
Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1017

IJISRT25MAY1017 www.ijisrt.com 2120

Transforming Software Testing: The Influence of

Artificial Intelligence

R. Lavanya Bai1; Dr. C. H. Saradadevi2; S. Shri Preetha3

1Assistant Professor; 2Head of the Department; 3Assistant Professor;
1,2,3Department of CSE; Meenakshi College of Engineering

Publication Date: 2025/05/28

Abstract: Generative Artificial Intelligence (GenAI) is rapidly transforming the software testing landscape, introducing both

groundbreaking opportunities and significant challenges. Traditional testing techniques are increasingly inadequate for evaluating GenAI

systems, which generate novel, diverse, and often unpredictable outputs. This has led to fundamental issues such as the "oracle problem,"

difficulties in test adequacy assessment, and concerns about bias, privacy, and explainability. Across academic and industry perspectives,

researchers and practitioners highlight the need for new methodologies—such as metamorphic testing, differential testing, and diversity-

based adequacy measures—to address the unique complexities of GenAI. Moreover, the role of AI in supporting test generation,

prioritization, and automation is expanding, promising increased efficiency and scalability. However, ensuring trustworthiness,

accountability, and ethical deployment of GenAI in critical domains like healthcare and finance requires careful integration of human

oversight, rigorous validation techniques, and the development of interpretable models. This body of work collectively underscores the

urgent need for interdisciplinary efforts to develop robust, adaptive, and transparent testing frameworks tailored for GenAI systems.

Keywords: Software Testing; Large Language Model(LLM); Test Case Generation; Generative Artificial Intelligence (Genai).

How to Cite: R. Lavanya Bai; Dr. C. H. Saradadevi; S. Shri Preetha. (2025). Transforming Software Testing: The Influence of

Artificial Intelligence. International Journal of Innovative Science and Research Technology, 10(5),

2120-2125. https://doi.org/10.38124/ijisrt/25may1017.

I. INTRODUCTION

Software testing remains a fundamental component of
the software development lifecycle, ensuring that systems

adhere to specified quality and functional requirements.

However, as software systems increase in complexity,

traditional manual testing methodologies face growing

challenges in maintaining efficiency and reliability. To

address these limitations, Artificial Intelligence (AI) has

emerged as a transformative force, enhancing the precision

and speed of testing processes. In particular, techniques such

as Machine Learning (ML) and Deep Learning (DL) have

demonstrated significant potential in automating key tasks,

including test case generation, defect prediction, and test

prioritization—effectively mitigating issues related to time
constraints and human error. The advent of Generative AI

(GenAI) further expands the horizon of software testing,

introducing both novel capabilities and intricate challenges.

Its inherently non-deterministic nature complicates output

evaluation, gives rise to the oracle problem, and poses

potential risks associated with bias. These challenges are

particularly pronounced in safety-critical and sensitive

domains, where reliability is paramount. As a result,

innovative testing strategies—such as oracle learning,

metamorphic testing, and diversity-based adequacy criteria—

are gaining prominence. This research endeavors to examine
the evolving role of AI in software testing, assess

contemporary methodologies, and provide insights into the

ethical and practical considerations of integrating AI

technologies within modern quality assurance frameworks.

II. BACKGROUND ON SOFTWARE TESTING

Software testing is a critical phase in the software

development lifecycle, aimed at assessing the functionality,

trustability, performance, and security of a software system. It

ensures that the software product meets specified conditions

and operates as intended in real-world conditions.

Traditionally, software testing has been conducted manually,

counting on mortal testers to design, execute, and validate test

cases. While effective in numerous scripts, homemade testing

is decreasingly viewed as hamstrung, time-consuming, and

error-prone — especially as ultramodern software systems

grow in complexity, scale, and integration. To address these
limitations, the software engineering community has

embraced test colonization, wherein predefined scripts and

tools are used to execute test cases with minimum mortal

intervention. Automated testing improves effectiveness,

repetition, and content but still faces challenges in conforming

to frequent changes in software and in handling scripts that

bear contextual understanding or creative input. Artificial

Intelligence (AI) has surfaced as a promising technology to

further enhance software testing. AI ways similar as Machine

literacy(ML) and Deep literacy(DL) are decreasingly applied

to automate tasks like disfigurement vaccination, test case
generation, test suite prioritization, and test mystic

construction. These AI-driven approaches enable intelligent

decision-making and help acclimatize to changing inputs,

https://doi.org/10.38124/ijisrt/25may1017
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25may1017

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1017

IJISRT25MAY1017 www.ijisrt.com 2121

helping reduce the cost and trouble involved in maintaining

high-quality software. A growing area of interest is the

operation of Generative AI(GenAI) in software testing. GenAI

systems can autonomously produce new content, similar to

law, attestation, or synthetic test data. This introduces unique

openings for automating the generation of test vestiges,

bluffing stoner relations, and performing exploratory testing.

