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Abstract: This work presents a novel framework for personal image generation by transferring poses from a target image 

to a source image. Using a Pose Attention Transfer (PAT) network, our approach synthesizes realistic images of a person in 

the target pose while preserving identity and appearance details from the source image. The PAT network leverages 

attention mechanisms to focus on key regions, ensuring accurate pose transfer and high-quality texture preservation. 

Experimental results demonstrate that our method generates visually coherent and realistic images, outperforming existing 

state-of-the-art techniques. This framework has significant potential for virtual try-on, animation, and video synthesis 

applications. 
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I. INTRODUCTION 

 

Generating realistic pix of non-rigid objects, consisting 

of human beings, is a challenging mission due to the wide 

variety of deformations and articulations. One particularly 

valuable problem inside this area is the pose switch, wherein 

the intention is to generate a photograph of someone in a new 

goal pose primarily based on a supply photograph. This 

trouble has important programs in regions like video synthesis, 
where a series of poses may be used to create dynamic 

animations, and in data augmentation for improving man or 

woman-identity systems. A most important assignment in pose 

transfer is coping with partial observations of the person. 

When generating a target pose, the version must infer and 

reconstruct occluded or unobserved body components, which 

calls for information on human anatomy and spatial 

relationships. Additionally, the advent of a person can range 

notably across special poses and viewpoints, making it tough 

for models to hold steady texture, lighting fixtures, and 

identity. To address those demanding situations, we advise a 

singular technique based totally at the idea of manifold 

mastering. We treat the set of all feasible poses and 

perspectives of a person as mendacity on an excessive-
dimensional manifold. Pose transfer may be visible as 

navigating this manifold, transitioning from a source pose to a 

goal pose. While the worldwide structure of the manifold is 

complicated, its nearby structure is easier, making it less 

complicated to model incremental changes in pose. Building 
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in this perception, we introduce a modern pose-transfer 

framework that decomposes the pose-transfer procedure into a 

series of smaller, manageable steps. In contrast to standard 

one-step transfer strategies, our method makes use of a 

sequence of Pose-Attentional Transfer Blocks (PATBs) to 

refine the pose iteratively, making sure clean and accurate. 

 

 
Fig 1 Pose Transfer Process 

 

 Obstacles in Pose-Based Synthesis Using GANs 

Aside from their exceptional accomplishments, GANs 

continue to face difficulties regarding instability in training, 

mode collapse, and the generation of high-resolution outputs 

that also maintain structural integrity. To counter these 
concerns, several developments ranging from Deep 

Convolutional GANs (DCGANs), Wasserstein GANs 

(WGANs), Progressive Growing of GANs (ProGANs) to 

StyleGANs have been introduced, each increasing the 

stability, diversity, and fidelity of the generated samples. In 

addition, domain-specific changes such as CycleGAN for 

image’s translation and StackGAN for generating images from 

text have augmented the use of GANs in various domains. 

 

 Progressive Pose Attention Transfer Network (PATN)  

First, allow us to discover the sector of GANs with the 

Progressive Pose Attention Transfer Network (PATN), 
devoted to pose switch responsibilities. PATNs practice 

attention strategies to iteratively enhance the alignment of the 

supply pose and target appearance info. Rather than the use of 

traditional techniques of pose transfer in one single step, 

PATNs use a series of Pose-Attentional Transfer Blocks 

“PATBs” that permit gross to excellent incremental pose 

adjustments. In doing so, adjustments to pictures for a selected 

man or woman emerge as extra sensible and identification 

steady. Human picture synthesis, digital try-ons, and statistics 

augmentation for man or woman re-identity are example 

packages in which PATNs have demonstrated useful. PATNs 
apply a cascaded approach in which each Pose-Attentional 

Transfer Block (PATB) makes a speciality of, and local-poses 

capabilities in the pix the usage of an interest mechanism. This 

cages the results of massive pose alternate imparting greater 

sensible pix. Enforcing pose alignment poses extensively more 

final results in pose-based photograph synthesis for PATNs as 

compared to older GAN-based totally techniques. 

 

 Improvement in the Training of GANs on a Larger Scale 

The improvement of BigGANs has progressed photo 

first-rate and range, permitting high-decision picture synthesis 

through techniques like orthogonal regularization and 

truncation 

 

Additionally, StyleGAN enhances controlled pose-based 

photograph synthesis with higher interpolation and spatial 
manipulate over stochastic and high-degree attributes. 

