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Abstract: This study develops a predictive maintenance framework for a 500kVA diesel generator using advanced machine 

learning techniques, aiming to enhance reliability and operational efficiency. The research involves the collection of real-

world operational data at one-minute intervals over two months, focusing on critical parameters such as bearing 

temperature, engine vibration, and coolant temperature. Two machine learning models—XGBoost and Multi-Layer 

Perceptron (MLP)—were trained to classify generator conditions into distinct maintenance categories with high accuracy. 

A meta-learning ensemble approach was implemented, integrating the predictions from these models to leverage their 

complementary strengths and enhance robustness. The results demonstrate exceptional performance, with both individual 

and ensemble models achieving precision, recall, and F1-scores near 1.00 across multiple fault scenarios. The meta-learning 

framework proved particularly effective, showcasing improved reliability over standalone models. This study’s 

contributions are twofold: it advances the state of predictive maintenance by employing hybrid modelling techniques and 

addresses a critical gap in the proactive management of high-capacity diesel generators. The research underscores the 

practical applicability of machine learning in industrial contexts, offering a scalable and sustainable solution to minimise 

downtime, reduce maintenance costs, and optimise equipment longevity. By integrating robust data analysis with cutting-

edge machine learning, this framework establishes a foundation for proactive, data-driven maintenance strategies in 

industrial settings, aligning with the broader goals of Industry 4.0 and sustainable industrial practices. 

 
How to Cite: Olokede, Oluwagbemiga; Evans Ashigwuike. (2025). Development of a Predictive Maintenance Algorithm for a 

Diesel Generator using Machine Learning. International Journal of Innovative Science and Research Technology,  

10(3), 1417-1427. https://doi.org/10.38124/ijisrt/25mar1226. 

 

I. INTRODUCTION 

 

Predictive maintenance (PdM) has emerged as a vital 

component of Industry 4.0, significantly transforming 

traditional maintenance strategies. By leveraging advanced 

analytics and machine learning (ML), PdM predicts 

equipment failures before they occur, minimising downtime 

and enhancing operational efficiency. Unlike reactive and 
scheduled maintenance, which either wait for failures or 

follow predetermined schedules, PdM integrates real-time 

data, historical trends, and computational models to 

recommend maintenance only when necessary. This 

approach not only reduces costs but also extends the lifespan 

of equipment by avoiding unnecessary interventions [1], [2]. 

 

The advent of IoT and the proliferation of data 

collection technologies have been pivotal in driving PdM 

adoption. Sensors embedded in industrial systems provide 

real-time monitoring of critical parameters such as 
temperature, vibration, and pressure, enabling high 

granularity in data acquisition [3]. The integration of IoT with 

ML allows for seamless data processing and enhanced 

decision-making. Recent advancements in XGBoost, neural 

networks, and ensemble learning have further elevated the 

accuracy and robustness of PdM systems, surpassing 

traditional statistical methods [4]. 

 

Explainable artificial intelligence (XAI) is becoming 

increasingly relevant in PdM to ensure that insights generated 

by ML models are interpretable and actionable. This has 

catalysed trust and adoption in sectors such as manufacturing, 
aerospace, and energy, where safety and reliability are 

paramount. Furthermore, PdM strategies are aligning with 

sustainability goals, as predictive capabilities reduce energy 

consumption and material wastage, aligning with green 

manufacturing initiatives [5], [6]. 

 

Despite its advantages, challenges persist, including the 

heterogeneity of datasets, scalability across diverse 

industries, and integration with legacy systems. Continuous 

research is addressing these gaps, with novel frameworks 

incorporating product quality parameters and multivariate 
statistical models, making PdM a versatile and adaptive 

solution for complex industrial environments [7]. 
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In this study, we aim to develop a predictive 

maintenance algorithm for a  diesel generator using machine 
learning techniques. Machine learning models, specifically 

XGBoost and Multi-Layer Perceptron (MLP), were 

developed and trained to classify the generator’s condition 

into distinct maintenance categories with high precision and 

recall. Additionally, a meta-learning ensemble approach was 

implemented to integrate the predictions of these models, 

capitalising on their complementary strengths to enhance 

robustness. Key steps included data preprocessing to handle 

missing values and noise, feature selection guided by a 

correlation heatmap, and iterative model optimisation. Model 

performance was evaluated using precision, recall, F1-score, 
and accuracy metrics to ensure reliability across diverse fault 

scenarios. 