Still, GenAI also presents challenges due to its non-

deterministic labors, subjectivity, and the absence of a clear

ground verity — generally appertained to as the mystic
problem. These characteristics complicate traditional testing

styles, taking new approaches to estimate the correctness,

fairness, and robustness of AI-generated labors. Also, testing

GenAI systems themselves similar to chatbots or law creators

demands innovative results for test content, bias discovery,

and model evaluation. Recent exploration emphasizes the

significance of metamorphic testing, diversity-grounded

acceptability measures, and mystic literacy as effective

strategies to validate GenAI labors and insure responsible

deployment. Overall, the elaboration of software testing from

homemade procedures to AI-supported and Gena-

apprehensive ways represents a paradigm shift in how quality
assurance is conducted. As AI continues to impact software

engineering practices, developing robust, ethical, and scalable

testing methodologies becomes decreasingly pivotal to

maintain trust and trustability in software systems.

III. IMPORTANCE OF SOFTWARE TESTING IN

SOFTWARE DEVELOPMENT

Software testing is an indispensable component of the

software development process, playing a pivotal role in

ensuring the quality, reliability, and security of software
systems. As emphasized in the systematic review by Islam et

al. (2023), testing helps detect and eliminate defects early,

enhances user satisfaction, and ensures that the software

meets its functional and non-functional requirements. With

the growing complexity of modern software—spanning web

applications, mobile platforms, embedded systems, and now

AI-driven services—the risks associated with undetected

bugs or system failures have become more significant. Faulty

software can lead to financial losses, compromised user data,

reputational damage, and even life-threatening consequences

in safety-critical domains such as healthcare, transportation,

and finance. The review by Aleti (2023) highlights that while
traditional software testing techniques have been effective in

many contexts, they are often insufficient when applied to

Generative AI (GenAI) systems, which produce creative

and non-deterministic outputs. This evolution in software

behavior necessitates new paradigms in testing, such as test

oracle construction, adequacy measurement, and bias

detection, to maintain trust and accountability in AI-powered

systems. Moreover, software testing is vital for regulatory

compliance, especially in industries governed by strict data

protection, safety, or ethical guidelines. As noted by Layman

and Vetter (2024), incorporating testing throughout the
development lifecycle—especially with the rise of GenAI

tools like GitHub Copilot—ensures that software not only

performs correctly but also upholds privacy, transparency,

and fairness. In agile and DevOps-driven environments,

where rapid release cycles are the norm, continuous testing

provides the feedback loop necessary to maintain high

standards of software quality without slowing down

development. The integration of AI into testing processes—

such as automated test generation, fault localization, and risk-

based prioritization—further enhances the ability to deliver

robust software at speed. In summary, software testing is

more than a final step in development; it is a continuous,

evolving process essential for building trustworthy, efficient,

and high-performing software systems. As the software

landscape increasingly incorporates AI and GenAI

technologies, the role of software testing becomes even more
critical—not only in validating functionality but also in

safeguarding ethical and societal values embedded within

modern applications.

IV. OVERVIEW OF ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) denotes the capacity of

computer- based systems to emulate human cognitive

functions: learning from data, reasoning, problem-solving,

natural- language understanding, and adaptation to novel

contexts. The field has progressed from rule-based expert

systems to sophisticated statistical models capable of
processing vast data sets and making decisions with minimal

human oversight.

 AI is Commonly Distinguished as:

 Narrow (or weak) AI: purpose-built to execute a specific

task—such as spam filtering or image recognition.

 General (or strong) AI: envisioned to replicate the full

spectrum of human intelligence; it remains aspirational.

