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I. INTRODUCTION 

 

The Banach contraction principle is the foundation of 

fixed point theory which declares that all contractive 

mappings on metric spaces always have some fixed points, 

that are unique. In this sequence many researchers 

generalized the concept of Banach and established different 
kind of contractions [1–5]. In this paper, we emphasize on a 

generalized metric structure called b-metric space (bMS) and 

its subsequent generalization. Bakhtin [6] and Czerwik [7] 

step ahead in the generalization of (MS) by introducing the 

notion b-metric space (bMS). In which altering the triangle 

inequality of a (MS) has been taken place. Infact, every metric 

space(MS) is a b-metric space (bMS) when the constant b of 

the triangle inequality is one. While the reverse of it is not 

implied. After that, many authors found many fixed-point 

results in b-metric spaces; [8–20]. As far as this paper is 

concern, our object in the current study, we refer to papers 
that contain some generalizations of b-metric spaces, such as 

a strong b-metric space (SbMS) ([25]). Subsequently, we 

generalized the concept of controlled strong b-metric space 

(CSbMS) and put the idea of controlled strong b-

multiplicative metric space (CSbMMS) In the main results 

section, we prove the existence of the fixed point of self-

mapping on a complete (CSbMMS) and its uniqueness. 

 

II. PRELIMANARIES 

 

 Definition 2.1 [22]  

Let Α be a set having at least one element and take a real 
no. s ≥ 1. A function µ: Α × Α → [1, ∞) is said to be a b-

multiplicative metric if the following axioms are satisfied: 

 

 (µ1) µ (α, β) > 1 for all α, β ∈ Α and µ (α, β) = 1 if and 

only if α = β;  

 (µ2) µ (α, β) = µ (β, α) for all α, β ∈ Α;  

 (µ3) µ (α, z) ≤ µ (α, β)s · µ(β, η)s for all α, β, η ∈ Α.  

 

Then (Α, µ, s) is said to be a b-multiplicative metric 

space. 

 

 Definition 2.2 [21] 

 Given a set H having at least one element and t ≥ 1. The 

function µ: H × H → [0, ∞) is called a strong b−metric space 

if  

 

 µ (α, β) = 0 if and only if α = β;  

 µ (α, β) = µ (α, β);  

 µ (α, β) ≤ µ (α, z) + t µ (z, β), for all α, β, z ∈ H. The pair 

(H, µ) is called an (SbMS). 

 

 Definition 2.3 [21]  

Let H be a set that contains at least one element and ζ : 

H × H → [1, ∞). The function µ: H × H → [0, ∞) is called a 

(CSbMS) if  

 µ (α, β) = 0 if and only if α = β;  

 µ (α, β) = µ (α, β);  

 µ (α, β) ≤ µ (α, z) + ζ(α, β) µ(z, β), for all α, β, z ∈ H.  

 The pair (H, µ) is defined as a controlled strong b−metric 

space (CSbMS). 

 Now we establish the idea of controlled strong b-

multiplicative metric space (CSbMMS) as follows 

 
 Definition 2.4  

Let H be a set that contains at least one element and ζ : 

H × H → [1, ∞). The function µ: H × H → [1, ∞) is called a 

(CSbMMS) if  

 

 µ (α, β) = 1 if and only if α = β;  
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 µ(α, β) = µ(β, α);  

 µ(α, β) ≤ µ(α, z) . µ(z, β) ζ(α, β), for all α, β, z ∈ H.  

 The pair (H, µ) is called a controlled strong 

b−multiplicative metric space (CSbMMS). 

 Example 1. Let H = [1, ∞) and define µ (α, β) = 2max{|α - β|, 

2| α - β | − 1} for every α, β ∈ H and ζ(α, β) = α + β + 2. 

 

 Consider a sequence {αn} in controlled strong b−metric 

space (CSbMMS) (H, µ). 

 

 {αn} is called convergent to α ∈ H, i.e. limn αn = α if limn 

µ (αn, α)=1. 

 {αn} is defined as a Cauchy sequence in H if limn. mµ (αn, 

αm)=1. 

 CSbMMS (H, µ) is called complete if every Cauchy 

sequence in it is a convergent sequence. 

 

 Definition 4. Consider (H, µ) to be a (CSbMMS) by a 

functions. Take y ∈ H along with ξ > 0.  

 

 An open ball B (y, η) is B (y, η) = {x ∈ H, µ (y, x) < η }.  

 (ii) The mapping S : H → H is called continuous at x ∈ H 

if ∀ η > 0, ∃ δ > 0, satisfying S(B(y, δ)) ⊆ B(Sy, η). 

 Obviously, if S is continuous at a point y in the 

(CSbMMS) (H, µ), then yn → y implies that Syn → Sy as 

n → ∞.  

 

III. MAIN RESULTS 

 

Presently, we are here ready to investigate a fixed point 

result parallel to the Banach contraction theorem in 

(CSbMMS).  

 
 Theorem Let (H, µ)) be a complete (CSbMMS) w.r.t. to the 

f mapping ω: H × H → [1, ∞). Suppose that Γ: H → H be 

a map satisfying µ (Γα, Γβ) ≤ µ (α, β)t for every α, β ∈ H, 

where t ∈ (0, 1).  

 

 For α0 ∈ H, lets have αn = Γnα0.  

 Suppose that ω (αi+1 , αm) < 1/t .  

 Also, for all α ∈ H, limn→∞ ω (α, αn) exists finitely.                             

  

 Then the Mapping Γ Has a Unique Fixed Point. 

 

 Proof: In accordance with the hypothesis (1) of the 

theorem, take the sequence {αn = Γn α0} in H. By the 

application of (1), we obtain µ(αn, αn+1) ≤ µ(𝛼0, 𝛼1)
𝑡𝑛or 

every n in N. 

 

 For All Integers N, M with N < M, We Have 
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IV. CONCLUSION 
 

The notion of controlled strong b-metric space 

introduced in this paper provide a platform for the study of 

fixed point theory in a new generalized metric space. The 

fixed point theorem proved here in the main result of this 

paper made the foundation of fixed point finding strategies on 

the introduced generalized metric space parallel to the flood 

of research after the Banach fixed point theorem.  
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