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Abstract.  In order to classify thyroid nodules using ultrasound imaging [1], this study assesses the effectiveness of three 

deep learning models: Vision Transformer (ViT), DenseNet, and ResNet. Seven thousand thyroid ultrasound pictures from 

Morocco's Hassan II Hospital (2005–2022) were utilized as the dataset. Accuracy, F1-score, sensitivity, and specificity were 

important parameters. DenseNet did somewhat better with 89.3% accuracy and F1-score than ResNet, which had 87.7% 

accuracy and an 87.8% F1-score.  

 

ViT outperformed both, achieving 91.5% accuracy and a 91.4% F1-score, demonstrating superior global context 

capture. ResNet excels in gradient flow optimization, DenseNet in feature propagation for smaller datasets, and ViT in 

versatility but requires larger datasets. The study highlights trade-offs between transformer-based and CNN-based 

architectures, emphasizing the importance of dataset characteristics and task requirements for optimal diagnostic outcomes 

in medical imaging. 
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I. INTRODUCTION 

 

A common clinical finding is thyroid nodules, and the 

ability to correctly differentiate between benign and 

malignant cases is essential for effective patient care. 

Ultrasound imaging is now the primary diagnostic method 

due to its affordability, real-time viewing capabilities, and 

non-invasiveness. The ability of the radiologist to interpret 

ultrasound images, however, is critical and may lead to inter-

observer variability and potential diagnostic inconsistencies. 
This variability highlights the need for more reliable and 

automated diagnostic methods to support clinical decision-

making. 

 

In recent years, deep learning has revolutionized 

medical image analysis by offering automated, reproducible, 

and highly accurate diagnosis techniques.  

 

Because of its ability to extract hierarchical features 

from data, convolutional neural networks (CNNs), one of the 

numerous deep learning models, have become more and more 

popular for image analysis applications. Architectures like 
DenseNet and ResNet have gained popularity due to their 

efficient use of parameters and ability to handle problems like 

fading gradients in deep networks [2].  Recently, a viable 

substitute has surfaced: Vision Transformers (ViTs), which 

use self-attention processes to identify global dependencies in 

images [3]. ViTs are especially well-suited for intricate 

medical imaging applications because they are excellent at 

modeling long-range contextual interactions, in contrast to 

CNNs, which concentrate on local feature extraction. 

 

The important topic of how several deep learning 

paradigms—more especially, transformer-based models 
(ViT) and CNN-based architectures (DenseNet and 

ResNet)—perform in the ultrasound imaging-based thyroid 

nodule classification is addressed in this paper. In order to 

achieve this, we test these models using a carefully selected 

dataset of 7,000 thyroid ultrasound pictures that were 

gathered from 2005 to 2022 from Hassan II Hospital in 

Agadir, Morocco. Key performance metrics like accuracy, 

precision, recall, F1-score, and AUC-ROC are used to assess 

and compare the models [4]. 

 

The results reveal distinct strengths and limitations of 

each architecture. DenseNet demonstrates robust feature 
propagation, making it effective for smaller datasets, while 

ResNet excels in optimizing gradient flow for deeper 
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networks. The ensemble of DenseNet and ResNet further 

enhances performance, achieving 90.5% accuracy and a 0.92 

AUC-ROC. However, ViT-Base outperforms both CNN-

based models and the ensemble, achieving 91.5% accuracy 

and a 0.93 AUC-ROC, highlighting its superior ability to 

capture global contextual information [5]. These findings 

underscore the trade-offs between transformer-based and 

CNN-based approaches, emphasizing the importance of 
dataset characteristics and task requirements in model 

selection. 

 

This study offers important insights into the suitability 

of these sophisticated deep learning models for thyroid 

nodule classification by presenting a thorough comparison of 

them. The findings open the door for more dependable and 

understandable clinical practice solutions by adding to the 

expanding corpus of research on AI-driven diagnostic tools 

[6]. The ultimate goal of this effort is to aid in the creation of 

reliable diagnostic tools that can improve thyroid nodule 
assessment's precision and effectiveness, which will help 

patients and physicians alike. 

