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Abstract: Ensuring road safety requires continuous inspection and maintenance of critical infrastructure such as lane 

markings, signboards, and barriers. Traditional manual inspections are time-consuming, expensive, and prone to 

inconsistencies, leading to delays in identifying deteriorated safety products and increasing accident risks. This study 

presents an AI-powered solution that automates road safety audits using computer vision[1]. An object detection model 

identifies road safety elements, and a segmentation model evaluates their deterioration levels by classifying defects such as 

rust, fading, or structural damage. The deterioration percentage determines the classification: Good (≤30%) – No immediate 

action required; Moderate (31–70%) – Requires maintenance within a reasonable timeframe; Bad (>70%) – Requires urgent 

replacement or repair. The implemented system achieves a minimum accuracy rate of 87.5% in detecting and classifying 

road safety elements, contributing to a 40% reduction in inspection costs and enabling proactive maintenance scheduling. 

By automating road safety audits, this system enhances detection accuracy, reduces manual inspection costs, and enables 

scalable, real-time monitoring of highways[11]. 
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I. INTRODUCTION 

 

The increasing volume of traffic on highways 

worldwide has brought the need for enhanced road safety 

measures to the forefront. Road safety infrastructure 

elements, including lane markings, traffic signs, guardrails, 

and barriers, play a crucial role in preventing accidents and 

ensuring smooth traffic flow. However, these safety elements 

deteriorate over time due to weather conditions, vehicle 

impacts, and general wear and tear, compromising their 

effectiveness in preventing accidents. 

 

Traditional methods of road safety audits rely heavily 

on manual inspections conducted by trained personnel who 

visually assess the condition of safety elements along 

highways. These conventional approaches face several 

significant challenges: 

 

Manual inspections are labor-intensive, requiring 

substantial human resources and time to cover extensive road 

networks. This results in high operational costs and 

inefficient resource allocation. Subjective assessment by 

different inspectors leads to inconsistencies in evaluation, 

making it difficult to establish standardized maintenance 

protocols across road networks. The time gap between 

inspections often results in delayed detection of critical safety 

issues, potentially increasing accident risks during the interim 

period. The scalability limitations of manual methods make it 

challenging to monitor extensive highway networks, 

particularly in rapidly developing regions. 

 

To address these challenges systematically, this study is 

based on the CRISP-ML(Q) (CRoss-Industry Standard 

Process for Machine Learning with Quality assurance) 

methodology. The CRISP-ML(Q) methodological 

framework offers a visual roadmap of integral components 

and sequential steps for developing reliable machine learning 
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solutions. This framework extends the traditional CRISP-DM 

approach by incorporating quality assurance measures at each 

stage, ensuring the development of robust and deployable AI 

systems. Following this methodology ensures a structured 

approach to problem solving, from business understanding 

and data collection to deployment and monitoring, with 

quality validation integrated throughout the process.

 

  
Fig 1 The CRISP-ML(Q) Methodological Framework offers a Visual Roadmap of its Integral Components and Sequential Steps 

(Source: Mind Map - 360DigiTMG) 

 

In recent years, advancements in artificial intelligence 

and computer vision have provided opportunities to automate 

various inspection processes. The transportation sector stands 

to benefit significantly from these technologies through 

enhanced safety monitoring capabilities. By leveraging deep 

learning algorithms, it  becomes possible to develop systems 

that can automatically detect road safety elements and assess 

their condition with high precision and consistency[1]. 

 

The primary aim of this research is to develop an 

automated road safety audit system that can identify and 

evaluate the deterioration of highway safety elements to 

maximize road safety compliance. This study follows a 

systematic approach based on the CRISP-ML(Q) 

methodology[Fig 1], proceeding through business 

understanding, data engineering, feature engineering, model 

engineering, deployment, and monitoring phases. The 

proposed system employs a two-stage pipeline: first, an 

object detection model identifies various road safety 

elements; second, a segmentation model analyzes their 

deterioration levels by classifying defects such as rust, cracks, 

or fading.[12][8] 

 

By automating the road safety audit process, this 

research addresses the critical need for improved safety 

element monitoring on highways to maximize safety 

compliance and minimize maintenance costs. The developed 

solution significantly enhances detection accuracy, achieves 

consistent evaluation standards, and enables proactive 

maintenance scheduling, ultimately contributing to safer road 

networks. 

