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Abstract: This paper investigates the propagation behavior of shock waves in a one- dimensional, non-ideal magneto 

hydrodynamic (MHD) flow considering the effects of viscosity and thermal radiation. A modified set of MHD equations 

accounting for non-ideal gas behavior is developed. The impact of thermal conductivity, radiation absorption, and viscous 

dissipation on shock strength, entropy change, and flow variables is analyzed. The study provides a theoretical framework 

supplemented by a key theorem that characterizes entropy rise across the shock front in the presence of dissipative 

mechanisms. The results reveal that thermal radiation and viscosity contribute significantly to shock smoothing and entropy 

augmentation. 
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I. INTRODUCTION 
 

Shock waves in MHD flows are fundamental 

phenomena encountered in astrophysical plasmas, nuclear 

fusion devices, and high-speed aerospace vehicles. When 

dealing with realistic scenarios, the assumption of ideal gas 

behavior and inviscid flow becomes inadequate. This paper 

explores how shock wave propagation is affected in non-ideal 

MHD conditions when viscosity and thermal radiation are 

present. Since the flow parameters that determine motion vary 

greatly across the shock, studying shock waves aids in our 

understanding of the nature of nonlinear compressible fluids. 

Studies on shock waves have drawn a lot of attention from 

scholars in the past few decades. 

 

because of their numerous uses in a variety of scientific 

fields, including nuclear research, space science, 

aerodynamics, geophysics, astrophysics, and plasma physics. 

Additionally, shock waves have a number of uses in medical 
science; for instance, they are utilized to treat kidney stones. 

To put it briefly, the shock wave would be described as a 

disruption in a medium that is moving faster than sound. 

When an excessive amount of energy is released quickly or 

when an object travels through a material at supersonic speed, 

shock waves may be produced. Shock waves can occur 

spontaneously in a number of astrophysical phenomena, such 

as supersonic travel, energetic occurrences like photo-ionized 

gas, the birth of stars and galaxies, collisions between swiftly 

moving clusters of interstellar gas, planet evolution, 

supernova explosions, and stellar winds. Astrophysics is very 
interested in the analysis and comprehension of the internal 

motion of stars and the evolution of different nebulae. 

 

The gas does not behave according to the ideal gas 

theory because of the high pressure or low temperature. 

Therefore, it is necessary to consider the effects of employing 

a less-than-ideal gas. It has evolved into the impact of non-

ideal gas on the increase in shock wave strength is more 

significant and needs to be taken into consideration in both 

theoretical and experimental studies. 

 

Additionally, Zhao et al. [9] reaffirmed that shock 

waves behave more richly in non-ideal gases than in perfect 

ones. Researchers have found the problem of shock wave 

propagation in a non-ideal gas to be fascinating and 

extensively researched. Cosmic magnetic fields are important 

in many astrophysical situations and are probably present 
throughout space. Shock wave effects of the magnetic field 

could improve our comprehension of cosmic events. The 

entire universe is covered by the magnetic field, which is an 

excellent resource for researching atmospheric sciences, 

oceanography, hypersonic aerodynamics, and many other 

topics. As a result, scientists and researchers from a wide 

range of fields are highly interested in the models created 

when shock waves pass through a magnetic field. 

Consequently, during the past few decades, a great lot of 
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research has been conducted to determine the solution 

pertaining to severe shock waves in magnetogasdynamics for 

the medium possessing ideal or non-ideal properties. Singh 

and Arora [17] used the Lie group technique in non-ideal 
magnetogasdynamics to investigate the propagation of 

cylindrical shock waves. To learn more about the intense 

shock wave propagation under the influence of 

magnetogasdynamics, we possess the noteworthy works of 

Arora, Singh, and Arora, Singh et al., [20] Radha and Sharma, 

[21] Hunter and Ali, [22]. 

 

Physical problems are typically resolved using 

mathematical models in the form of non-linear partial 

differential equations (NPDEs). various complex physical 

phenomena that have multiple scientific applications, such as 

fluid mechanics, astrophysics, and plasma physics, NPDEs 

can be used to represent nuclear physics, chemical physics, 

and space plasma. As a result, academics place a high value 

on studying NPDEs and determining their numerical or 

analytical solutions. The Lie group method is among the most 

successful methods developed to obtain the self-similar 
solutions of NPDEs. This approach focuses on studying 

invariant solutions under the one parameter Lie group of 

transformations. Symmetry is investigated using the Lie 

group of transformations in theoretical physics, mechanics, 

and mathematics. We can simplify complex physical systems 

and turn them into solvable equations by applying the 

transformation. 