 

The remainder of this paper is structured as follows: 

Section 2 provides a comprehensive review of recent 

advancements in deep learning for medical imaging, with a 

focus on CNN-based and transformer-based architectures, 

identifying key research gaps. Section 3 details the 

methodology, including dataset preprocessing, model 

architectures, hyperparameter configurations, and training 

strategies. Section 4 presents the experimental setup, 

evaluation metrics, and comparative analysis of model 
performance. In Section 5, we provide an in-depth discussion 

on the implications of our findings, examining the trade-offs 

between CNNs and ViTs in the context of thyroid nodule 

classification and exploring potential optimizations. Finally, 

Section 6 concludes the study by summarizing key 

contributions and outlining future research directions, 

particularly in the development of hybrid architectures and 

transformer-based optimizations for medical imaging 

applications. 

 

II. RELATED WORK 

 

Over the past ten years, deep learning's use in medical 

imaging has expanded dramatically. A summary of the most 

pertinent research is given in this section, with an emphasis 

on transformer-based and convolutional neural network 

(CNN)-based methods for classifying medical images. 

 

A. CNN-Based Medical Image Classification Methods 

Because convolutional neural networks can effectively 

extract spatial and hierarchical characteristics, they have 

become the mainstay of medical image analysis. Shallow 

CNNs were used in early applications for organ segmentation 
and tumor identification. However, by tackling issues like 

overfitting and vanishing gradients, deeper architectures like 

ResNet transformed the discipline [7]. 

 

A more recent development, DenseNet, added densely 

connected layers that encourage feature reuse, leading to 

better gradient flow and more effective parameter use [8]. 

Research has shown that DenseNet and ResNet are effective 

in a number of medical imaging tasks, such as classifying 

breast cancer, detecting lung nodules, and grading diabetic 

retinopathy [9]. Using pre-trained models and transfer 

learning for greater generalizability, CNNs have 
demonstrated considerable promise in the detection of thyroid 

nodule cancers from ultrasound images [10]. 

 

Even with their success, CNN-based techniques 

frequently fail to identify global contexts and long-range 

dependencies in images, which might be crucial for delicate 

and intricate diagnostic tasks. The investigation of 

transformer-based models in medical imaging has been 

spurred by this constraint [11]. 

 

B. Transformer-Based Medical Image Classification 
Methods 

With designs like Vision Transformers (ViTs), 

transformer models which were first made popular in natural 

language processing have recently shown potential in 

computer vision challenges. ViTs are particularly useful for 

images with intricate spatial linkages because they use self-

attention mechanisms to record long-range dependencies and 

global context [12]. 

 

Transformers have been used in medical imaging for a 

number of purposes, such as disease classification, organ 

boundary detection, and tumor segmentation [13]. ViTs have 
shown competitive performance in retinal disease screening, 

COVID-19 detection using chest X-rays, and brain MRI 

analysis [14]. However, implementing these models for 

particular medical tasks is difficult due to their high 

processing requirements and reliance on vast amounts of 

labeled data [15]. 

 

Recent developments have tried to overcome these 

constraints, such as hybrid models that combine CNNs and 

transformers. These hybrids perform better in settings with 

limited data by using transformers for global context 
modeling and CNNs for local feature extraction [16]. Their 

promise in this area needs to be further investigated, 

nevertheless, as their application to thyroid nodule analysis is 

yet underutilized [17]. 

 

By addressing a gap in the existing literature, we expand 

on these research developments in this study by comparing 

CNN-based models (DenseNet and ResNet) with a 

transformer-based model (ViT) for the classification of 

thyroid nodules on ultrasound images [18]. 