 

 Scope of Project 

This work aims to improve the PATN-enabled pose 

transfer model through the Progressive Pose Attention 

Transfer Network. By using attention-driven transfer blocks 

together with progressive refinement, we aim to improve the 

realism, identity, and structure fidelity of the generated human 

images. These improvements will be achieved by applying 

sophisticated loss functions, deformable skip connections, and 

largescale GAN training, which will make PATN-based 

models suitable for practical applications like virtual try-on, 
animation, and person re-identification. 

 

II. LITERATURE SURVEY 

 

 The Generative Adversarial Networks were first 

articulated by Ian Goodfellow and others in 2014 

(Goodfellow et al, 2014). 

Goodfellow and others published a paper in 2014 on 

what they called Generative Adversarial Networks (GANs) 

which is used for training generative models using an 

innovative method of deep learning known as adversarial 
learning. In a nutshell, the architecture of GAN does have two 

components, a generator (G) and a discriminator (D). D 

classifies incoming data as real or fake while G generates 

realistic samples of data. Both these networks set out to 

accomplish our goal in what can be termed in gaming as a 

minimax game. Here, G’s intent is to outsmart D, and D 

constantly progresses in his ability to tell real from fake data. 

 

Both networks incorporate multilayer perceptron’s 

(MLPs) and use backpropagation combined with dropout for 

optimization. Unlike traditional generative models, GANs 

does not depend on Markov chains or any explicit chance 

https://doi.org/10.38124/ijisrt/25mar2007
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                   International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                              https://doi.org/10.38124/ijisrt/25mar2007 

 

IJISRT25MAR2007                                                              www.ijisrt.com                                3106  

calculating, which is certainly more resource efficient. The 

model was subjected to evaluation from multisource datasets 

of MNIST and CIFAR-10 as well as the Toronto Face 

Database (TFD) and was able to outperform the older 

capturing models such as Deep Belief Networks (DBNs) and 

Restricted Boltzmann Machines (RBMs). 

 

 Conditional Generative Adversarial Networks (cGANs) – 
Mehdi Mirza & Simon Osindero (2014) 

Mirza and Osindero (2014) modified the original 

Generative Adversarial Networks (GANs) framework by 

adding cGANs which allow for greater data generation 

flexibility with the use of additional input conditions. Unlike 

regular GANs, where the generator output is devoid of any 

context control, cGANs allow for context-aware generation 

through the intake of auxiliary information (y) such as class 

labels and modality data into both the generator and 

discriminator. 

 

 New Methods for Training GANs: Pushing the Limits – 
Tim Salamans, et al, 2016. 

In 2016, Salamans et al expanded the capacity of 

Generative Adversarial Networks by introducing a new 

approach   involving configuring a few parameters to improve 

their stability, convergence, and sample quality. Training 

instability, mode collapse, and Nash equilibrium attainment 

are common issues GANs face. This paper aims to provide 

several methods to alleviate these concerns and boost semi-

supervised learning capabilities with the use of GANs.The 

most important features of the work are:One of the most 

important contributions to learning semi-supervised feature 

matching is shallow network salient feature extraction, a 

technique used to train weakly supervised generative 

discriminative models. The discriminator's output is not 
directly targeted, but rather, as in shallow networks, its output 

intermediate feature activations must be captured. 

 

 StyleGAN: A Style-Based Generator Architecture for 

Generative Adversarial Networks – Tero Karras et al. 

(2019) 

The novel term GAN arose from Tero Karras and his 

colleagues’ work (2019) on a new image synthesis and 

manipulation architecture, which incorporates visual style-

transferring processes known as StyleGAN. A conventional 

GAN model utilizes only one single inputted latent code, but 

StyleGAN, in its architecture, takes advantage of an 
intermediate latent space in addition to an Adaptive Instance 

Normalization (AdaIN). With such a structure, StyleGAN 

achieves an unprecedented level of disentangling requisite 

high-level elements like pose or identity from the stochastic 

details of the image, such as freckles or hair texture. 