 

II. METHODS AND TECHNIQUES 

 

The architectural diagram of our road safety audit 

system[Fig 2] outlines a comprehensive project workflow, 

starting from data collection and preprocessing to model 

training, evaluation, and deployment. It emphasizes an 

iterative approach, incorporating feedback loops for 

continuous model refinement. This systematic process 

ensures robust and reliable deployment of predictive models 

for road safety element detection and assessment. 
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Fig 2 Architecture Diagram for AI-Based Road Safety Audit Project 

 

The detailed level diagram breaks down specific steps 

in data preprocessing, feature engineering, model selection, 

and hyperparameter tuning. It emphasizes continuous 

monitoring and maintenance during deployment to ensure 

adaptive and reliable performance in varying road conditions. 

The diagram illustrates the integration of computer vision 

models with augmented datasets designed specifically for 

road safety elements. 

 

A. The Workflow Incorporates Several Key Components: 

 

 Data collection and annotation pipeline 

 Data pre-processing and augmentation modules 

 Parallel training paths for detection and segmentation 

models[8] 

 Model evaluation and validation mechanisms 

 Deployment framework with real-time processing 

capability 

 Feedback loops for continuous improvement 

 

This architecture ensures that the system can adapt to 

various operational environments, from ideal conditions to 

challenging scenarios such as poor lighting, adverse weather, 

or partial occlusion of safety elements. The integration of 

quality assurance at each stage, as prescribed by the CRISP-

ML(Q) methodology, guarantees reliable performance in 

real-world applications. 

 

B. Data Collection 

To build a robust dataset for detecting and assessing 

road safety elements, we collected a large number of images 

and videos from various sources. These images were captured 

under different conditions, including various times of the day, 

different weather scenarios, and diverse geographical 

locations, to ensure that the model can handle a wide range of 

real-world situations. The dataset included images of both 

deteriorated and well-maintained road safety elements to 

provide a balanced training set. 

 The Data Collection Process Focused on Gathering 

Diverse Visual Data Encompassing: 

 

 Highway lane markings in various conditions (fresh, 

faded, partially erased) 

 Traffic signs with different levels of visibility and 

damage[4] 

 Guardrails and barriers with varying degrees of 

deterioration (bent, rusted, damaged)[11] 

 Road reflectors and cat's eyes in functional and non-

functional states 

 Road edge markings and rumble strips with different 

levels of wear 

 

 Data Sources Included: 

 

 Highway maintenance department archives 

 Public road safety databases 

 Dash-camera footage from fleet vehicles 

 Drone surveillance of highway segments 

 Specialized collection using vehicle-mounted cameras 

 

This comprehensive approach ensured coverage of 

different road types, from urban streets to rural highways, 

under various lighting and weather conditions, creating a 

representative dataset for model training. 

 

C. Data Description 

 

 The Dataset Comprised Images of Road Safety Elements 

Annotated with Distinct Categories: 

 

 Lane Markings: Center lines, edge lines, and directional 

arrows on the road surface 

 Traffic Signs: Regulatory, warning, and informational 

signage[4] 

 Guardrails: Metal barriers along road edges 
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 Concrete Barriers: Permanent dividers between traffic 

flows 

 Road Reflectors: Reflective markers embedded in or 

placed on road surfaces 

 Rumble Strips: Textured road surface sections providing 

tactile feedback 

 Traffic Signals: Electronic signaling devices at 

intersections 

 

 For Deterioration Assessment, Each Element Was 

Further Classified into Deterioration Types: 

 

 Fading: Reduction in visibility or reflectivity 

 Physical Damage: Breakage, bending, or structural 

deformation 

 Rust/Corrosion: Metal elements showing oxidation 

 Missing Components: Incomplete or partially removed 

elements 

 Surface Wear: Abrasion or wearing down of surfaces 

 

This diverse annotation ensures that the model learns to 

identify a wide range of safety elements and their 

deterioration types, improving its overall accuracy and 

robustness.[11] 

 

D. Data Annotation 

The collected images were uploaded to specialized 

annotation platforms that facilitate efficient labeling for 

machine learning projects. Each image was carefully labeled 

using appropriate annotation tools. This involved drawing 

bounding boxes around specific road safety elements and 

assigning the appropriate category to each annotated region. 

 

 

 

 

 The Annotation Process Followed These Key Steps: 

 

 Object Bounding Box Creation: Drawing precise boxes 

around each road safety element 

 Classification Labeling: Assigning primary categories 

(lane marking, traffic sign, barrier, etc.) 

 Segmentation Masks: Creating pixel-level masks for 

deterioration analysis 

 Deterioration Labeling: Classifying the type and severity 

of deterioration 

 

For deterioration assessment, polygon annotation 

techniques were employed to outline specific damaged areas 

within each safety element. This detailed segmentation 

allowed for precise calculation of deterioration percentages, 

enabling accurate condition classification into Good (≤30% 

deterioration), Moderate (31-70% deterioration), or Bad 

(>70% deterioration) categories. 