 

III. MATERIALS AND METHODS 

 

The dataset, pre-processing methods, deep learning 

approaches, and loss functions utilized for model 

optimization are described in this section. 
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Fig 1 : Vision Transformer (ViT) Model Architecture for Transfer Learning. Images of Thyroid Ultrasound Scans are Projected 

into Patches, Combined with a Positional Embedding, and Passed through the Transformer Encoder for Feature Extraction. A 

Special Classification (CLS) Token is Appended to the Patch Embeddings as the Classification Token. The Transformer Encoder 

Output from the CLS Token is Passed through the Multilayer Perceptron (MLP) Classification Head. The Output from the MLP is 

Converted to the Predicted Probability of a Class with a Softmax Activation Function 

 

 
Fig 2 : Transfer Learning Pipeline. The ViT Model Pre-Trained on ImageNet, a Large-Scale Image Dataset, using Self-Supervised 

Learning (SSL) is Fine-Tuned on Thyroid Ultrasound Data to Differentiate Malignant from Benign Thyroid Nodules and 

Evaluated on a Dedicated Dataset from Hassan II Hospital in Agadir, Morocco. 
 

A. Dataset and Pre-Processing 

 

 
Fig 3: Thyroid Imaging Reporting and Data System (TI-RADS) Classification 

 

Thyroid nodule ultrasound images from a publicly 

accessible database, enhanced with clinical annotations 
including nodule size, shape, and echogenicity, make up the 

dataset. There were 7,000 images in total, categorized into 

five groups—T1 (TI-RADS 1), T2 (TI-RADS 2), T3 (TI-

RADS 3), T4 (TI-RADS 4), and T5 (TI-RADS 5) based on 

the Thyroid Imaging Reporting and Data System (TI-RADS) 

classification. TI-RADS is a standardized scoring system 

used in ultrasound imaging to assess the likelihood of 

malignancy in thyroid nodules. 
 

 TI-RADS 1 (T1): Normal thyroid with no nodules. 

 TI-RADS 2 (T2): Benign nodules with 0% risk of 

malignancy. 

 TI-RADS 3 (T3): Probably benign nodules with a low risk 

of malignancy (<5%). 
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 TI-RADS 4 (T4): Suspicious nodules with an 

intermediate risk of malignancy (5–20%). 

 TI-RADS 5 (T5): Highly suspicious nodules with a high 

risk of malignancy (>20%). 

 

The dataset was divided into training (70%), validation 

(20%), and testing (10%) subsets to ensure sufficient variance 

and reliable model training. This classification helps 
standardize the assessment of thyroid nodules and improves 

diagnostic accuracy when integrating deep learning models. 
 

 Pre-Processing Steps Included: 
 

 Normalization: Pixel intensity values were normalized to 

lie within the range [0, 1]. 

 Resizing: Images were resized to 224x224 pixels to meet 

model input size requirements. 

 Data Augmentation: Techniques such as rotation, 

flipping, and contrast adjustment were applied to mitigate 

overfitting and enhance generalization. 

 Label Smoothing: Minor adjustments to ground truth 

labels to reduce overconfidence in model predictions. 

 

B. Methods 

 

 Convolutional Neural Networks (CNNs) 

To classify thyroid nodules, two CNN architectures 

were used: 
 

 DenseNet: A densely connected network that reduces the 

number of parameters and increases efficiency by 
allowing feature reuse across layers. DenseNet-121 was 

chosen because of its ability to balance computational cost 

and performance. 

 ResNet: A residual network that avoids vanishing 

gradients in deep layers by using skip connections. 

Because of its strong feature extraction capabilities, 

ResNet-50 was selected. 

 

The thyroid nodule dataset was used to fine-tune both 

models after they were initialized using ImageNet pre-trained 

weights. 
 

 Vision Transformers (ViT) 

The efficiency of self-attention mechanisms for thyroid 

nodule classification was assessed using the Vision 

Transformer (ViT). ViT flattens and embeds the image into a 

lower-dimensional space by dividing it into fixed-size 

patches. Transformer layers are then used to process these 

patch embeddings. The dataset was used to refine a ViT-Base 

model that had previously been trained on ImageNet. To 

maximize training effectiveness, hyperparameter adjustment 

was used. 

