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Abstract: Clustering is a fundamental task in machine learning and data analysis, enabling the discovery of inherent patterns 

within data. Nonnegative Matrix Factorization (NMF) has emerged as a powerful tool for clustering due to its ability to 

learn parts-based, interpretable representations. This article explores the theoretical foundations of clustering and NMF, 

their synergy, algorithmic formulations, and practical implementations. Experimental validation on synthetic data 

demonstrates the effectiveness of NMF-based clustering without using libraries such as sklearn or tensorflow. 
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I. INTRODUCTİON 

 
Clustering aims to partition data into groups such that 

objects within a group are more similar to each other than to 

those in other groups. Traditional methods like k-means often 

struggle with interpretability. NMF provides an alternative by 

decomposing a data matrix into two nonnegative factors, 

often revealing latent structures conducive to clustering 

[1][2]. 

 

II. MATHEMATİCAL FOUNDATİONS 

 

Let X ∈ R^{m×n} be a Nonnegative data Matrix. NMF 

Seeks Matrices W ∈ R^{m×r} and H ∈ R^{r×n} such that: 

 

X≈WH,  

 

Subject to: 

 

W ≥ 0, H ≥ 0 
 

 Where: 

 

 R is the rank or number of latent features (often equals the 

number of clusters). 

 Columns of W represent basis vectors. 

 Columns of H represent encoding vectors. 

 

 The Objective is Typically to Minimize: 

 

L(W, H) = ||X - WH||_F^2 
 

Where ||.||_F is the Frobenius norm. 

 

III. NMF FOR CLUSTERİNG 

 
Once matrix H is obtained, clustering can be performed 

by assigning each column h_j of H to the cluster with the 

highest value: 

 

Cluster(j) = argmax_k H_{k,j} 

 

This approach aligns with soft clustering and part-based 

representation, offering improved interpretability [3-7]. 

 

IV. ALGORİTHM IMPLEMENTATİON 

 
The multiplicative update rules (Lee & Seung) for 

minimizing the loss function are: 

 

H ← H ⊙ (WᵗX)/(WᵗWH + ε) 

 

W ← W ⊙ (XHᵗ)/(WHHᵗ + ε) 

 

Where ⊙ denotes element-wise multiplication, and ε is 

a small constant to prevent division by zero.[8-12] 

 

V. PYTHON IMPLEMENTATİON 

 

İmport numpy as np 

İmport matplotlib.pyplot as plt 

İmport matplotlib.cm as cm 

 

# Generate synthetic nonnegative data 

np.random.seed(0) 

n_samples = 200 

n_features = 10 

n_clusters = 3 
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# Create three cluster centers 
centers = np.random.rand(n_clusters, n_features) * 10 X = 

np.vstack([center + np.random.rand(1, n_features) * 2 for 

center in centers for _ in range(n_samples // n_clusters)]) 

 

# Initialize W and H 

def initialize_nmf(X, r): 

m, n = X.shape 

W = np.abs(np.random.randn(m, r)) 

H = np.abs(np.random.randn(r, n)) 

return W, H 

 

# Multiplicative update rules 
def nmf(X, r, max_iter=100, epsilon=1e-9): 

m, n = X.shape 

W, H = initialize_nmf(X, r) 

for i in range(max_iter): 

H *= (W.T @ X) / (W.T @ W @ H + epsilon) 

W *= (X @ H.T) / (W @ H @ H.T + epsilon) 

return W, H 

 

# Perform NMF 

r = n_clusters 

W, H = nmf(X.T, r, max_iter=300) 
 

# Assign clusters based on H 

labels = np.argmax(H, axis=0) 

 

# Visualize 

colors = cm.rainbow(np.linspace(0, 1, r)) 

plt.figure(figsize=(8, 6)) 

for i in range(r): 

 

cluster_points = X[labels == i] 

plt.scatter(cluster_points[:, 0], cluster_points[:, 1],  

color=colors[i], label=f'Cluster {i}') 
plt.title("Clustering using NMF (Without  

sklearn/tensorflow)") 

plt.xlabel("Feature 1") 

 

plt.ylabel("Feature 2") 

plt.legend() 

plt.grid(True) 

plt.show() 

 

 Output of the Code 

 

 
Fig 1Clustering using NMF 
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VI. RESULTS AND DİSCUSSİON 
 

The visualization reveals clear groupings in synthetic 

data, demonstrating the power of NMF for clustering. Each 

cluster is distinguishable in feature space. This confirms 

literature findings that NMF provides a natural 

decomposition aligned with clustering structures 

[13][20].(Figure-1) 

 

VII. CONCLUSİON 

 

NMF is an effective method for unsupervised 

clustering, especially when interpretability and part-based 
representations are essential. Its compatibility with 

nonnegative data and interpretable latent spaces make it 

especially suitable for document clustering, image analysis, 

and bioinformatics.[21-25] 
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