
Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1311

IJISRT25MAR1311 www.ijisrt.com 1725

Trends in Software Architecture Designs:

Evolution and Current State

1Agwenyi C.A; 2 Mbugua S.M

Department of Information Technology
1Kibabii University
2Kibabii University

Publication Date: 2025/04/01

Abstract: Software architecture combines architectural style and quality attributes with the high-level structure of

software system abstraction through composition and breakdown. In addition to meeting the system's primary

functionality and performance needs, a software architectural design must also meet non-functional requirements

including availability, scalability, portability, and dependability. The set of components, their relationships, how they

interact, and how each component is deployed must all be described in a software architecture. There are numerous

approaches to characterizing software architecture, including object-oriented modeling with UML (Unified Modeling

Language), the Architecture View Model (4+1 view model), and ADL (Architecture Description Language). With an

emphasis on microservices, serverless architecture, event-driven architecture, domain-driven design, cloud-native

applications, zero trust security, and artificial intelligence integration, this paper reviews the latest developments in

software architectural concepts, comparing their trends and contributions to modern computing. This paper reviews the

evolution and current trends in software architecture designs from 2016 to 2024. It highlights key shifts, emerging

paradigms, and factors influencing architectural decisions. The study is based on a systematic desktop review of existing

literature, focusing on industry and academic contributions. Findings indicate a shift towards cloud-native architectures,

microservices, event-driven models, and AI-enhanced frameworks. The paper synthesizes these trends and discusses their

implications for future software development.

Keywords: Software Architecture, Microservices, Cloud Computing, Event-Driven Architecture, AI-Driven Architecture,

Evolution, Trends.

How to Cite: Agwenyi C.A; Mbugua S.M (2025) Trends in Software Architecture Designs: Evolution and Current State.

International Journal of Innovative Science and Research Technology, 10(3), 1725-1729.

https://doi.org/10.38124/ijisrt/25mar1311

I. INTRODUCTION

Software architecture serves as the backbone of
software systems, providing the structural framework that

governs their functionality, scalability, and maintainability.

Over the past decade, rapid technological advancements

have influenced the evolution of software architecture,

driving organizations toward more modular, scalable, and

resilient designs. Software architecture directs the structure,

behavior, and interactions of software components, acting as

a blueprint for system design.

The evolution of software architecture continuously

adapts to meet contemporary system demands and

applications. This paper explores key architectural trends,
their evolution, benefits, challenges, and future directions,

highlighting how these paradigms improve scalability,

maintainability, and performance. This paper explores

recent trends in software architecture, analyzing key shifts

and innovations between 2016 and 2024.

II. METHODOLOGY

This study employs a desktop research methodology,
systematically reviewing academic papers, technical

whitepapers, and industry reports published between 2016

and 2024. Sources include IEEE Xplore, ACM Digital

Library, Springer, and leading industry reports from Gartner

and Forrester. Data is analyzed to identify recurring

patterns, emerging trends, and the impact of technological

advancements on software architecture.

III. LITERATURE REVIEW

The literature review examines key developments in

software architecture over the past decade, drawing from
scholarly articles, industry reports, and case studies. The

review is structured around the following themes:

 Monolithic vs. Microservices Architectures: Traditional

monolithic architectures dominated software

development for years but have been gradually replaced

http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25mar1311

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1311

IJISRT25MAR1311 www.ijisrt.com 1726

by microservices for scalability and flexibility. (Vernon,

V., & Jaskula, T. ,2021).

 Cloud-Native Architectures: The rise of cloud platforms

(AWS, Azure, Google Cloud) has influenced the

adoption of containerization, Kubernetes, and serverless

architectures.

 Event-Driven Architectures: These architectures enable

systems to react to real-time data changes, supporting

scalable and loosely coupled applications. (Manchana,

R. ,2021).

 AI and Automation in Architecture: The integration of

AI and machine learning in architectural design has led

to intelligent and self-adaptive systems. (Gheibi, O.,
Weyns, D., & Quin, F. ,2021).

 Security and Privacy Concerns: With increasing cyber

threats, secure software architecture practices such as

zero-trust models have gained prominence. Sarkar et al.,

2022).