 
 Contrastive Learning 

Contrastive learning was used to improve the model's 

capacity to distinguish minute differences in ultrasound 

pictures. In a pretext task, augmentations of the same image, 

or positive pairs, were pushed closer together in the feature 

space, while augmentations of different images, or negative 

pairs, were pushed farther away. To enhance representation 

learning, this method was used for all architectures during the 

pre-training stage. 

 

C. Loss Function 

 

 Different Loss Functions were used to Cater to the Unique 

Characteristics of Each Model: 

 

 Cross-Entropy Loss: Used for the final classification 

task in DenseNet, ResNet, and ViT. 

 Contrastive Loss: Employed during the pre-training 

phase to ensure the learned embeddings captured 

discriminative features effectively. 

 Focal Loss: To address the data imbalance between 

benign and malignant classes, particularly in scenarios 

where malignant cases were fewer, focal loss was utilized 

to focus on harder-to-classify examples. 

 

These methods collectively form the foundation of our 
comparative analysis, enabling a rigorous evaluation of the 

performance of CNNs and transformers on thyroid nodule 

classification. 

 

 
Fig 4 : The Plot of Train Accuracy and Loss of ViT     

 

 
Fig 5 : The Plot of Train Accuracy and Loss of 

DenseNet121 and ResNet50 

 

IV. EXPERIMENTS AND RESULTS 

 

The experimental parameters, assessment criteria, and 

comparative outcomes of the transformer-based and CNN-

based models for thyroid nodule classification are shown in 

this section. 
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A. Training Settings 

 

 Optimizer: Adam optimizer with learning rate decay 

based on validation loss. 

 Batch Size: 32 for CNNs and 16 for ViT to accommodate 

memory constraints. 

 Epochs: 50 epochs with early stopping to prevent 

overfitting. 

 Regularization: L2 regularization (weight decay of 10^-4) 

and dropout (rate of 0.5) were applied to all models. 

 Data Augmentation: Random rotations (±15°), horizontal 

flips, zoom (up to 20%), and brightness adjustments 

(±10%). 

 

 DenseNet-121 

 

 Architecture Overview: 

 

 DenseNet-121 is a densely connected convolutional 
network that promotes feature reuse through dense blocks. 

Each layer in a dense block receives feature maps from all 

preceding layers, which helps in reducing the number of 

parameters and improving gradient flow. 

 The network consists of 121 layers, including 4 dense 

blocks with varying numbers of layers. Each dense block 

is followed by a transition layer that reduces the spatial 

dimensions of the feature maps. 

 

 Key Components: 

 
 Dense Blocks: Each dense block contains multiple 

convolutional layers with batch normalization (BN) and 

ReLU activation. The output of each layer is concatenated 

with the input feature maps, allowing for feature reuse. 

 Transition Layers: These layers consist of a 1x1 

convolution followed by 2x2 average pooling, which 

reduces the spatial dimensions of the feature maps. 

 Growth Rate (k): The growth rate determines the number 

of feature maps added by each layer within a dense block. 

For DenseNet-121, the growth rate is set to k = 32. 

 

 Hyper Parameters: 

 

 Learning Rate: Initial learning rate of 10^-3, with a step 

decay schedule based on validation loss. 

 Batch Size: 32 to balance memory usage and training 

stability. 

 Epochs: Trained for 50 epochs with early stopping based 

on validation performance. 

 

 Regularization: 

 

 L2 Regularization: Weight decay of 10^-4 to prevent 
overfitting. 

 Dropout: Dropout rate of 0.5 applied after dense layers. 

 Optimizer: Adam optimizer with default momentum 

parameters (β1 = 0.9, β2 = 0.999). 

 Data Augmentation: Random rotations, horizontal flips, 

zoom, and brightness adjustments. 

 

 

 ResNet-50 

 

 Architecture Overview: 

 

 ResNet-50 is a residual network that uses skip 

connections (shortcuts) to address the vanishing gradient 

problem in deep networks. The skip connections allow the 

network to learn residual functions, making it easier to 
train very deep architectures. 