 

The growing complexity of industrial systems, 

including high-capacity diesel generators, necessitates 

advanced maintenance strategies to prevent unexpected 

failures and optimise resource utilisation. Traditional 

maintenance approaches are increasingly inadequate in 

addressing the dynamic and multifaceted nature of modern 

equipment. This study addresses these gaps by integrating 

cutting-edge machine learning techniques into a predictive 

maintenance framework. By using ensemble learning, it 
aligns with best practices recommended in recent literature, 

which highlight the efficacy of hybrid models in improving 

prediction accuracy and reducing false positives  [8], [9]. 

 

II. LITERATURE REVIEW 

 

The empirical review draws from several relevant 

publications to contextualise the development of a predictive 

maintenance algorithm for a 500kVA diesel generator using 

machine learning techniques. A consistent theme across the 

reviewed literature is the pursuit of more effective and 
efficient maintenance strategies through the intelligent 

analysis of operational data. In exploring optimal power 

distribution, [10] investigates the integration of distributed 

diesel generators into power systems in Iraq, with a focus on 

addressing operational challenges and developing algorithms 

for optimal power distribution. While the research provides 

valuable insights into the integration and operational 

efficiency of diesel generators, it lacks a direct focus on 

predictive maintenance, limiting its applicability for fault 

detection and classification strategies essential for 

maintenance optimisation. 
 

[11] examined load forecasting at a microgrid level 

using machine learning algorithms to optimise grid load 

management. The study demonstrates the efficacy of 

predictive techniques in managing operational states, 

providing a foundation for forecasting methodologies. 

However, its emphasis on load balancing rather than 

maintenance prediction diverges from the specific objectives 

of maintenance category classification. 

 

 

 
 

[12] explored the development of a microgrid control 

system leveraging deep reinforcement learning techniques. 
The research validates the effectiveness of reinforcement 

learning in optimising control decisions in systems that 

include a diesel generator. Despite its robust control 

framework, the study does not directly address predictive 

maintenance analytics for fault detection or preventive 

maintenance classification. 

 

[13] proposed a machine learning approach to forecast 

capacitor bank requirements for improving grid efficiency. 

While this research underscores the potential of machine 

learning in real-time decision-making and energy 
optimisation, its focus is more aligned with grid management 

than predictive maintenance strategies. 

 

[14] present a Maximum Power Point Tracking (MPPT) 

algorithm that integrates real-time analytics for enhanced 

control of industrial power systems. The study highlights the 

role of predictive analytics in improving system performance 

but is more focused on system control than on predictive 

maintenance for diesel generators. 

 

[15] investigate the optimisation of post-disaster 

microgrid control using multi-agent deep reinforcement 
learning. Their findings demonstrate the predictive 

capabilities of reinforcement learning algorithms in dynamic 

environments. However, the primary focus is on control 

response strategies rather than routine maintenance 

prediction. 

 

[16] conduct a ferrographic study of wear particles in 

used oil from power generation machinery, contributing to 

operational parameter monitoring. Although this approach 

provides valuable insights into wear and fault detection, it 

does not incorporate advanced machine learning methods for 
predictive maintenance. 

 

[17] examines islanding detection using distributed 

generator systems and an artificial bee colony algorithm. 

While the study offers important insights into system 

monitoring and health assessment, it diverges from the 

development of predictive maintenance strategies using 

machine learning techniques. 

 

[18] explore hybrid renewable energy systems 

integrating photovoltaics, wind turbines, diesel engines, and 
batteries. The study focuses on system optimisation for rural 

electrification but lacks emphasis on predictive maintenance 

analytics for diesel generators. 