Among AI’s most influential branches is Machine

Learning (ML), wherein algorithms improve iteratively by

inferring patterns from historical data rather than relying on

explicit programming. Deep Learning (DL)—a subset of

ML— employs multi-layered artificial neural networks to

model complex relationships, driving major advances in

computer vision, speech recognition, and natural-language

processing. A recent and particularly consequential

development is Generative AI (GenAI), which produces

original content— text, images, music, or code—rather than

merely analyzing existing data. GenAI systems, exemplified

by large language models (LLMs) such as GPT-4 and image
generators like DALL·E, are typically built on transformer

architectures and trained on extensive corpora, enabling them

to generate contextually coherent and human-like outputs.

GenAI is already reshaping software-engineering workflows.

Tools such as GitHub Copilot and Meta’s Code Compose

generate code snippets, test cases, and documentation,

thereby elevating developer productivity and—according to

Layman and Vetter (2024)—democratizing software creation

through natural-language interaction. Yet the integration of

AI— particularly GenAI—introduces notable challenges:

 Oracle problem: assessing the correctness of inherently
creative or subjective outputs.

 Bias and fairness: the propensity to perpetuate

prejudices embedded in training data.

 Data privacy: safeguarding sensitive information used

in training or inference.

https://doi.org/10.38124/ijisrt/25may1017
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1017

IJISRT25MAY1017 www.ijisrt.com 2122

 Explainability: the opaque (“black-box”) nature of many

models, hindering auditability and trust.

As AI capabilities expand, their influence on software

engineering—most markedly on software testing—will

intensify. AI not only augments traditional testing practices

but also compels the adoption of novel methodologies,

thereby redefining contemporary quality-assurance

paradigms.

V. INTERSECTION OF AI AND SOFTWARE

TESTING

The convergence of Artificial Intelligence (AI) with

software-testing practices is reshaping quality assurance. As

systems become more complex and release cycles compress,

traditional testing struggles to keep pace. AI remedies these

pressures by introducing automation, adaptive intelligence,

and data-driven decision-making into every phase of testing.

A. AI-Driven Test Automation

 Machine Learning (ML) and Deep Learning (DL)

models learn from historical artifacts to generate fresh,

relevant test cases; anticipate high- risk code regions

through defect-prediction models; and prioritize test

suites according to fault- detection probability.

 These capabilities shorten test cycles, expand coverage,

and reduce manual effort.

B. Generative AI (GenAI) in Testing

 Large language models and other GenAI systems now
create code, test scripts, documentation, and synthetic

data on demand—tasks once labor- intensive or

impractical to scale.

 Tools such as GitHub Copilot exemplify this acceleration

by suggesting both implementation and testing artifacts

directly in the development workflow.

C. Testing GenAI Systems

 Because GenAI outputs are non-deterministic and

creative, classical oracles fall short (the oracle problem).

 Modern AI-assisted frameworks deploy metamorphic

testing (checking relational consistency across input

variations) and oracle learning (iteratively refining

verdicts via human feedback) to validate correctness,

fairness, and robustness.

D. Ethical and Quality Considerations

 Integrating AI mandates rigorous oversight of data

quality, transparency, privacy, and bias mitigation.

 Contemporary test strategies must therefore extend
beyond functional accuracy to encompass fairness and

compliance requirement.

AI equips testers with unprecedented efficiency,

breadth, and analytical power, while systematic testing

safeguards the dependability of AI-infused software. This

mutually reinforcing relationship is redefining quality-

assurance paradigms and will continue to elevate software

reliability within ever-more intricate digital ecosystems.

VI. LITERATURE REVIEW

The incorporation of Artificial Intelligence (AI) into

software testing has garnered substantial scholarly interest,

primarily due to the growing complexity of modern software

systems and the inherent limitations of traditional testing
methodologies. This literature review synthesizes recent

developments, challenges, and methodologies in AI-assisted

software testing, drawing insights from key studies and

systematic reviews.

A. AI Techniques in Software Testing

Islam et al. (2023) present a comprehensive systematic

review examining the deployment of AI—particularly

Machine Learning (ML) and Deep Learning (DL)—across

various aspects of software testing. Their analysis identifies

core applications of AI in test case generation, defect

prediction, test case prioritization, and the automation of test
oracles. The study underscores how AI effectively automates

labor-intensive and error-prone manual tasks, thereby

enhancing test coverage, reducing testing time, and

maintaining high quality standards.