 The network consists of 50 layers, organized into 4 stages, 

each containing multiple residual blocks. Each residual 

block consists of two 3x3 convolutional layers with batch 

normalization and ReLU activation. 

 

 Key Components: 

 

 Residual Blocks: Each block contains two 3x3 

convolutional layers with skip connections that bypass the 

convolutional layers. The skip connections allow the 
network to learn residual mappings, which are easier to 

optimize. 

 Bottleneck Layers: In deeper ResNet variants like 

ResNet-50, bottleneck layers are used to reduce 

computational complexity. These layers consist of a 1x1 

convolution to reduce the number of channels, followed 

by a 3x3 convolution and another 1x1 convolution to 

restore the original number of channels. 

 Global Average Pooling: At the end of the network, global 

average pooling is applied to reduce the spatial 

dimensions to 1x1 before the final fully connected layer. 
 

 Hyper Parameters: 

 

 Learning Rate: Initial learning rate of 10^-3, with a step 

decay schedule based on validation loss. 

 Batch Size: 32 to balance memory usage and training 

stability. 

 Epochs: Trained for 50 epochs with early stopping based 

on validation performance. 

 

 Regularization: 

 

 L2 Regularization: Weight decay of 10^-4 to prevent 

overfitting. 

 Dropout: Dropout rate of 0.5 applied after fully 

connected layers. 

 Optimizer: Adam optimizer with default momentum 

parameters (β1 = 0.9, β2 = 0.999). 

 Data Augmentation: Random rotations, horizontal flips, 

zoom, and brightness adjustments. 

 

 Vision Transformer (ViT-Base) 

 

 Architecture Overview: 

 

 ViT-Base is a transformer-based model that processes 

images by dividing them into fixed-size patches, 

flattening the patches, and embedding them into a lower-

dimensional space. The model then applies transformer 

layers to capture global dependencies between patches. 
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 The ViT-Base model consists of 12 transformer layers, 

each containing multi-head self-attention mechanisms 

and feed-forward neural networks. 

 

 Key Components: 

 

 Patch Embedding: The input image is divided into 16x16 

patches, which are flattened and projected into a lower-
dimensional space using a linear transformation. The 

patch embeddings are combined with positional 

embeddings to retain spatial information. 

 Transformer Layers: Each transformer layer consists of: 

 Multi-Head Self-Attention (MHSA): The MHSA 

mechanism computes attention scores between all 

patches, allowing the model to capture global 

dependencies. 

 Feed-Forward Network (FFN): A two-layer MLP with 

GELU activation is applied after the attention mechanism. 

 Layer Normalization: Applied before both the MHSA and 
FFN components. 

 Classification Head: A learnable classification token is 

prepended to the sequence of patch embeddings. The final 

hidden state of this token is used for classification. 

 

 Hyperparameters: 

 

 Learning Rate: Initial learning rate of 10^-4, with a step 

decay schedule based on validation loss. 

 Batch Size: 16 due to the higher memory requirements of 

transformer models. 

 Epochs: Trained for 50 epochs with early stopping based 

on validation performance. 

 Regularization: 

 L2 Regularization: Weight decay of 10^-4 to prevent 

overfitting. 

 Dropout: Dropout rate of 0.5 applied after the attention 

and feed-forward layers. 

 Optimizer: Adam optimizer with default momentum 
parameters (β1 = 0.9, β2 = 0.999). 

 Data Augmentation: Random rotations, horizontal flips, 

zoom, and brightness adjustments. 

 Contrastive Learning: Applied during pre-training to 

enhance the model's ability to differentiate between subtle 

variations in ultrasound images. 

 

B. Evaluation Metrics 

 

 To Comprehensively Evaluate The Performance Of Each 

Model, The Following Metrics Were Calculated: 

 Accuracy (ACC): Measures overall correctness. 