 

 
Fig 2 Architecture of Pose Attention Transfer Network (PATN) 

 

III. PROPOSED SYSTEM 

 

The proposed machine is based on a Pose-Attentional 

Transfer Network (PATN), a specialized Generative 

Adversarial Network (GAN) designed for pose-transfer 

responsibilities. The version goals to generate realistic pictures 

of someone in a goal pose while preserving the identification 

and appearance of the source photo. The system takes inputs: 

a source picture of someone and a goal pose represented with 

the aid of key points. The version then synthesizes a new 

photograph of the person within the goal pose. This is 

accomplished through interest mechanisms, perceptual loss, 

and adverse education, making sure of top-notch and realistic 

outputs. Generative Adversarial Networks (GANs) were 

extensively used for photograph synthesis tasks due to their 

ability to generate fantastically realistic photographs. A GAN 

includes components: a generator and a discriminator. The 

generator synthesizes photographs, even as the discriminator 

distinguishes between actual and generated photos. Through 

antagonistic schooling, the generator learns to supply pix that 

are indistinguishable from actual ones. In the context of the 

pose switch, the Pose-Attentional Transfer Network (PATN) 
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extends the traditional GAN framework by incorporating 

attention mechanisms to awareness of relevant areas of the 

picture and pose. This permits the version to control 

complicated spatial modifications and hold minute 

information within the generated pics. The PATN structure is 

in particular designed to fuse statistics from the source picture 

and goal pose, allowing correct and realistic pose switches. 

 

IV. MODEL ARCHITECTURE 

 

We start by describing the dataset. The dataset consists 

of a collection of personal images, where each person has 

multiple images associated with them. The total number of 

persons in the dataset is denoted as M, and each person has a 

specific number of images. 

 

Each image is represented using a keypoint-based 

method, which consists of an 18-channel heat map. This 

heatmap encodes the positions of 18 joints of the human body, 

capturing the overall pose and structure of the person. To 
estimate these joints, we use the Human Pose Estimator. 

 

 (HPE), which is consistent with methods used in related 

works. 

 During training, the model takes two images as input: 

 Condition Image (Pc): The original image with the initial 

pose. 

 Target Image (Pt): The image representing the desired 

target pose. 

 Along with these images, the model also requires their 

corresponding pose heat maps: 

 Condition Pose Heat Map (Sc): The pose map of the 

condition image. 

 Target Pose Heat Map (St): The pose map of the target 

image. 

The generator uses these inputs to produce a new person 

image with the target pose. To ensure that the generated image 

looks realistic, discriminators are used to evaluate its 

authenticity, helping the model learn to create more 

convincing and natural-looking results. 

 

A. Generator 

 
 Encoders 

The generator is designed to transfer the pose of a person 

from a given condition image to a target pose, producing a 

realistic-looking output image. The main inputs to the 

generator are: 

 

 Condition Image (Pc): The image of the person whose 

pose needs to be changed. 

 Condition Pose (Sc): The initial pose of the person in the 

condition image. 

 Target Pose (St): The desired pose to which the person’s 

position should be transformed. 
 

The generator first encodes the condition image using 

two down-sampling convolutional layers. Simultaneously, it 

encodes both the condition pose and the target pose by 

stacking them along their depth axes before feeding them 

through another set of two down-sampling convolutional 

layers. This encoding process effectively combines and 

preserves information from both poses, reducing 

computational complexity while maintaining dependencies. 

 

Instead of encoding the two poses separately and 
concatenating the resulting vectors at the end, this integrated 

encoding approach works more efficiently and requires less 

computation. 

 

Table 1 Comparison with Previous Work: Our model Achieves State-of-the-Art Results, Surpassing Existing Methods 

 
 

 Pose-Attentional Transfer Network 

At the core of the generator is the Pose-Attentional 

Transfer Network (PATN), which is composed of multiple 

Pose-Attentional Transfer Blocks (PATBs) arranged 

sequentially. The PATN progressively updates the encoded 

image and pose information throughout these blocks. 

 
The network starts with initial image and pose codes and 

updates them progressively through the PATBs. At the final 

stage, the network outputs the updated image code to decode 

the generated image, while the final pose code is discarded. 

 

 Structure of Pose-Attentional Transfer Block (PATB) 

Each PATB has an identical structure and is designed to 

update both the image and pose codes. The block has two 

pathways: 

 

 Image Pathway: Updates the image code. 

 Pose Pathway: Updates the pose code. 

https://doi.org/10.38124/ijisrt/25mar2007
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These pathways interact and exchange information to 

ensure that both the image and pose are synchronized during 

each update step. 

 

 Pose Attention Masks 

The core idea of pose transfer is to move image patches 

from the positions indicated by the condition pose to those 

indicated by the target pose. To achieve this, the network uses 
attention masks, which are essentially maps that indicate how 

important each element of the image code is for the 

transformation. 