Notably, ML techniques are leveraged to prioritize test

cases based on historical execution data, predict potential

defects by analyzing code characteristics, and validate

outputs through learned oracles. These approaches

significantly streamline testing workflows, particularly

within agile environments where rapid iteration and
continuous delivery are essential.

B. Challenges in Testing Generative AI Systems

The advent of Generative AI (GenAI) introduces new

complexities to the software testing landscape. Aleti (2023)

explores the unique challenges posed by GenAI systems,

emphasizing the oracle problem—the difficulty in verifying

correctness due to the non-deterministic and creative nature

of GenAI outputs. Such variability demands novel testing

methodologies capable of evaluating the validity, fairness,

and robustness of generative outputs.

To address these issues, Aleti advocates for advanced

test adequacy criteria and proposes innovative solutions such

as oracle learning and metamorphic testing. These

techniques offer mechanisms to validate outputs through

either human- in-the-loop feedback or consistency across

transformed inputs. The study further highlights the potential

risks of bias and unfairness embedded within generative

models, stressing the importance of designing oracles that can

detect and mitigate these ethical concerns through iterative

human-AI collaboration.

C. GenAI’s Transformative Role in Software Testing

Layman and Vetter (2024), in a virtual roundtable

discussion, provide a forward-looking analysis of GenAI’s

transformative impact on software testing practices. They

observe that GenAI-powered tools—such as GitHub Copilot

and Meta’s CodeCompose—are fundamentally altering the

https://doi.org/10.38124/ijisrt/25may1017
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1017

IJISRT25MAY1017 www.ijisrt.com 2123

manner in which test cases, automation scripts, and

documentation are generated. These tools not only accelerate

development cycles but also democratize access to software

engineering by enabling users to interact with AI using

natural language. While the discussion acknowledges the

efficiency gains and expanded test coverage facilitated by

GenAI, it also emphasizes the continued importance of

human oversight. Expert involvement remains essential for

interpreting AI-generated outputs, addressing ethical

considerations, and ensuring comprehensive test quality. The
integration of GenAI into testing workflows also raises

significant concerns related to privacy, security, and the

management of proprietary data, which must be carefully

addressed in enterprise applications. Collectively, the

literature reflects a dynamic and evolving intersection

between AI and software testing. While AI techniques

enhance the scalability and effectiveness of testing,

particularly through automation and predictive analytics, the

rise of GenAI introduces both opportunities and complexities

that require the development of innovative testing paradigms.

Ethical, technical, and procedural challenges must be met

with interdisciplinary strategies to ensure trustworthy, robust,
and fair AI-enabled software systems.

VII. AI TECHNIQUES IN SOFTWARE TESTING

A. Machine Learning (ML) techniques

Where systems learn from historical data and improve

iteratively—have become integral to modern software

testing. Islam et al. (2023) demonstrate that ML models can

mine software metrics and past test outcomes to generate

relevant test cases automatically, thereby reducing manual

effort and enhancing coverage. Deep Learning (DL), a subset
of ML that employs multi-layer neural networks, excels at

extracting complex patterns from large codebases and

execution traces. DL models achieve superior defect-

prediction accuracy, and—by learning expected output

patterns—also support automated oracle construction,

enabling data-driven verdicts during test execution.

B. Generative AI in Testing

 Generative AI (GenAI)—encompassing large language

models (LLMs) and generative adversarial networks

(GANs)—extends these capabilities by producing novel

artefacts. As observed by Layman and Vetter (2024), tools

such as GitHub Copilot and Meta CodeCompose now
suggest code fragments, test scripts, and synthetic data

directly from natural-language cues and surrounding

context, accelerating both development and testing

workflows.

C. Challenges in Implementing AI for Software Testing

 Despite its promise, AI-enabled testing faces several

technical, ethical, and operational hurdles.

 Oracle Problem and Output Validation: GenAI
systems yield creative, non-deterministic outputs,

rendering classical test oracles inadequate. Verifying

correctness therefore demands advanced techniques—

e.g., metamorphic testing and oracle learning—that

remain under active research and refinement.

 Data Quality and Availability: Robust AI models

require extensive, representative, and unbiased datasets.

Insufficient or skewed data lead to inaccurate predictions

and unreliable test results, yet assembling datasets that

capture the full spectrum of software behaviours and

failure modes is non-trivial.