 Precision (Prec): Assesses the proportion of true positives 

among predicted positives. 

 Recall (Rec): Reflects the proportion of actual positives 

correctly identified. 

 F1-Score (F1): Harmonic means of precision and recall. 

 Area Under the Receiver Operating Characteristic Curve 

(AUC-ROC): Evaluates the model’s ability to distinguish 

between classes. 

 
Table 1: Summary of Model Configurations 

Model Layers Key Features Learning 

Rate 

Batch 

Size 

Epochs Regularization 

DenseNet-

121 

121 Dense blocks, features, growth rate 

(k=32) 

10^-3 32 50 L2 (10^-4), 

Dropout (0.5) 

ResNet-50 50 Residual blocks, skip connections, 

bottleneck layers 

10^-3 32 50 L2 (10^-4), 

Dropout (0.5) 

ViT-Base 12 Patch embeddings, multi-head self-

attention, positional embeddings 

10^-4 16 50 L2 (10^-4), 

Dropout (0.5) 

 

V. RESULTS 

 

Table 2 : Experimental Results 

 
 Observations:  

 

 The DenseNet-121 + ResNet-50 combination achieves 

higher accuracy (90.5%) compared to each individual 

model (DenseNet-121 at 89.3% and ResNet-50 at 87.7%). 

This indicates that the ensemble benefits from the 

complementary features captured by each architecture. 

 The combined model demonstrates a precision of 89.7%, 

which is better than DenseNet-121 (88.5%) and ResNet-

50 (86.8%). This suggests an improved ability to correctly 

identify positive thyroid nodule cases. 

 The combined model achieves a recall of 91.3% and an 

F1-score of 90.5%. This indicates its ability to balance 

between sensitivity and specificity, outperforming either 

DenseNet-121 or ResNet-50 alone. 

 The AUC-ROC for the combined model (0.92) shows a 

significant improvement over ResNet-50 (0.89) and 

matches closely with DenseNet-121 (0.91). This 

highlights its reliability in distinguishing between classes. 

 While the combination of DenseNet-121 and ResNet-50 

improves upon the standalone CNN models, it still falls 

slightly short of the ViT-Base model, which achieves the 

Model Accuracy (%) Précision (%) Recall (%) F1-Score (%) AUC-ROC 

DenseNet-121 89.3 88.5 90.2 89.3 0.91 

ResNet-50 87.7 86.8 88.9 87.8 0.89 

DenseNet-121 + ResNet-50 90.5 89.7 91.3 90.5 0.92 

ViT-Base 91.5 90.7 92.1 91.4 0.93 
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highest scores across all metrics (accuracy, precision, 

recall, F1-score, and AUC-ROC). This showcases the 

capability of transformer-based models in medical image 

analysis. 

 The results underscore the utility of combining models to 

improve performance, particularly when both 

architectures provide diverse feature extraction 

mechanisms (e.g., residual learning in ResNet and dense 
connections in DenseNet). 

 

ViT-Base demonstrated its superior capacity to capture 

global characteristics in ultrasound pictures by outperforming 

CNN-based models on all criteria. 
 

DenseNet-121 outperformed ResNet-50 by a little 

margin, most likely as a result of its dense connections, which 

encourage better feature reuse. 
 

While ViT showed greater sensitivity to data quantity 
yet produced better results when data augmentation and 

contrastive learning were used, CNN models were more 

stable during training on fewer datasets. 
 

Higher confidence in differentiating between benign 

and malignant nodules was suggested by the AUC-ROC for 

ViT. 

 

VI. DISCUSSION 

 

In this study, the Vision Transformer (ViT) and CNN-

based architectures—DenseNet and ResNet in particular—
are compared for their ability to classify thyroid lesions from 

ultrasound pictures. Our findings have provided valuable 

information about each model's advantages and 

disadvantages, which are examined below with regard to 

model performance, interpretability, and real-world 

applicability. 