 

[19] apply reinforcement learning to optimise the tuning 

of grid-connected inverter controllers in microgrids. 

Although the research demonstrates the predictive potential 

of machine learning, its focus remains on inverter control 

rather than predictive maintenance classification for 

generator conditions. 
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The reviewed works reveal significant advancements in 

applying machine learning for load forecasting, energy 
optimisation, and control strategies within energy systems. 

However, a gap emerges in the specific development of 

predictive maintenance frameworks tailored for large diesel 

generators. Most studies, including those by [10], [11], 

prioritise energy management and system control over fault 

detection and maintenance strategies. Furthermore, while 

methodologies such as reinforcement learning [12] and fuzzy 

logic systems [14] offer robust decision-making capabilities, 

their application to predictive maintenance for diesel 

generators remains limited or absent. 

 
The current research aims to address these gaps by 

developing a comprehensive predictive maintenance 

algorithm that integrates operational parameter monitoring 

and fault scenario characterisation with advanced machine 

learning techniques. By leveraging models such as XGBoost 

and Multi-Layer Perceptron Neural Networks, combined into 

a meta-learning ensemble framework, this research will 

enhance predictive accuracy and robustness. The proactive 

classification of generator conditions into distinct 

maintenance categories will offer actionable insights, 

advancing maintenance strategies beyond what existing 

models provide. 

 

III. RESEARCH METHODOLOGY 

 

A. Research Design 

This study used a quantitative approach to develop a 

predictive maintenance system for a 500kVA diesel 

generator. The project combined multiple machine learning 

models to predict maintenance needs more accurately than 

traditional methods as shown in Figure 1. 

 

We used two main machine learning techniques: 
XGBoost and Multi-Layer Perceptron neural networks. 

These were chosen to analyse complex equipment data and 

identify potential failures. The system collected operational 

data every minute for two months, providing detailed insights 

into the generator's performance under various conditions. 

 

We adopted an ensemble learning approach, combining 

different models to overcome individual limitations. This 

method merged the strengths of each model to create more 

reliable predictions. The framework was designed to be 

practical and adaptable to similar industrial equipment. 
 

 
Fig 1: Research Methodology Algorithm 

 

This design bridges the gap between theoretical 

machine learning and practical maintenance needs, creating a 

system that can turn complex operational data into useful 

maintenance recommendations. 

 

B. Data Collection 

Data was collected from a diesel generator at a 

manufacturing company in Abuja, Nigeria, over two months. 
The system recorded measurements every minute to track the 

generator's performance. 

 

The monitoring system captured several key 

parameters: oil contamination and viscosity, bearing 

temperature, engine vibration, mechanical noise, coolant 

temperature, heat dissipation, and various electrical readings. 

These measurements provided a comprehensive view of the 

generator's operational state. 

 

As shown in Table 3.1, the data was organised into 

distinct maintenance categories. These included Oil Change 
Required (M001), Engine Alignment Adjustment (M010), 

Cooling System Maintenance (C001), No Immediate 

Maintenance (N000), Short-Circuit Maintenance (S001), 

Overload Protection Maintenance (O002), Frequency 

Adjustment Maintenance (F003), Voltage Regulation 

Maintenance (V004), and Electrical Diagnostics (E005). 

 

High-precision sensors monitored the generator in real 

time, recording both normal operations and fault conditions. 

Each reading included a timestamp for detailed analysis. We 

then processed the data to ensure its quality before using it in 
our machine learning models. 
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C. Data Preprocessing and Feature Engineering 

The first step in developing the predictive maintenance 
model involved cleaning the data to remove anomalies and 

inconsistencies, as shown in Figure 2. This process included 

addressing missing values, removing outliers, and 

standardising the format of timestamps and sensor readings 

to ensure accurate predictions. 