 Complexity and Integration: Incorporating AI tools

into existing pipelines entails specialised expertise for

model development, tuning, and maintenance. The
“black-box” nature of DL and GenAI further limits

transparency, impeding trust and hindering industrial

adoption.

 Ethical and Privacy Considerations: AI-driven

testing often processes sensitive or proprietary

information, raising risks of privacy breaches and

intellectual-property leaks. Additionally, embedded

biases can perpetuate unfair outcomes. Mitigation

requires clear governance, rigorous bias audits, and

transparent model reporting.

 Scalability and Resource Demands: Training and
serving large models—especially GenAI—consume

substantial computational resources, which may prove

cost-prohibitive. Balancing these requirements with

organisational constraints while sustaining test quality

remains an open challenge.

 Skill Gap and Human–AI Collaboration: Effective

deployment calls for testers who are conversant with both

software-quality principles and AI methodologies.

Closing this skill gap necessitates targeted training, while

sustainable success depends on workflows that position

AI as an assistant, retaining human oversight and iterative

feedback loops.

VIII. METHODOLOGY

This study adopts a mixed-methods approach to

comprehensively investigate the impact, challenges, and best

practices associated with the integration of Artificial

Intelligence (AI) into software testing. The methodology

comprises four key components: a systematic literature

review, qualitative expert interviews, empirical case studies,

and integrated data synthesis.

A. Systematic Literature Review

A Systematic Literature Review (SLR) serves as the

foundation of this research. Adhering to the PRISMA

(Preferred Reporting Items for Systematic Reviews and

Meta-Analyses) guidelines, peer-reviewed publications from

the past decade will be collected from reputable digital

libraries, including IEEE Xplore, ACM Digital Library,

ScienceDirect, and ResearchGate. The literature search will

be guided by relevant keywords and phrases such as

“Artificial Intelligence in Software Testing,” “Machine

Learning for Test Automation,” and “Generative AI in

Software Testing.”

The SLR will focus on studies that explore AI-driven

software testing techniques, including Machine Learning

(ML), Deep Learning (DL), and Generative AI (GenAI). Key

areas of interest include test case generation, defect

https://doi.org/10.38124/ijisrt/25may1017
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1017

IJISRT25MAY1017 www.ijisrt.com 2124

prediction, test prioritization, and oracle automation. Data

extraction will document the methods employed, tools

developed, benefits achieved, and challenges encountered in

these studies.

B. Qualitative Expert Interviews

To supplement the insights gained from literature, semi-

structured interviews will be conducted with professionals

from both academia and industry. The interview participants

will be selected through purposive sampling to ensure diverse
perspectives and expertise in AI and software testing.

The interviews will explore the real-world application

of AI in software testing, the perceived effectiveness of

various techniques, integration challenges, and ethical

considerations. Collected data will be transcribed and

subjected to thematic analysis to uncover recurring patterns,

emerging opportunities, and barriers to adoption.

C. Empirical Case Studies

In-depth empirical case studies will be undertaken

within selected organizations that have implemented AI-
enabled software testing tools. These case studies will

evaluate:

 The specific AI techniques and tools deployed (e.g., ML

for defect prediction, GenAI for automated test

generation).

 The strategies used to integrate these tools with existing

testing infrastructures.

 Quantifiable outcomes, such as improvements in test

coverage, defect detection rates, and overall testing

efficiency.

 Challenges encountered, particularly those related to data

quality, model explainability, and human-AI

collaboration.

Data collection will involve a combination of direct

observation, analysis of tool usage logs, and interviews with

key stakeholders involved in the testing process.

D. Data Synthesis and Analysis

The findings from the literature review, expert

interviews, and case studies will be synthesized to construct
a holistic and evidence-based understanding of AI's role in

modern software testing. Cross-source validation will be

employed to ensure the credibility and reliability of the

insights. Furthermore, the study will compare practical

challenges observed in the field with those documented in

academic literature to develop actionable recommendations

and propose future research directions.

IX. RESEARCH DESIGN

This research adopts a multi-phase design integrating

systematic literature review, qualitative exploration, and
empirical evaluation to investigate how AI technologies

influence software testing practices.

Fig 1: Evaluation of AI Technologies Influence Software

Testing Practices

 Phase 1: Systematic Literature Review (SLR)

 Objective: Identify current AI techniques, benefits,

and challenges in software testing.

 Process: Collect and analyze scholarly articles from

databases (IEEE, ACM, ScienceDirect).