IV. MICROSERVICES ARCHITECTURE

Microservices architecture involves designing

applications as a collection of loosely coupled,

independently deployable services. Each service is

responsible for a specific business capability and
communicates with others via APIs. Microservices

architecture divides applications into smaller, loosely linked

services that can be independently developed, deployed, and

scaled (Blinowski et al., 2022). This approach fosters

flexibility, agility, and resilience. Scalability: Services scale

independently, optimizing resource usage. Flexibility:

Different technologies can be used for different services and

Resilience: Fault tolerance is enhanced whereas pitfalls

include; Complexity: Managing microservices requires

robust orchestration and Data Management: Maintaining

consistency is complex.

While microservices provide significant advantages, I

believe organizations should be cautious about over-

segmenting their applications. The complexity of managing

multiple services can lead to challenges in orchestration and

monitoring. Striking a balance between modularity and

manageability is crucial. I propose developing a

microservices governance framework that outlines best

practices for service design, communication, and data

management. This framework could include guidelines for

when to decompose services, ensuring teams maintain a
clear understanding of inter-service dependencies.

 Serverless Architecture

Serverless computing allows developers to build and

deploy applications without managing servers. Cloud

providers (AWS Lambda, Azure Functions, Google Cloud

Functions) dynamically allocate resources as needed.

Serverless architecture isolates server management,

allowing developers to focus on writing code. Functions are

executed in response to events (Jonas et al., 2019). The

accrued benefits are as follows; Pay-as-you-go pricing

reduces operational costs, platforms scale automatically to
handle workloads and Faster Development: Reduces time-

to-market. Whilst challenges include the following;

Dependence on cloud providers and Cold Start Latency

hence delays in infrequently executed functions.

Serverless computing is a powerful paradigm, but it

can lead to cold start latency issues, particularly for time-

sensitive applications. Additionally, vendor lock-in can

hinder flexibility. Tools that facilitate multi-cloud

deployments. These tools could help organizations manage

serverless functions across different providers, enabling

seamless integration and minimizing cold start impacts

through proactive caching strategies.

 Event-Driven Architecture (EDA)

EDA enables applications to respond to events
(changes in state) asynchronously. It decouples event

producers from consumers, enhancing system

responsiveness and scalability enhances responsiveness by

enabling systems to react instantly to events, supporting

real-time applications and dynamic interactions (Kommera,

2020). The greatest Benefits include Real-Time Processing

this enables rapid responses. Scalability which handles high-

throughput applications and flexibility that supports

decoupled components, whilst challenges are enormously

such as Managing event flows requires advanced tools and

difficult due to decoupling.

While EDA can significantly improve application

performance, it can also introduce complexities in managing

event flows and debugging. Many teams may struggle to

visualize and understand event interactions effectively. I

advocate for creating visualization tools for event flows that

enable developers to map and track events in real-time. Such

tools could provide insights into event dependencies and

streamline troubleshooting processes, making it easier for

teams to manage complex event-driven systems.

 Cloud-Native Design

Cloud-native applications are designed to leverage

cloud computing benefits, ensuring high availability,

scalability, and resilience. Cloud-native design utilizes

containers, microservices, and orchestration tools like

Kubernetes to build scalable and resilient applications (Raj

et al., 2022). The profound benefits include the following:

Automated scaling, high resilience and faster software

delivery. On the other hand, shortfalls include but not

limited to the following; Architectural complexity and

Security concerns.

 Zero Trust Architecture (ZTA)

Zero Trust enforces strict identity verification and

least-privilege access, ensuring that no entity inside or

outside the network is trusted by default. ZTA enhances

security by assuming threats can arise from both internal and

external sources, enforcing strict access controls (Stafford,

2020). Benefits that accrued include. Granular access

control, Improved compliance and Resilience against insider

threats. Whereas negative effects include; Implementation

complexity and Integration with legacy systems.

http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1311

IJISRT25MAR1311 www.ijisrt.com 1727

 Domain-Driven Design (DDD)

DDD focuses on designing software based on the
complexities of real-world business domains. It emphasizes

collaboration between developers and domain experts. DDD

promotes software modeling based on core business

concepts, ensuring alignment with business goals (Kapferer,

2020). Benefits: Business-driven development and improved

modularization. Whereas challenges include; Requires

significant upfront investment and Demands organizational

cultural shifts.

DDD is essential for aligning software solutions with

business goals, but it often requires a cultural shift within

organizations. Many teams may find it challenging to fully
embrace DDD principles without proper support and

training. I propose establishing DDD training programs and

workshops that focus on practical applications of DDD

concepts. These programs could include case studies and

real-world scenarios, helping teams effectively implement

DDD in their projects and fostering a culture of

collaboration between technical and non-technical

stakeholders.