 

There are many different fields in which the Lie group 

of transformations can be used to solve practical issues. When 

we locate the finding a solution that is invariant under the 

transformations is possible for transformations for which 

PDEs remain invariant. In this work, self-similar solutions for 

one- dimensional cylindrical shock waves propagating in non-

ideal rotating gas with the axial magnetic field effect are 

produced using the Lie group method. In this instance, the 

flow is isothermal as opposed to adiabatic. As stated in Refs. 
[40–42], it is physically more realistic to assume isothermal 

flow when the influence of radiation heat transfer is present 

implicitly. The infinitesimal generators for the Lie group of 

transformations have been calculated using formulations that 

contain arbitrary constants. We have four scenarios to 

determine the potential solutions due to the different constant 

selections. 

 

II. GOVERNING EQUATIONS 
 

We consider a one-dimensional unsteady flow of an 

electrically conducting, viscous, and radiating gas. The 

governing equations are: 

 

Continuity Equation: ∂ρ/∂t + ∂(ρu)/∂x = 0 

 

Momentum Equation: ∂u/∂t + u∂u/∂x = -1/ρ ∂p/∂x + 1/ρ ∂/∂x 

(μ ∂u/∂x) + 1/ρ (B²/μ₀) ∂B/∂x 
 

Energy Equation: ∂E/∂t + ∂ [(E + p)u]/∂x = ∂/∂x (k ∂T/∂x) + 

μ(∂u/∂x)² -∂F_r/∂x 

 

Induction Equation: ∂B/∂t + ∂(uB)/∂x = 0. 

 Boundary Conditions 

For the study of shock wave propagation in non-ideal 

MHD flows with thermal radiation and viscosity, we define 

extended boundary conditions as follows: 
 

 At the shock front (x = x_s): 

u = u_s, ρ = ρ_s, p = p_s, T = T_s, B = B_s 

 

 Far ahead of the shock (x → ∞): 

u → 0, ρ → ρ_∞, p → p_∞, T → T_∞, B → B_∞ 

 

 Behind the shock (x → -∞): 

u → u₀, ρ → ρ₀, p → p₀, T → T₀, B → B₀ 

 

Continuity of heat flux and radiation flux across the 

boundary layers must also be ensured. 

 

III. EQUATION OF STATE FOR NON-IDEAL GAS 
 

In non-ideal MHD shock wave analysis, the behavior 

of real gases deviates from the ideal gas law. The Van der 
Waals and Virial equations of state provide better models 

for these deviations. 

 

 Van der Waals Equation of State 

(P + a/V_m²)(V_m - b) = RT 

 

Where a and b are constants that account for 

intermolecular attraction and finite volume. 

 
 Virial Equation of State 

PV_m / RT = 1 + B(T)/V_m + C(T)/V_m² + ... Where 

B(T), C(T) are temperature-dependent coefficients indicating 

molecular interactions. 

 
 Modified Equation for MHD Applications 

P = ρ R T (1 + ε), where ε accounts for non-ideal and 

radiative/viscous corrections. 
 

IV. SHOCK CONDITIONS AND ENTROPY IN 

NON-IDEAL MHD FLOWS 

 
 Rankine–Hugoniot Shock Conditions 

 

 Mass Conservation: ρ₁u₁ = ρ₂u₂ 

 Momentum Conservation (with magnetic pressure): ρ₁u₁² 

+ p₁ + B₁²/(2μ) = ρ₂u₂² + p₂ + B₂²/(2μ) 

 Energy Conservation (with dissipation and radiation): 

½u₁² + γ/(γ−1)·(p₁/ρ₁) + B₁²/(μρ₁) = ½u₂² + γ/(γ−1)·(p₂/ρ₂) 

+ B₂²/(μρ₂) + Q_visc + Q_rad 

 

V. THEOREM AND PROOF 

 
A. Theorem 1: Entropy Increase Across a Non-Ideal MHD 

Shock with Dissipation 

 
 Statement: 

In a non-ideal MHD flow, the presence of viscosity (μ 

> 0) and thermal radiation (∂F_r/∂x ≠ 0) ensures that the 

entropy s increases across a shock front, i.e., Δs = s₂ - s₁ > 0 
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 Proof: 

Using the first law of thermodynamics, T ds = de + p 

dv, and applying conservation of energy across the shock 

front, including dissipation terms: h + u²/2 |_1^2 = -Φ - q_r, 
where Φ is viscous dissipation and q_r is radiative flux loss. 