 

A. Model Performance 

In terms of accuracy, precision, recall, F1-score, and 

AUC-ROC, the Vision Transformer (ViT) fared better than 

DenseNet-121 and ResNet-50. ViT's capacity to extract 
global contextual information from photos is the reason for 

its exceptional performance. ViT's self-attention method 

enables it to capture long-range relationships between distant 

portions of the image, in contrast to CNNs, which mainly use 

convolutions to focus on local spatial data. This feature is 

especially helpful for thyroid nodule ultrasound images, 

which frequently show subtle patterns that might need 

contextual information dispersed across the image to be 

accurately classified. 

 

However, training difficulty increased as a result of 

ViT's comparatively greater progress. Large datasets and a 
significant amount of processing power are usually needed 

for transformer-based models, such as ViT. ViT showed 

sensitivity to dataset size in our studies, and contrastive 

learning and data augmentation significantly improved its 

performance. ViT demonstrated that it can produce better 

results when given access to enough training data, even if 

CNNs like DenseNet-121 and ResNet-50 fared better on 

sparser datasets and were more resilient to them. 

 

B. Strengths and Limitations of CNN-Based Models 

During training, DenseNet-121 and ResNet-50 both 

showed consistent convergence and high performance levels. 

ResNet's residual blocks avoided vanishing gradients, 

particularly in deeper designs, whereas DenseNet's densely 
connected layers enabled effective feature reuse. Thyroid 

nodule classification is one of the medical imaging tasks for 

which these architectures have shown efficacy. 

 

However, long-range correlations in ultrasound pictures 

were difficult for CNN-based models to capture. Although 

the local features were successfully recorded, CNNs did not 

fully address the more complicated spatial interactions that 

are essential for accurate thyroid nodule classification, as 

evidenced by the performance disparity between CNNs and 

ViT, particularly in terms of the F1-score and AUC-ROC. 
These results are consistent with previous research, which 

recognizes that although CNNs are very good at extracting 

local features, they may not be as good at capturing wider 

image contexts, which are necessary for various medical 

imaging tasks. 

 

Furthermore, tiny or unbalanced datasets presented 

difficulties for CNN-based models. Some of these issues were 

resolved by data augmentation approaches, but the 

transformer outperformed the models in handling context-

dependent, subtle information in images. 

 
C. ViT’s Potential and Challenges 

Thyroid nodule classification demonstrated the Vision 

Transformer's proficiency in simulating intricate spatial 

interactions. By focusing on specific areas of the ultrasound 

pictures, the transformer's attention mechanism allowed the 

model to differentiate between benign and malignant nodules. 

However, it has been shown that ViT gains the most from 

comprehensive data augmentation and larger datasets. Only 

when these variables were taken into consideration did it 

perform better, suggesting that ViTs would not be suitable for 

low-resource or small-scale applications just yet unless they 
are combined with enough data and processing capacity. 

 

Although ViT demonstrated better accuracy in terms of 

computing efficiency, it also necessitated a substantial 

increase in memory and training time. When using 

transformer-based models in clinical situations where 

computational constraints may exist, this trade-off between 

performance and resource consumption must be taken into 

account. Additionally, when highly fine-grained, localized 

features are essential for a precise diagnosis, ViT's lack of 

local inductive bias—something CNNs excel at—may be a 

drawback. 
 

D. Hybrid Approaches: Combining CNNs and ViTs 

Hybrid models that combine CNNs and transformers 

offer an appealing solution given the advantages and 

disadvantages of both architectures. The creation of models 

that incorporate CNNs for local feature extraction and a ViT 

component to capture global contextual information could be 

a possible avenue for future study. Such hybrid techniques 
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can produce significant benefits, especially in medical 

imaging applications, according to recent studies. These 

hybrid models could offer better performance while reducing 

the drawbacks of both separate designs by fusing the global 

contextual awareness of transformers with the feature 

extraction efficiency of CNNs. 

