AI Automated Inventory Manager

Kushi S

Global Academy of Technology, Bangalore

Publication Date: 2025/07/02

Abstract: This paper presents a comprehensive AI-powered smart inventory management system designed for small to midlevel retail environments. The proposed system leverages weight sensors for real-time inventoryupdates, removing the need for manual data entry. It enhances inventory reliability, minimizes human error, and optimizes operations through predictive analytics, automated alerts, and intelligent suggestions.

Keywords: Inventory Automation, Weight Sensors, Theft Detection, Expiry Tracking, AI Reordering, Smart Billing, Demand Forecasting, Sustainability, SQLite, Python.

How to Cite: Kushi S (2025) AI Automated Inventory Manager. *International Journal of Innovative Science and Research Technology*, 10(6), 2239-2240. https://doi.org/10.38124/ijisrt/25jun1564

I. INTRODUCTION

Traditional inventory systems rely heavily on manual input or barcode scanning, making them inefficient for small retailers who cannot afford complex setups. This paper introduces a cost-effective AI-based systemthat automates inventory management using weight sensors and predictive intelligence.

II. SYSTEM OVERVIEW

The core of the system revolves around continuously monitoring the weight of items placed in fixed slots. Each slot corresponds to a known item with predefined weight and space metrics. AI compares the expected weight with real-time data to infer inventory usage without human intervention.

III. KEY FEATURES

➤ Auto-Inventory Update via Weight:

Items are tracked automatically based on real-time slot weight. No manual entry needed.

➤ Theft Detection:

If weight decreases without a corresponding sale, the system flags it as potential theft or error.

> Expiry Tracking:

Integrates expiry dates with stock weight. AI alerts when expiring items remain unsold.

> Space Optimization Suggestions:

AI recommends item placement optimization based on item frequency and slot usage patterns.

> Monthly Profit Prediction:

Uses weight-sold data to calculate expected profits, aiding financial planning.

➤ Demand Forecasting:

AI predicts future demand based on past weight changes and sales trends.

> Automatic Supplier Notifications:

When stock hits lower limits, the system automatically prepares an order and simulates WhatsApp/SMS notifications.

> Smart Billing with Slot Guidance:

The system assists in order picking by identifying the exact slot location of ordered items.

➤ Voice-Controlled Inventory Check:

Shopkeeper can query item stock via voice command, promoting hands-free access.

> Sustainability Scoring:

Tracks waste due to expiry and provides suggestions to minimize environmental impact.

> Customer Purchase Trend Analysis:

Identifies regular customers' habits and recommends discounts to improve loyalty.

https://doi.org/10.38124/ijisrt/25jun1564

IV. IMPLEMENTATION TECHNOLOGIES

• Programming Language: Python

• Database: SQLite

• AI Models: Rule-based + Lightweight Predictive ML (Optional)

• Hardware Interface: Simulated weight sensors

V. RESULTS AND BENEFITS

- Drastic reduction in manual entry and human error.
- Theft reduction through real-time anomaly detection.
- Efficient stock management with predictive restocking.
- Increased profitability and customer satisfaction.
- Highly suitable for Indian local stores and rural applications.

VI. CONCLUSION

The AI-powered smart inventory system introduces a reliable, efficient, and practical solution for small retailers.It bridges the gap between high-end warehouse technology and affordablere tail operations using AI and weight-based automation.

REFERENCES

- [1]. "AI in Inventory Management", IEEE Access, 2023.
- [2]. OpenAI Codex API for code logic.
- [3]. SQLite documentation.
- [4]. Retail inventory case studies, McKinsey & Co, 2024.