 

The annotations were based on visual damage types that 

can impact the functionality and safety implications of road 

elements. The detailed categorization helps the model learn 

to differentiate between various types of damage and non-

damage, as well as assess the severity of deterioration. 

 

E. Data Splitting 

After annotation, the dataset was divided into three 

subsets: training, validation, and test sets. The division was 

done using a 70-20-10 split ratio: 

 

 Training Set (70%): Used to train the object detection and 

segmentation models 

 Validation Set (20%): Used to fine-tune the models' 

hyperparameters and prevent overfitting 

 Test Set (10%): Used to evaluate the final performance of 

the trained models on unseen data 

 

 
Fig 3 Dataset Split Overview - Illustrating the Distribution of Data across Training, Validation, and Test Sets. 

 

This split ensures that the models have ample data to 

learn from, while also providing separate sets to validate and 

test their performance. The validation set helps in tuning the 

models, and the test set provides an unbiased evaluation of 

the models' accuracy and generalization ability. 

 

Special attention was paid to maintaining a balanced 

distribution of different road safety elements and 

deterioration types across all three sets. This balanced 

distribution ensures that the models learn to recognize all 

categories effectively and can generalize well to new, unseen 

examples. 

 

 

F. Data Preprocessing and Augmentation 

 

 Preprocessing: 

All images underwent several preprocessing steps to 

ensure consistency and optimize them for model training: 

 

 Resizing: All images were resized to a uniform dimension 

(640×640 pixels) to maintain consistency and meet the 

input requirements of the YOLO model[1] 

 Normalization: Pixel values were normalized to fall 

within a specific range (0-1), facilitating faster and more 

efficient training 
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 Format Conversion: Images were converted to the 

required format compatible with the model input 

specifications 

 Color Correction: Adjustments to enhance visibility of 

safety elements in varied lighting conditions 

 Contrast Enhancement: Applied to improve the detection 

of faded markings and subtle deterioration signs 

 

 Data Augmentation: 

To artificially increase the size and diversity of the 

training dataset and improve model robustness, various data 

augmentation techniques were applied[Fig 4]: 

 

 Rotation: Rotating images at various angles (±15°) to 

simulate different camera perspectives 

 Flipping: Applying horizontal flips to images to double 

the dataset size 

 Scaling: Zooming in and out of images (±20%) to 

simulate different distances and viewpoints 

 Brightness/Contrast Adjustment: Modifying the 

brightness (±25%) and contrast (±20%) to mimic different 

lighting conditions 

 Noise Addition: Adding random noise to images to 

simulate real-world imperfections and variations 

 Weather Simulation: Adding rain, fog, or snow effects to 

enhance model performance in adverse conditions 

 Motion Blur: Simulating camera movement to prepare the 

model for video-based assessments 

 

 

 
Fig 4 Some of Visual Examples of Augmentations
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These augmentation techniques expanded the effective 

training dataset by a factor of 10, creating a more robust 

foundation for model training and reducing the risk of 

overfitting. The augmentation process was automated using 

specialized libraries to ensure consistency and efficiency. 

 

G. Model Selection and Comparison 

Initially, different versions of object detection models 

were explored for building the road safety element detection 

system, including YOLOv5, YOLOv7, and YOLOv8. Each 

version was trained on the collected dataset, and their 

performances were compared based on accuracy, precision, 

recall, and computational efficiency.[1] 

 

After comparative analysis, YOLOv8m-detection 

(medium version) was selected for the object detection 

component due to its superior accuracy and real-time 

processing capabilities. For the segmentation component, a 

YOLOv8m-segmentation (medium version) was 

implemented to provide pixel-level deterioration 

assessment[3]. 

 

 Model Configuration: 

The YOLOv8m model was configured with the 

following specifications: 

 

 Input Dimensions: 640×640 pixels 

 Backbone: CSPDarknet with Cross-Stage Partial 

connections 

 Neck: Path Aggregation Network (PANet) for feature 

fusion 

 Head: Modified to detect 7 classes of road safety elements 

 Loss Function: Combination of classification, objectness, 

and bounding box regression losses 

 Optimization: Stochastic Gradient Descent with a 

learning rate of 0.01 and momentum of 0.937 

 

 Training Process: 

Both models were trained on high-performance 

computing cluster equipped GPUs. The training process 

included: 

 

 Batch Size: 32 for detection model, 16 for segmentation 

model 

 Epochs: 100 with early stopping based on validation 

performance 

 Learning Rate Schedule: Cosine annealing with warm 

restarts 

 

The training process was monitored using TensorBoard, 

allowing for real-time visualization of performance metrics 

and facilitating prompt intervention if training anomalies 

were detected. 