 

 
Fig 2: Data Preprocessing and Feature Engineering Block 

Diagram 

 

After cleaning, the most relevant parameters that 

influence maintenance needs were identified. These 

parameters include bearing temperature, oil viscosity, engine 

vibration, and coolant temperature. These parameters were 

chosen based on their relationship with specific fault 

scenarios. We then standardised the numerical values through 

scaling and normalisation to ensure all features had equal 

importance during model training. The maintenance 
categories were converted into numerical values to make 

them compatible with our machine learning algorithms. 

 

D. XGBoost Model 

This research used XGBoost for maintenance prediction 

because of its effectiveness with tabular data. As shown in 

Figure 3, the model uses multiple decision trees, with each 

new tree improving upon the previous ones' results. This 

approach allows the model to predict various maintenance 

categories accurately. 
 

 
Fig 3: XGBoost Model Algorithm 

 

We optimised the model's performance by carefully 

selecting key settings, including learning rate, tree depth, and 

boosting rounds, using Grid Search Cross-Validation. To 

prevent overfitting, we included regularisation parameters. 

The data was split with 80% for training and 20% for testing. 
We addressed any imbalance in maintenance categories using 

the scale_pos_weight parameter and employed multi:softmax 

for handling multiple maintenance categories. The model's 

accuracy and reliability were thoroughly evaluated through 

classification reports. 

 

E. Multi-Layer Perceptron Neural Network 

The Multi-Layer Perceptron (MLP) neural network 

employed a deep learning approach for predictive 

maintenance analysis, designed to capture complex 

relationships within the diesel generator data. The 

architecture balanced model complexity with 
generalisability, as shown in Figure 4. 

 

Table 1: Data Categorisation 

Category Code Parameter No 

Maintenance 

Range 

Fault 

Scenario 

Range 

Cause 

Oil Change 

Required [20] 

M001 Oil Contamination (%) 0–3 >5 Aging oil or contamination 

by debris 

Oil Viscosity (cSt) 8–12 <7 Degradation due to heat or 

contaminants 

Bearing Temperature 

(°C) 

80–90 95–110 Heat transfer inefficiency 

Engine Alignment 

Adjustment [21] 

M010 Engine Vibration 

(mm/s) 

0.5–0.8 >1.2 Misalignment, wear, or 

imbalance 
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Mechanical Noise (dB) 30–50 >60 Increased wear or loose 

components 

Cooling System 

Maintenance [22] 

C001 Coolant Temperature 

(°C) 

75–85 >95 Radiator blockage, pump 

failure 

Heat Dissipation (%) >90 <80 Reduced cooling efficiency 

No Immediate 
Maintenance [23] 

N000 All Parameters Within Normal 
Ranges 

Not 
Applicable 

Normal operating 
conditions 

Short-Circuit 

Maintenance[24] 

S001 AC Current (A) 45–55 >70 (Short 

Circuit) 

Cable or winding faults 

Voltage Fluctuations 

(%) 

<3 >5 Sudden electrical failures 

Overload Protection 

Maintenance  [25] 

O002 AC Current (A) 45–55 60–70 

(Overload) 

Excessive load 

Bearing Temperature 

(°C) 

80–90 >95 Overheating due to 

overload 

Frequency 

Adjustment 

Maintenance 

F003 Output Frequency (Hz) 49.9–50.1 <49.5 or 

>50.5 

Governor faults or 

unbalanced loads 

Voltage Regulation 

Maintenance [26] 

V004 Voltage Fluctuations 

(%) 

0.5–3 >5 Alternator or AVR 

malfunction 

Electrical 

Diagnostics [26] 

E005 Current Imbalance (%) <1 >3 Load mismanagement or 

aging components 

Winding Temperature 

(°C) 

30–60 >70 Winding aging, winding 

insulator loss, overloading, 

faulty winding cooling 
system 

 

 
Fig 4: MLP Neural Network Architecture 

 

 Network Architecture 

The MLP neural network consisted of three primary 

layers: an input layer, two hidden layers, and an output layer. 

The input layer accommodated the preprocessed generator 

operational data. The first hidden layer contained 128 neurons 

for capturing feature interactions, while the second hidden 

layer used 64 neurons for refining feature representations. 