 

 Therefore, energy loss across the shock implies: 

(h₂ + u₂²/2) < (h₁ + u₁²/2), and since T₂s₂ - T₁s₁ > 0, it 

follows that s₂ > s₁ ⇒ Δs > 0. Q.E.D. 

 

B. Theorem 2: Pressure Jump Condition in Non-Ideal MHD 

Flow 

 
 Statement: 

For a planar shock in a non-ideal MHD flow, the 
pressure jump across the shock satisfies: p₂ - p₁ > (ρ₁ u₁²)/(1 

+ bρ₁)(1 - u₂/u₁) 

 
 Proof: 

From momentum conservation: ρ₁ u₁² + p₁ = ρ₂ u₂² + p₂ 

⇒ p₂ - p₁ = ρ₁ u₁² - ρ₂ u₂². Using mass conservation: ρ₁ u₁ = ρ₂ 

u₂ ⇒ ρ₂ = ρ₁ (u₁ / u₂). Substitute: p₂ - p₁ = ρ₁ u₁² (1 - (u₁/u₂²)). 

Using non-ideal gas law p = RρT(1 + bρ), the effective 

pressure increases with b. Hence, p₂ - p₁ > (ρ₁ u₁²)/(1 + bρ₁)(1 

- u₂/u₁). Q.E.D. 

 

C. Theorem 3: Magnetic Field Effect on Shock Compression 

Ratio 

 
 Statement: 

In MHD shocks, an increase in transverse magnetic field 

B reduces the compression ratio r = ρ₂ / ρ₁. 

 

 Proof: 

Total pressure in MHD includes magnetic pressure: 

p_total = p + B²/(2μ₀). Across the shock: p₁ + B₁²/2μ₀ + ρ₁ 

u₁² = p₂ + B₂²/2μ₀ + ρ₂ u₂². Using ρ₁ u₁ = ρ₂ u₂ ⇒ ρ₂ = ρ₁ u₁ / 

u₂. As B increases, the term B²/2μ₀ increases, resisting 

compression and lowering density jump. Thus, compression 

ratio r = ρ₂ / ρ₁ decreases. Q.E.D. 

D. Theorem 4: Effect of Viscosity on Shock Thickness 

 
 Statement: 

In a non-ideal MHD flow, the presence of viscosity 
increases the thickness of the shock front, making the 

transition zone smoother compared to an inviscid flow. 

 

 Proof: 

In inviscid flow models (ideal MHD), shock fronts are 

considered infinitesimally thin discontinuities. But when 

viscosity is introduced, the governing Navier–Stokes–MHD 

equations include a viscous term: τ = μ (∂u/∂x) The 1D 

momentum conservation equation becomes: ∂u/∂t + u ∂u/∂x 

= -1/ρ ∂p/∂x + μ/ρ ∂²u/∂x² 

 

The presence of the second derivative term acts to 

smoothen out sharp gradients in velocity, resulting in a finite 

shock thickness. The greater the viscosity μ, the smoother 

and wider the transition zone Hence proved. 

 

E. Theorem 5: Thermal Radiation Reduces Shock Strength 

 
 Statement: 

In non-ideal MHD flows, thermal radiation leads to 

energy loss, which reduces the shock strength and limits 

post-shock pressure and temperature. 

 

 Proof: 

Shock strength is commonly measured by the jump in 

pressure and temperature across the shock front. The total 

energy equation in radiative MHD is: ∂E/∂t + ∂[(E + p)u]/∂x 

= μ(∂u/∂x)² - ∂F_r/∂x 

 

Here, ∂Fr/∂x represents energy loss due to radiative 

heat flux. This term reduces the total energy available in the 

post-shock region, thereby lowering pressure and 

temperature. Thus, the shock strength (pressure/temperature 

jump) is diminished in presence of thermal radiation Hence 
proved.
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VI. SIMULATION RESULTS 
 

The following figure shows the profiles of velocity, pressure, density, and entropy across the shock front in a non-ideal MHD 

medium with viscous and radiative effects. 
 

 
Fig 1 Velocity Profile Across Sho& Density Profile Across 

 

VII. CONCLUSION 
 

This research presents a theoretical framework for 

shock wave behavior in non-ideal MHD flows considering 

viscous and radiative dissipation. Theorems confirm the 

entropy increase and demonstrate key roles played by non-

ideal parameters and magnetic field strength. Future work 

can focus on numerical simulations with oblique shocks and 

experimental validation.  
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