 Integration of Artificial Intelligence (AI)

AI-driven architectures integrate AI and machine
learning models into software systems for intelligent

decision-making. AI is increasingly integrated into software

architecture to enable intelligent decision-making and

automation (Gill et al., 2022). The tangible impact includes

predictive analytics, enhanced automation and data-driven

insights, whilst challenges are complexity and ethical

considerations.

 Sustainable Software Design

Green software engineering prioritizes energy-efficient

practices in software architecture. (Mahmoud, S. S., &
Ahmad, I. ,2013). More companies prioritize power-

efficient computing, using serverless and optimized data

processing to minimize cloud costs and carbon footprints.

Carbon-Aware Architectures for adaptive workload

scheduling based on real-time energy consumption metrics

is gaining traction. (Centofanti, C., Santos, J., Gudepu, V.,

& Kondepu, K. ,2024). Benefits include: Reduces carbon

footprint and Enhances system longevity where challenges

are limited standardization and trade-offs with performance.

 Integration of Artificial Intelligence (AI)

AI integration into software architecture allows

applications to learn from data and provide intelligent

functionalities. The integration of AI presents exciting

opportunities, but it also raises ethical concerns regarding

data privacy, bias, and transparency. As organizations

increasingly adopt AI, they must prioritize responsible AI

practices.I recommend developing a responsible AI toolkit

that offers resources for evaluating AI models for fairness,

transparency, and accountability. This toolkit could include

guidelines for data sourcing, model evaluation, and best
practices for communicating AI-driven decisions to users,

helping organizations align their AI initiatives with ethical

standards.

V. FINDINGS

The analysis of reviewed literature reveals the

following key findings:

 Rise of Microservices: Companies increasingly adopt

microservices for modular, scalable applications,

reducing dependency on monolithic structures.
 Cloud-Native Approaches: Cloud computing drives the

shift towards containerization, DevOps, and continuous

integration/continuous deployment (CI/CD) pipelines.

 Event-Driven and Serverless Architectures:

Organizations leverage event-driven models to enhance

real-time processing capabilities and serverless

computing to optimize cost and resource allocation.

 AI and Automation: AI-driven architectural patterns,

such as self-healing systems and automated code

generation, are gaining traction.

 Security Enhancements: Emphasis on zero-trust
architectures and secure DevOps (DevSecOps) is

increasing to counter growing cybersecurity threats.

 Trends in Software Architecture Designs

The figures here in show the most recent and recent

trends in software architecture designs.

http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1311

IJISRT25MAR1311 www.ijisrt.com 1728

Fig 1: Most recent Trends in software architecture design

Source: Researcher Compisition 2025

Data from this figure shows that the most trending

software architecture designs are, Microservices &

Serverless, A.I-Driven and AI-powered Information

Architecture with an average popularity index value of 90,

85 and 80 respectively. From this its apparent that

Microservices & Serverless is much hyped design, followed

by A.I-Driven, A.I-powered Information Architecture,

Composable Enterprise Architecture and Zero Trust

Security. Here the most recent and much hyped trend being

Microservices & Serverless architectural design and Zero

Trust Security is least trending.

Fig 2: Recent Trends in software architecture design

Source: Researcher Composition 2025

http://www.ijisrt.com/

Volume 10, Issue 3, March – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1311

IJISRT25MAR1311 www.ijisrt.com 1729

This figure shows that the most recent trending

software architecture designs are AI-Driven, Microservices
& Serverless and Zero-Trust Security with an average

popularity index value of 80,70 and 60 respectively. From

this its apparent that AI-Driven Design is much hyped

design, followed by Microservices & Serverless and Zero

Trust Security. The least hyped is Composable Enterprise

Architecture.

VI. CONCLUSION

Software architecture has undergone significant

transformation between 2016 and 2024, influenced by

technological innovations and business demands. The
transition from monolithic to microservices, adoption of

cloud-native and event-driven models, and integration of AI

in architecture design are shaping modern software

development. As organizations continue to seek scalable,

resilient, and secure solutions, these trends will further

evolve, potentially giving rise to new architectural

paradigms. Software architecture trends are shifting towards

decentralization, automation, and scalability to meet modern

business needs. Organizations must choose architectures

based on their specific performance, security, and scalability

requirements.