 

 Layer Configuration 

Each hidden layer transformed the input features 

progressively. The first hidden layer's 128 neurons served as 
a feature extraction mechanism, identifying patterns across 

operational parameters. The subsequent 64-neuron layer 

distilled these representations into sophisticated feature 

mappings for maintenance prediction. 

 

 Activation Functions 

The hidden layers employed Rectified Linear Unit 

(ReLU) activation functions for computational efficiency and 

gradient optimization. The output layer used a softmax 

activation function for multi-class classification across 

maintenance categories with probabilistic interpretations. 

 

 Training Parameters 

The network implementation used the Adam optimizer 

with categorical cross-entropy as the loss function. A 

validation split of 20% enabled performance assessment and 
early stopping. Dropout regularization at 20% in both hidden 

layers prevented overfitting. The training process ran for 100 

epochs with batch sizes of 16, balancing learning 

convergence with computational efficiency. 
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F. Meta-Learning Ensemble Hybrid 

The Meta-Learning Ensemble Hybrid approach 
combined multiple machine learning models to enhance 

maintenance forecast accuracy. This strategy integrated the 

XGBoost classifier and MLP neural network into a hybrid 

model, as illustrated in Figure 1. 

 

The ensemble used a stacking approach where a meta-

model, typically a logistic regression classifier, combined 

predictions from base models. This integration leveraged 

XGBoost's strength in handling tabular data and MLP's 

capability for non-linear relationships. The prediction fusion 

technique stacked outputs from both models into a new 
feature set for the meta-model, generating final predictions 

with improved accuracy and reliability. 

 

G. Performance Evaluation and Validation 

The evaluation process assessed the predictive 

maintenance algorithm's reliability and effectiveness through 

several key measurements. The main metric used was 

classification accuracy, which showed how often the model 

correctly predicted maintenance needs. The analysis also 

included precision, recall, and F1-scores for each 

maintenance category to provide detailed insight into the 

model's performance. 
 

A confusion matrix served as an essential analytical 

tool, comparing predicted maintenance categories against 

actual requirements. This matrix tracked correct predictions, 

incorrect category assignments, missed predictions, and 

correct identification of non-maintenance scenarios. These 

measurements helped identify any biases in the predictive 

models and highlighted which maintenance categories were 

difficult to distinguish. 
 

The evaluation process included a detailed statistical 

summary for each maintenance category through a 

classification report. This report measured the accuracy of 

positive predictions, the model's ability to find relevant cases, 

and provided a balanced assessment through the F1-score. To 

ensure reliable validation and prevent overfitting, the study 

employed a five-fold cross-validation technique. This method 

divided the data into five parts, maintaining the original 

distribution of maintenance categories while testing the 

model's performance across different data combinations. 
 

The final analysis compared the performance of three 

models: the XGBoost Classifier, Multi-Layer Perceptron 

Neural Network, and Meta-Learning Ensemble Hybrid 

Model. This comparison revealed each model's strengths and 

limitations in predicting maintenance requirements for the 

diesel generator. Through these comprehensive evaluation 

methods, the study established the reliability and 

effectiveness of the predictive maintenance system. 

 

IV. RESULTS AND DISCUSSION 

 
A. Exploratory Data Analysis 

The research commenced with a comprehensive data 

visualisation approach to explore the intricate relationships 

between various operational parameters of the 500kVA diesel 

generator. Figure 5 presents a correlation heatmap that 

illuminates the interdependencies between key variables 
monitored during the study. 

 

 
Fig 5: Correlation Heatmap Graph 

 

The trend analysis depicted in Figure 6 provides a 

temporal representation of critical parameters, namely 

bearing temperature, winding temperature, and engine 

vibration. This visualisation offers insights into the dynamic 

behaviour of these essential indicators throughout the 

generator's operational lifecycle. 