 

 Model Evaluation 

Following the training phase, comprehensive evaluation 

was conducted to assess the models' performance and validate 

their effectiveness for road safety audit applications:

 

 
Fig 5 Evaluation Metrics-Depicting Loss, Precision, and Recall for Model Performance Assessment 

 

 Evaluation Metrics: 

The YOLOv8m detection model was evaluated using 

multiple metrics [Fig 5] to ensure a thorough assessment: 

 

 Mean Average Precision (mAP): Calculated across 

various IoU thresholds (0.5 to 0.95) to measure detection 

accuracy 

 Precision-Recall Curves: Generated for each safety 

element class to visualize performance across different 

confidence thresholds 

 F1 Score: Computed to assess the balance between 

precision and recall 

 Inference Speed: Measured in frames per second to verify 

real-time processing capabilities 
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 Confusion Matrix: Analyzed to identify specific classes 

where the model might be struggling 

 The YOLOv8m model performance was benchmarked 

against: 

 Previous versions (YOLOv5, YOLOv7) 

 Other object detection architectures (Faster R-CNN, 

EfficientDet) 

 Human inspector performance on the same test set 

 

The evaluation results confirmed the superiority of the 

YOLOv8m model, which achieved the highest mAP score of 

87.5% while maintaining real-time processing capabilities. 

The model demonstrated particular strength in detecting lane 

markings (91.2% AP) and traffic signs (89.8% AP), while 

showing adequate but slightly lower performance on smaller 

elements like road reflectors (83.2% AP). 

 

 Deployment 

After successful evaluation, the road safety audit system 

was deployed to enable practical application in real-world 

scenarios. The deployment phase involved several critical 

components: 

 

 

 

 
Fig 6 output of deployed models 
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 Deployment Platform: 

The system was deployed using Streamlit, an open-

source app framework specifically designed for machine 

learning and data science projects. Streamlit was selected for 

its: 

 

 User-friendly interface development capabilities 

 Seamless integration with Python-based ML models 

 Ability to visualize results effectively 

 Low-latency response suitable for interactive applications 

 

III. RESULTS AND DISCUSSION 

 

A. Detection Performance 

The trained object detection model demonstrated robust 

performance in identifying various road safety elements 

across different environmental conditions. The model 

achieved the following metrics on the test dataset: 

 

 Mean Average Precision (mAP50-95): 87.5% 

 Average Precision for Lane Markings: 91.2% 

 Average Precision for Traffic Signs: 89.8% 

 Average Precision for Guardrails: 86.3% 

 Average Precision for Concrete Barriers: 88.7% 

 Average Precision for Road Reflectors: 83.2% 

 Average Precision for Rumble Strips: 84.5% 

 Average Precision for Traffic Signals: 88.9% 

 

These results indicate strong detection capabilities 

across all classes, with particularly high performance on lane 

markings and traffic signs. The model demonstrated 

consistent performance across various lighting conditions, 

though detection accuracy decreased slightly (by 

approximately 5-7%) in low-light and adverse weather 

conditions. 

 

The inference speed averaged 25 frames per second on 

an NVIDIA RTX 3080 GPU, making the system suitable for 

real-time processing of roadside video footage or integration 

with vehicle-mounted cameras for mobile inspections. 

 

B. Deterioration Assessment Accuracy 

The segmentation model for deterioration assessment 

achieved the following performance metrics: 

 

 Mean Intersection over Union (mIoU): 82.3% 

 Pixel Accuracy: 88.6% 

 Dice Coefficient: 84.9% 

 F1 Score: 85.7% 

 

 The Model Showed Varying Performance Across 

Different Deterioration Types: 

 

 Fading Detection Accuracy: 87.3% 

 Physical Damage Detection Accuracy: 83.5% 

 Rust/Corrosion Detection Accuracy: 85.9% 

 Missing Components Detection Accuracy: 91.2% 

 Surface Wear Detection Accuracy: 80.6% 

 

The deterioration classification accuracy (Good, 

Moderate, Bad) reached 86.2%, with confusion primarily 

occurring between consecutive categories (e.g., between 

Good and Moderate, or Moderate and Bad), while 

misclassifications between Good and Bad were rare (<2% of 

cases). 