This paper extends existing knowledge by identifying

intersections between AI-driven software architectures,

sustainability in design, and security advancements. Future

research should explore AI-assisted software design for

optimized architectures, enhanced developer productivity

and explore the long-term impact of these trends and assess

emerging technologies such as quantum computing and

blockchain in software architecture.

ACKNOWLEDGEMENT

It is my humble pleasure and opportunity to appreciate

the guidance and support given by my course lecturer,

Samuel Mbugua, throughout this paper. His vast and

scholarly experience in Information Technology research

and article writing came in handy to make this a success and

also Kibabii University for allowing me to enroll for the

course.

REFERENCES

[1]. Blinowski, G., Ojdowska, A., & Przybyłek, A. (2022).
Monolithic vs. microservice architecture: A

performance and scalability evaluation. IEEE

Access, 10, 20357-20374.

[2]. Centofanti, C., Santos, J., Gudepu, V., & Kondepu, K.

(2024). Impact of power consumption in containerized

clouds: A comprehensive analysis of open-source

power measurement tools. Computer Networks, 245,

110371.

[3]. Chi, H. L., Kang, S. C., & Wang, X. (2013). Research

trends and opportunities of augmented reality

applications in architecture, engineering, and
construction. Automation in construction, 33, 116-122.

[4]. Cleland-Huang, J., Gotel, O. C., Huffman Hayes, J.,

Mäder, P., & Zisman, A. (2014). Software traceability:
trends and future directions. In Future of software

engineering proceedings (pp. 55-69).

[5]. Dobrica, L., & Niemela, E. (2002). A survey on

software architecture analysis methods. IEEE

Transactions on software Engineering, 28(7), 638-653.

[6]. Garlan, D. (2000, May). Software architecture: a

roadmap. In Proceedings of the Conference on the

Future of Software Engineering (pp. 91-101).

[7]. Gheibi, O., Weyns, D., & Quin, F. (2021). Applying

machine learning in self-adaptive systems: A

systematic literature review. ACM Transactions on

Autonomous and Adaptive Systems (TAAS), 15(3), 1-
37.

[8]. Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon,

R., Shaghaghi, A., ... & Uhlig, S. (2022). AI for next

generation computing: Emerging trends and future

directions. Internet of Things, 19, 100514.

[9]. Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C.,

Khandelwal, A., Pu, Q., ... & Patterson, D. A. (2019).

Cloud programming simplified: A berkeley view on

serverless computing. arXiv preprint

arXiv:1902.03383.

[10]. Kapferer, S. (2020). A Modeling Framework for
Strategic Domain-driven Design and Service

Decomposition (Doctoral dissertation, HSR

Hochschule für Technik Rapperswil).

[11]. Kommera, A. R. (2020). The Power of Event-Driven

Architecture: Enabling Real-Time Systems and

Scalable Solutions. Turkish Journal of Computer and

Mathematics Education (TURCOMAT) ISSN, 3048,

4855.

[12]. Mahmoud, S. S., & Ahmad, I. (2013). A green model

for sustainable software engineering. International

Journal of Software Engineering and Its
Applications, 7(4), 55-74.

[13]. Manchana, R. (2021). Event-Driven Architecture:

Building Responsive and Scalable Systems for Modern

Industries. International Journal of Science and

Research (IJSR), 10(1), 1706-1716.

[14]. Nasr, L., & Khalil, S. (2024). Development of Scalable

Microservices: Best Practices for Designing,

Deploying, and Optimizing Distributed Systems to

Achieve High Performance, Fault Tolerance, and

Seamless Scalability. Eigenpub Review of Science and

Technology, 8(7), 86-113.

[15]. Raj, P., Vanga, S., & Chaudhary, A. (2022). Cloud-
Native Computing: How to Design, Develop, and

Secure Microservices and Event-Driven Applications.

John Wiley & Sons.

[16]. Sarkar, S., Choudhary, G., Shandilya, S. K., Hussain,

A., & Kim, H. (2022). Security of zero trust networks

in cloud computing: A comparative

review. Sustainability, 14(18), 11213.

[17]. Stafford, V. (2020). Zero trust architecture. NIST

special publication, 800, 207

[18]. Vernon, V., & Jaskula, T. (2021). Strategic monoliths

and microservices: driving innovation using
purposeful architecture. Addison-Wesley Professional.

http://www.ijisrt.com/