 

https://doi.org/10.38124/ijisrt/25mar1226
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                     https://doi.org/10.38124/ijisrt/25mar1226 

 

 

IJISRT25MAR1226                                                             www.ijisrt.com                                                                                    1423 

 
Fig 6: Bearing Temperature, Winding Temperature and Engine Vibration Trend 

 

Figure 7 illustrates the distribution of bearing 

temperatures, which is crucial for understanding the thermal 

characteristics and potential stress points within the 

generator's mechanical system. A detailed examination of the 

temperature distribution can reveal patterns indicative of 

impending mechanical deterioration. 

 

A comprehensive multivariate analysis is presented in 

Figure 8, which showcases a pairplot exploring the 

relationships between bearing temperature, engine vibration, 

oil contamination, and coolant temperature. This 

visualisation enables a nuanced understanding of the complex 

interactions among these critical operational parameters. 

 
Fig 7: Bearing Temperature Distribution 
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Fig 8: Pairplot of Bearing Temperature, Engine Vibration, Oil Contamination and Coolant Temperature 

 
B. Model Prediction Results 

The predictive maintenance framework evaluation 

employed three advanced machine learning approaches: 

XGBoost, Multi-Layer Perceptron (MLP) Neural Network, 

and a Meta-Learning Hybrid Model. Table 3 presents a 

comprehensive classification report detailing the 

performance metrics across eight maintenance categories. 

 

The classification results demonstrated exceptional 
predictive capabilities. The XGBoost model achieved perfect 

precision, recall, and F1-scores of 1.0 across seven classes, 

with class 5 showing a marginal reduction in recall to 0.99. 

The MLP Neural Network and Meta-Learning Hybrid Model 

exhibited comparable performance, achieving perfect or near-

perfect metrics across all categories. 

As presented in Table 2, the MLP Neural Network 

achieved optimal accuracy at 1.0, while both the XGBoost 

and Meta-Learning Hybrid Model demonstrated exceptional 

performance at 0.9994.  

 

Table 2: Model Performance Report 

Model Accuracy 

XGBoost 0.9994 

MLP 1.0 

Meta-Learning Hybrid Model 0.9994 

 

The confusion matrices illustrated in Figures 9, 10, and 

11 provide visual validation of the models' classification 

performance, demonstrating precise categorisation across 
maintenance scenarios. 

 

Table 3: Model Classification Report 

Class Precision Recall F1-Score Support Model 

0 1 1 1 200 XGBoost 

1 1 1 1 200 XGBoost 

2 1 1 1 200 XGBoost 

3 1 1 1 200 XGBoost 

4 1 1 1 200 XGBoost 

5 1 0.99 1 200 XGBoost 

6 1 1 1 200 XGBoost 

7 1 1 1 200 XGBoost 

0 1 1 1 200 MLP 

1 1 1 1 200 MLP 

2 1 1 1 200 MLP 

3 1 1 1 200 MLP 

4 1 1 1 200 MLP 

5 1 1 1 200 MLP 
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6 1 1 1 200 MLP 

7 1 1 1 200 MLP 

0 1 1 1 200 Meta-Learning Hybrid Model 

1 1 1 1 200 Meta-Learning Hybrid Model 

2 1 1 1 200 Meta-Learning Hybrid Model 

3 1 1 1 200 Meta-Learning Hybrid Model 

4 1 1 1 200 Meta-Learning Hybrid Model 

5 1 0.99 1 200 Meta-Learning Hybrid Model 

6 1 1 1 200 Meta-Learning Hybrid Model 

7 1 1 1 200 Meta-Learning Hybrid Model 

 

 
Fig 9: XGBoost Confusion Matrix 

 

 
Fig 10: MLP Confusion Matrix 

 

 
Fig 11: Hybrid Model Confusion Matrix 

C. Discussion of Results 
The research successfully developed an advanced 

predictive maintenance framework for a 500kVA diesel 

generator through sophisticated machine learning 

methodologies. Data visualisation revealed intricate 

relationships between operational parameters, with the 

correlation heatmap (Figure 4.1) demonstrating complex 

interconnections among generator variables. This 

visualisation proved essential for understanding the 

multidimensional nature of mechanical system behaviour. 