 

These attention masks are generated from the combined 

pose information using convolutional layers followed by 

normalization and activation functions. The mask values range 

between 0 and 1, signifying the importance of each element in 

the image code. 

 

 Image Code Update 

Once the attention masks are generated, they are applied 
to the image code to either preserve or suppress certain 

regions. This helps maintain critical information from the 

original image while allowing flexible transformation. The 

network also uses residual connections to retain the original 

image information, which aids in achieving stable training and 

effective transformation, especially when using multiple 

PATBs. 

 

 Pose Code Update 

As the image code gets progressively updated through 

the network, the pose code must also be updated to remain in 
sync. The pose code update involves combining the 

transformed pose code with the updated image code to ensure 

consistent guidance for patch movement. 

 

By continuously updating both the image and pose codes 

through the PATBs, the generator can produce realistic-

looking transformed images that maintain visual coherence 

and natural appearance. 

 

 Decoder 

After the updates in the Pose-Attentional Transfer 

Network (PATN), the final output of the generator is the final 

image code, while the final pose code is discarded. The 

decoder then generates the output image using the final image 

code through several deconvolutional layers. This process 

allows the network to reconstruct a high-quality person image 

from the transformed feature representation. 

 

B. Discriminators 

To ensure the generated image looks realistic and 

matches the desired pose, we use two discriminators: 

 

 Appearance Discriminator (DA):  
Evaluates whether the generated image retains the same 

identity and appearance as the original condition image. 

 

 Shape Discriminator (DS):  

Assesses whether the generated image matches the target 

pose correctly. 

 

Both discriminators have a similar structure. The 

generated image is concatenated with either the original image 

(for appearance checking) or the target pose (for shape 

checking) along the depth axis. This combined input is fed into 

a Convolutional Neural Network (CNN), Which outputs 

consistency scores: 

 

 RA: Appearance consistency score 

 RS: Shape consistency score 

 

The final consistency score (R) is calculated as the 

product of the two individual scores, ensuring both appearance 

and shape consistency are evaluated together. 

 

To enhance their effectiveness, the discriminators are 

constructed with three residual blocks after two down-

sampling convolutional layers. This structure improves the 

ability of the discriminators to distinguish between real and 

generated images, especially as the model training progresses. 

 
 Training 

The training process involves minimizing a full loss 

function, which combines adversarial loss and L1 loss. The 

adversarial loss encourages the generator to produce realistic 

images, while the L1 loss ensures that the generated image 

closely matches the target image at the pixel level. 

 

The adversarial loss is calculated using both the 

appearance and shape discriminators, while the combined L1 

loss includes: 

 

 Pixel-wise L1 loss (LL1): Measures the difference 

between the generated and target images. 

 Perceptual L1 loss (LperL1): Improves visual quality by 

considering high-level features from a pre-trained VGG-19 

model, which captures texture and style differences 

effectively. 

 

The training process alternates between training the 

generator and the two discriminators. The generator takes the 

Condition image, condition pose, and target pose as input, 

producing a transformed image. The discriminators then 
evaluate the consistency of the generated image with both the 

original identity and the target pose. 

 

 Implementation Details 

The model is implemented using the PyTorch 

framework and trained using the Adam optimizer for 

approximately 90,000 iterations. The learning rate starts at 

0.0002 and linearly decays to zero after 60,000 iterations. 

 

We use 9 Pose-Attentional Transfer Blocks (PATBs) 

in the generator. 

 

 For Normalization: 

 

 Instance normalization is used for the DeepFashion 

dataset. Batch normalization is used for the Market-

1501 dataset. 

 Dropout is applied only within the PATBs, with a rate of 

0.5 to prevent overfitting. 
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 Leaky ReLU activation (with a negative slope of 0.2) 

follows each convolution or normalization layer within the 

discriminators to maintain stability. 

 

By following this structured training and implementation 

process, the model achieves high-quality, natural-looking pose 

transfer with enhanced visual consistency and smoothness. 

 

V. PERFORMANCE EVALUATION AND 

BENCHMARKING 

 

In this section, we carry out comprehensive experiments 

to assess the effectiveness and efficiency of our proposed 

network. Our experiments demonstrate the superiority of our 

approach through both quantitative metrics and visual quality 

comparisons. 

 

 Datasets 

We primarily conduct our experiments on two 

challenging person re-identification datasets: Market-1501 
and DeepFashion. 

 

 Market-1501: This dataset presents a tough challenge due 

to its low-resolution images (128 × 64) and significant 

variations in pose, viewpoint, background, and lighting 

conditions. 