 

C. Operational Benefits 

The implemented system demonstrated significant 

operational advantages compared to traditional manual 

inspection methods: 

 

 Inspection Time Reduction: The automated system 

reduced inspection time by approximately 75%, allowing 

for more frequent safety audits[5] 

 Cost Efficiency: A 40% reduction in inspection costs was 

achieved by minimizing the need for manual labor and 

specialized equipment 

 Consistency: The system provided standardized 

assessment results with a variance of less than 5% when 

analyzing the same elements repeatedly, compared to 15-

20% variance in manual inspections 

 Coverage: The system enabled comprehensive 

monitoring of extensive road networks, processing up to 

100 km of highway per day when mounted on a vehicle 

traveling at normal speed 

 Data Integration: Automated georeferencing of detected 

issues facilitated seamless integration with maintenance 

management systems[5] 

 

D. Comparative Analysis 

When compared to previous methods and systems 

reported in the literature, our approach demonstrated several 

advantages: 

 

 Higher Detection Accuracy: Our mAP50-95 of 87.5% 

outperformed previous systems that reported mAP values 

between 70-80% 

 Comprehensive Element Coverage: Unlike specialized 

systems focused on specific elements (e.g., only lane 

markings or only signs), our approach detected and 

assessed all major safety elements simultaneously 

 Advanced Deterioration Assessment: The segmentation-

based deterioration analysis provided more detailed and 

accurate condition assessment compared to classification-

only approaches[2] 

 Real-time Processing: The system's inference speed 

enabled real-time processing, unlike some previous 

approaches that required offline analysis 

 Adaptability: Testing across different geographic regions 

and road types demonstrated the system's ability to 

generalize to diverse environments 

 

E. Challenges and Limitations 

Despite the promising results, several challenges and 

limitations were identified: 

 

 Occlusion: Performance decreased when safety elements 

were partially obscured by vehicles, vegetation, or 

shadows 
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 Rare Defect Types: The system showed lower accuracy 

for uncommon deterioration patterns not well-represented 

in the training data 

 Night-time Performance: Detection accuracy reduced by 

approximately 15% in night-time conditions despite 

augmentation efforts 

 Weather Sensitivity: Heavy rain, snow, or fog reduced 

both detection and segmentation performance[2] 

 Novel Elements: The system required retraining to 

accommodate region-specific safety elements not 

included in the original training set 

 

These limitations highlight areas for future 

improvement and development to enhance the system's 

robustness and applicability across diverse scenarios. 

 

F. Future Scope 

Future work will focus on several key enhancements: 

 

 Enhancing model performance in challenging conditions 

such as night-time, adverse weather, and heavily occluded 

scenes. 

 Integration with other sensing technologies, such as 

LiDAR and thermal imaging, to improve detection 

capabilities.[8][10] 

 Expanding the dataset to include more diverse geographic 

regions and road types to enhance the system's 

generalization capabilities. 

 Exploring the potential of self-learning AI models to 

further improve long-term system performance. 
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IV. CONCLUSION 

 

This research presents an AI-based road safety audit 

system that automates the detection and deterioration 

assessment of highway safety elements. The combination of 

YOLOv8 for object detection and U-Net for segmentation[3] 

provides a comprehensive solution for monitoring road safety 

infrastructure. The system demonstrates high accuracy in 

identifying various road safety elements and assessing their 

deterioration levels, enabling proactive maintenance 

scheduling. 

 

The automated approach significantly reduces the time 

and cost associated with manual inspections while providing 

more consistent evaluations. By classifying deterioration into 

Good, Moderate, and Bad categories, the system enables 

prioritized maintenance planning, ensuring critical safety 

issues are addressed promptly. 

 

The real-time processing capabilities make this 

approach valuable for government agencies, road 

maintenance authorities, and smart city initiatives. The 

system's ability to process large volumes of data efficiently 

allows for more frequent safety audits, potentially reducing 

accident rates through timely identification and rectification 

of safety hazards. 

 

Future developments will focus on enhancing model 

performance in challenging conditions such as night-time, 

adverse weather, and heavily occluded scenes. Integration 

with other sensing technologies, such as LiDAR and thermal 

imaging, could further improve detection capabilities. 

Additionally, expanding the dataset to include more diverse 

geographic regions and road types will enhance the system's 

generalization capabilities.[10][8] 

 

The promising results of this research demonstrate the 

potential of AI-powered systems to transform road safety 

management, contributing to safer transportation 

infrastructure and reduced accident rates. By enabling data-

driven maintenance decisions, such systems can optimize 

resource allocation while maximizing safety outcomes, 

ultimately saving lives and reducing the societal costs of road 

accidents. 
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