 

E. Clinical Implications 
The study's findings demonstrate how deep learning 

models can be used to automate the classification of thyroid 

nodules from ultrasound pictures, a crucial task in clinical 

settings. Even though ViT performed better, future studies 

should look into incorporating these models into actual 

clinical workflows while taking deployment viability, 

training time, and model interpretability into account. 

Confirming the models' robustness and generalizability will 

also require more validation on bigger and more varied 

datasets, such as multi-center data. 

 
In order to expand the effectiveness of transformer-

based models to scenarios with little data, future research 

could also concentrate on improving the models using 

additional techniques including domain adaptation and few-

shot learning. Investigating alternative medical imaging 

modalities, including CT or MRI scans, may also be helpful 

in determining whether the patterns found in this study are 

consistent across various diagnostic imaging methods. 

 

In conclusion, CNN-based models continue to be a 

valuable tool in medical image analysis, particularly for 

smaller datasets and resource-constrained contexts, even if 
ViT showed the best performance for thyroid nodule 

classification. Enhancing ViT's data efficiency and further 

investigating hybrid deep learning architectures will probably 

be crucial to the development of AI-powered medical 

diagnostic systems. 

 

F. Future Research Directions 

 

 Hybrid Models: Explore hybrid architectures that 

combine CNNs for local feature extraction with 

transformers for global context modeling. For example, a 
CNN could be used to extract low-level features, which 

are then passed to a transformer for capturing long-range 

dependencies. 

 Transformer Optimization: Investigate techniques like 

knowledge distillation and model pruning to reduce the 

computational complexity of transformer models, making 

them more suitable for resource-constrained 

environments. 

 Domain Adaptation: Develop domain adaptation 

techniques to improve the generalizability of transformer-

based models across different medical imaging modalities 
(e.g., ultrasound, CT, MRI). 

 Few-Shot Learning: Explore few-shot learning 

approaches to train transformer-based models with 

limited labeled data, which is common in medical imaging 

tasks. 

 Interpretability: Enhance the interpretability of 

transformer-based models by integrating explainable AI 

techniques, such as attention visualization, to provide 

insights into the model's decision-making process. 

 

By addressing these research directions, the field of 

medical image analysis can continue to advance, ultimately 

leading to more accurate and reliable diagnostic tools for 

healthcare. 

 

VII. CONCLUSION 

 

In this paper we make a comparison between the 

effectiveness of  two CNN based models and ViT models, 

specifically Convolutional Neural Networks (CNNs)—

DenseNet-121 and ResNet-50—in the job of classifying 

thyroid nodules from ultrasound pictures. Our tests showed 

that both CNN-based models and the ViT performed well; 

however, the ViT outperformed the CNN models in terms of 

accuracy, precision, recall, F1-score, and AUC-ROC, 

indicating that it is better at capturing global contextual 
elements in medical pictures [19]. 

 

Although DenseNet-121 and ResNet-50 demonstrated 

competitive performance, they were unable to handle long-

range dependencies in the images, a problem that ViT's self-

attention mechanism successfully resolved. However, 

because ViT needs a sizable dataset and a lot of processing 

power to function at its best, this performance benefit comes 

at a cost in terms of training time and computational 

resources. 

 

The results of this study highlight the advantages of 
CNNs in terms of effective feature extraction and consistent 

performance in smaller datasets, whereas transformers such 

as ViT perform exceptionally well when there is an adequate 

supply of data and computational power. In light of these 

findings, future research should investigate hybrid models 

that combine the advantages of transformers' global 

contextual awareness with CNNs' local feature extraction 

capabilities. With the development of increasingly 

sophisticated and precise automated systems in the field of 

medical image analysis, such models could offer a potent tool 

for the classification of thyroid nodules. 
 

Finally, even though transformer models like ViT have 

a lot of potential for sophisticated medical picture 

categorization, more work will be needed to balance 

accuracy, computational efficiency, and interpretability 

before they can be used in clinical settings. To further AI's 

use in healthcare, more studies on hybrid architectures and 

transformer model optimization for small-scale and resource-

constrained applications are essential. 
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