 DeepFashion: In contrast, DeepFashion images are high-

resolution (256 × 256) and have clean backgrounds, 

making them more visually consistent. 

 

For pose detection, we use the Human Pose Estimator 

(HPE) and filter out any images where no human body is 

detected. This results in: 

 

 Market-1501: 263,632 training pairs and 12,000 testing 

pairs. 

 DeepFashion: 101,966 training pairs and 8,570 testing 

pairs. 

 

To ensure a fair evaluation of the model's generalization 

ability, the training and testing sets do not contain overlapping 

person identities. 
 

 Evaluation Metrics 

Evaluating the appearance and shape consistency of 

generated images is an ongoing challenge. Previous works 

have used several metrics, but they have limitations: 

 

 SSIM (Structure Similarity): Measures global structural 

similarity but does not effectively quantify shape 

consistency. 

 IS (Inception Score) and DS (Detection Score): Use 

classifiers and detectors to assess image quality, but they 

don't directly evaluate shape consistency. 

 

To address this gap, we introduce a new metric to 

explicitly assess shape consistency. Our metric is based on 

pose joints alignment, evaluated using the PCKh measure. 

This score calculates the percentage of correctly aligned 
keypoints, considering the head segment as a reference. 

 

 Comparison with Previous Work 

We compare our method against existing approaches, 

both quantitatively and qualitatively. The results, summarized 

in Table 1, demonstrate that our method consistently 

outperforms previous works across most metrics. 

 

Despite the possibility of overlap between our testing set 

and some training images from previous methods (due to the 

lack of public data splits), our method shows steady 

improvements. Notably, our approach achieves the highest 
PCKh score for shape consistency, outperforming previous 

methods by a significant margin, especially on the 

DeepFashion dataset, where we observe a 2% improvement. 

 

Effectively evaluating the appearance and shape 

consistency of generated images remains an open problem. 

Previous approaches have used metrics such as Structural 

Similarity (SSIM) and Inception Score (IS) to assess image 

quality. To reduce the influence of background elements, 

masked versions of these metrics—mask-SSIM and mask-

IS—were introduced. Additionally, Detection Score (DS) was 
proposed to measure whether a person in the generated image 

can be correctly detected by a detector. However, these metrics 

have limitations in explicitly quantifying shape consistency. 

For instance, SSIM relies on global covariance and means of 

images, making it inadequate for evaluating shape 

consistency. Similarly, IS and DS depend on image classifiers 

and object detectors, which are unrelated to shape consistency. 

 

To address these limitations, we introduce a new metric 

to explicitly assess shape consistency. The proposed metric 

represents person's shape using 18 pose joints obtained from a 

Human Pose Estimator (HPE). Shape consistency is then 
approximated by evaluating the alignment of these pose joints 

using the PCKh measure. According to the PCKh protocol, the 

score is calculated as the percentage of key point pairs whose 

offsets are below half the size of the head segment. The head 

segment is estimated using a bounding box that tightly covers 

key points related to the head. This approach provides a more 

direct and accurate measure of shape consistency in generated 

images. 

 

https://doi.org/10.38124/ijisrt/25mar2007
http://www.ijisrt.com/


Volume 10, Issue 3, March – 2025                   International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                              https://doi.org/10.38124/ijisrt/25mar2007 

 

IJISRT25MAR2007                                                              www.ijisrt.com                                3110  

 
Fig 3 Qualitative Comparisons on Deep Fashion (Left) and Market- 1501 (Right) Dataset. 

 

Fig 3 (Left) showcases some typical qualitative examples 
from the high-resolution DeepFashion dataset [19], 

highlighting scenarios with significant pose changes and scale 

variations. Our proposed method consistently preserves the 

person’s integrity, particularly noticeable around challenging 

areas like the wrists, while maintaining the most natural 

posture among all compared methods. 

 

 Moreover, our approach captures fine details 

exceptionally well. For instance: 

 

 The skin tone in the first row looks realistic and consistent. 

 The whiskers in the second row are clear and sharp. 

 The hair details in the third row are well-defined. 

 The hat in the last row appears naturally integrated. 

 

Additionally, our method produces more refined and 

visually appealing facial features compared to other 

approaches. 