 

Trend analysis of bearing temperature, winding 

temperature, and engine vibration (Figure 4.2) revealed 
critical temporal variations, indicating that continuous 

monitoring provides early indicators of mechanical stress. 

The bearing temperature distribution (Figure 4.3) further 

validated this approach by identifying thermal characteristics 

indicative of emerging mechanical anomalies. 

 

The machine learning models demonstrated exceptional 

performance. The XGBoost model achieved 0.9994 

accuracy, with near-perfect precision across maintenance 

categories. The MLP Neural Network achieved optimal 

accuracy at 1.0, while the Meta-Learning Hybrid Model 
matched XGBoost's performance. These results validate the 

effectiveness of advanced machine learning techniques in 

predictive maintenance applications. 

 

D. Comparative Analysis 

This study advances the field of predictive maintenance 

through innovative integration of XGBoost, MLP, and meta-

learning ensemble techniques. Previous research, such as the 

2021 IoT-enabled predictive maintenance study for diesel 

generators, focused primarily on real-time monitoring 

without incorporating advanced ensemble techniques [27]. 

Similarly, the 2023 case study employing Random Forest and 
Support Vector Machines, while comprehensive, lacked the 

hybrid robustness achieved through MLP and XGBoost 

integration [28]. 

 

The research's significance lies in its innovative 

methodology, delivering superior precision and recall across 

multiple fault categories while demonstrating scalability 

through hybrid ensemble modelling. This approach 

transcends previous studies that relied on standalone models 

or IoT-based diagnostics, establishing a new benchmark for 

fault diagnosis in critical systems. The framework's 
integration of diverse machine learning capabilities ensures 
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broader applicability and enhanced reliability for complex 

industrial machinery. 

 

V. CONCLUSION AND RECOMMENDATIONS 

 

A. Summary of Research 

This research developed and validated an advanced 

predictive maintenance framework for a diesel generator 

using sophisticated machine learning techniques. The study 

integrated multiple approaches, including XGBoost, Multi-

Layer Perceptron Neural Network, and a Meta-Learning 

Hybrid Model. Data collection spanned two months, 

capturing operational parameters at one-minute intervals. The 
models achieved exceptional accuracy, with the MLP Neural 

Network reaching perfect accuracy (1.0) and both XGBoost 

and Meta-Learning Hybrid Models achieving 0.9994 

accuracy. The framework demonstrated robust capabilities in 

predicting maintenance requirements across eight distinct 

categories, establishing a significant advancement in 

predictive maintenance technology. 

 

B. Conclusion 

The research successfully established the effectiveness 

of machine learning-based predictive maintenance for 

industrial diesel generators. The developed framework 
demonstrated unprecedented accuracy in maintenance 

prediction, surpassing traditional maintenance approaches. 

Through comprehensive data analysis and advanced model 

integration, the study validated the potential for significant 

improvements in equipment reliability and operational 

efficiency. The meta-learning approach proved particularly 

effective, combining the strengths of multiple algorithms to 

enhance prediction reliability. These findings represent a 

significant contribution to the field of predictive 

maintenance, offering practical solutions for industrial 

equipment management. 
 

C. Recommendations 

 

 Implementation of real-time monitoring systems 

integrated with the developed predictive maintenance 

framework to enable immediate fault detection and 

response. 

 Extension of the data collection period beyond two 

months to capture seasonal variations and long-term 

degradation patterns in generator performance. 

 Development of a standardised implementation protocol 
for deploying the predictive maintenance framework 

across various industrial settings and generator 

specifications. 

 Integration of additional sensor technologies and data 

streams to enhance the model's predictive capabilities and 

expand its application to diverse industrial equipment. 

 

D. Research Limitations 

Study limitations include the focus on a single generator 

type and a two-month data collection period. Future research 

opportunities include expanding the dataset, incorporating 

diverse generator models, and exploring additional machine 
learning techniques to further validate and extend these 

findings. 
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