmoothGrad, Integrated Gradients, and Vanilla Gradients — 

to visualize and interpret the decision-making processes of 

our models. These visualizations provided valuable insights 

into the regions of the MRI images that were most influential 

in classification, thereby reinforcing trust in the model 

outputs for clinical use. The integration of XAI methods not 

only enriched model interpretability but also ensured that 

potential biases or overfitting patterns could be identified and 

addressed early in the deployment pipeline. 

 

The comprehensive analysis presented in this work 

underscores the transformative potential of deep learning in 

medical imaging and diagnosis. However, several challenges 

remain. Variability in MRI image quality, class imbalance, 

and limited availability of annotated datasets continue to 

impact the robustness and generalization of deep learning 

models. Future research should focus on addressing these 

challenges through the incorporation of multimodal data, 

synthetic data generation (e.g., GAN-based augmentation), 

domain adaptation, and ensemble methods that combine the 

strengths of multiple models. Additionally, more 

collaborative datasets involving diverse demographics and 

imaging conditions are essential to develop universally 

reliable diagnostic systems. 

 

Moreover, the clinical adoption of deep learning tools 

must be accompanied by standardized validation procedures, 

regulatory compliance, and continuous feedback from 

medical practitioners. While our study lays a foundational 

benchmark by offering a side-by-side evaluation of widely 

used CNN models, it also opens avenues for more targeted 

innovations — such as hybrid models combining CNNs with 

transformers or attention-based architectures, as well as 

lightweight mobile-friendly networks suitable for 

deployment in resource-constrained environments. 

 

In conclusion, this research offers a valuable reference 

for researchers and practitioners aiming to explore and 

improve brain tumor classification using deep learning. By 

unifying performance evaluation with explainability, we 

bridge the gap between model accuracy and clinical trust. Our 

findings reinforce the notion that explainable, efficient, and 

well-validated AI models can significantly contribute to 

timely and precise brain tumor diagnosis, thereby improving 

patient care and supporting the future of AI-assisted 

healthcare systems. 
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