 

We also tested our model on the Market-1501 dataset, 

which is known for its poor image quality. As shown in Figure 

3 (Right), our method generates the sharpest and most accurate 
person images, while other methods tend to produce somewhat 

blurred outputs. Notably, our model accurately replicates 

complex leg layouts that align with the target poses, even when 

the legs are crossed (as seen in the second and third rows). It 

also handles blurred input images more effectively (as seen in 

the last row). 

 

One particularly impressive aspect of our model is its 

ability to maintain appearance consistency. For example, the 

bag visible in the first row of our results is entirely lost in other 

methods, demonstrating our model’s superior ability to 

preserve essential details. 
 

VI. RESULT ANALYSIS 
 

Our network’s generator, PATN, has two key design 

features: the Pose-Attentional Transfer Block (PATB) and 

cascaded building blocks. The PATB is carefully designed to 

optimize both appearance and pose simultaneously using an 

attention mechanism. The cascaded building blocks 

progressively guide the deformable transfer process, 

improving image quality. To evaluate the effectiveness of 

these design choices, we conducted two comparison 

experiments. In the first experiment, we replaced the PATB 

with a standard residual block , creating a generator named the 
ResNet generator. In the second experiment, we tested varying 

numbers of PATBs to examine the impact of the progressive 

design. 

 

The qualitative comparison results are illustrated in 

Figure 4. When comparing images generated by the ResNet 

generator and those produced by our PATN generator with the 

same number of building blocks, it becomes evident that the 

PATN generator consistently produces images with shapes 

and appearances that closely match the target. On the other 

hand, the ResNet generator tends to overlook subtle but crucial 

appearance details, especially when they occupy only a small 
portion of the image. It also struggles to accurately generate 

foreground shapes when the target pose is uncommon. For 

instance, in the first row, the ResNet generator misses the red 

ring at the bottom of the sweater. In the third row, it fails to 

reproduce the white cap correctly. In the fourth row, the T-

shirt color is mistakenly generated as black due to the presence 

of a black backpack. Additionally, in the second row, the 

shapes of the sitting girls appear incomplete since the sitting 

pose is relatively rare in the DeepFashion dataset. 

 

In contrast, our PATN generator, with just 5 PATBs, 
outperforms the ResNet generator even when the latter uses 13 

residual blocks. We attribute this improvement to the pose 
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attention mechanism, which significantly enhances the 

model’s ability to capture and leverage essential features. 

Moreover, using 9 PATBs results in even more refined and 

visually pleasing images. Although increasing the number of 

PATBs to 13 provides a slight performance boost, the 

improvement is marginal, so we opted for 9 PATBs as the 

default to balance efficiency and quality. 

 

Quantitative results, demonstrate that our PATN 

generator with only 5 PATBs consistently surpasses the 

ResNet generator across various configurations and evaluation 

measures. These outcomes strongly validate the advantages of 

our PATN design. To further investigate the effect of each 

component within the PATB, we performed additional 

experiments by removing the addition operation (w/o add), 

concatenation operation (w/o cat), and residual blocks from 
the discriminators (w/o resD) 

 

 
Fig 4 Quantitative results of the Deep Fashion 

 

Both qualitative and quantitative results, presented in 

Figure 4, reveal that eliminating any component of the PATB 

leads to a noticeable performance decline. This reduction in 

quality is apparent through visual inconsistencies such as 

colour distortion and unnatural details. Moreover, omitting 

residual blocks from the discriminators adversely affects local 

detail quality and the integrity of the person’s body, 

underscoring the importance of our architectural decisions. 

 

VII. CONCLUSION 

 

We put forward in this paper a progressive pose attention 

transfer network to address the difficult pose trans²fer. The 

network cascades multiple Pose Attentional Transfer Blocks 

(PATBs), each of which can optimize appearance and pose 

simultaneously through the attention mechanism, hence 

directs the deformable transfer process progressively. 

 

Our network outperforms existing work in both 

subjective visual realness and objective quantitative scores 

simultaneously and meanwhile enhances computational 

efficiency and also decreases the complexity of the model 

considerably. In addition, our suggested network may be 
employed to solve the lacking training data problem for person 

re-identification extensively. Furthermore, our progressive 

pose-attentional transfer process could be easily seen by its 

attention masks, thereby making our network more 

interpretable. Additionally, our network's design has been 

experimentally verified by the ablation studies. 
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Our progressive pose-attentional transfer network not 

only is exclusive to generating person images but can also be 

potentially adapted to create other non-rigid objects. 

Additionally, we hope the concept of our progressive attention 

transfer method could be useful for other GAN-based image 

generation methods as well. 
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