 Output: Comprehensive understanding of AI applications
and research gaps.

 Phase 2: Qualitative Exploration via Expert Interviews

 Objective: Gather insights from practitioners and

researchers on real-world AI adoption in testing.

 Process: Semi-structured interviews with software testers,

QA engineers, and AI specialists.

 Output: Thematic analysis highlighting opportunities,

barriers, and ethical considerations.

 Phase 3: Empirical Case Studies

 Objective: Evaluate AI tool implementation and impact

on testing outcomes in industry projects.

 Process: Observe AI-assisted testing in selected

organizations; collect quantitative and qualitative data.

 Output: Evidence-based assessment of AI effectiveness,

integration challenges, and user experience.

 Data Synthesis and Reporting

Integrate findings across phases to formulate
conclusions and recommendations for AI-enhanced software

testing frameworks.

https://doi.org/10.38124/ijisrt/25may1017
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1017

IJISRT25MAY1017 www.ijisrt.com 2125

X. ANTICIPATED RESULTS

 Comprehensive Mapping of AI Techniques in Software

Testing:

A detailed classification and understanding of current

AI methodologies—such as machine learning, deep learning,

and generative AI—and their applications across various

software testing activities, including test case generation,

defect prediction, and oracle automation.

 Identification of Practical Challenges and Limitations

Insightful documentation of technical, ethical, and

operational challenges encountered when integrating AI

into software testing workflows, including the oracle

problem, data quality issues, integration complexity, and

ethical considerations such as bias and privacy.

 Best Practices and Guidelines for AI Integration

Development of actionable recommendations and best

practices for effectively adopting AI-powered testing

tools and methodologies, ensuring enhanced test

efficiency, accuracy, and fairness.

 Empirical Evidence on AI’s Impact in Industry Settings

 Quantitative and qualitative evaluation of AI tools’

effectiveness in real-world testing projects, measuring

improvements in test coverage, defect detection rates,

testing speed, and user satisfaction.

 Framework for Ethical and Responsible AI Testing

Proposals for frameworks or processes that address

ethical concerns—such as bias detection, transparency,

and privacy protection—during AI-enabled software

testing.

 Identification of Future Research Directions

Highlighting gaps and opportunities in AI for software
testing that warrant further academic and industrial

investigation, particularly concerning generative AI

systems.

XI. CONCLUSION

Artificial Intelligence is transforming software testing

by infusing automation, intelligence, and scalability into tasks

that were once predominantly manual and resource-intensive.

Techniques spanning Machine Learning, Deep Learning, and

the latest Generative AI now streamline test-case generation,
defect prediction, and test prioritization, thereby expanding

coverage and shortening development cycles. Yet AI

adoption introduces distinct obstacles: the oracle problem,

data-quality limitations, integration complexity, and ethical

risks—including bias and privacy concerns. Generative AI

compounds these issues through its non- deterministic

outputs, which require innovative evaluation frameworks and

adaptive testing methods. This study argues for a balanced

strategy that pairs AI-driven automation with human

judgment, grounded in continuous learning, transparency,

and ethical stewardship. By confronting these challenges, the
software-testing discipline can keep pace with increasingly

complex, AI-enabled systems—ultimately strengthening

reliability, elevating quality, and cultivating user trust.

REFERENCES

[1]. M. Islam, F. Khan, S. Alam, and M. Hasan, “Artificial

Intelligence in Software Testing: A Systematic

Review,” Proc. IEEE TENCON, 2023, doi:

10.1109/TENCON58879.2023.10322349.

[2]. A. Aleti, “Software Testing of Generative AI Systems:

Challenges and Opportunities,” arXiv preprint

arXiv:2309.03554, Sep. 2023. [Online]. Available:
https://arxiv.org/abs/2309.03554

[3]. L. Layman and R. Vetter, “Generative Artificial

Intelligence and the Future of Software Testing,”

IEEE Computer, vol. 57, no. 1, pp. 40–48, Jan. 2024.

[4]. M. Islam, F. Khan, S. Alam, and M. Hasan, “Artificial

Intelligence for Software Testing: Perspectives and

Practices,” Proc. of IEEE CCITC, 2021.

[5]. OpenAI, “GPT-4 Technical Report,” 2023. [Online].

Available: https://openai.com/research/gpt-4

https://doi.org/10.38124/ijisrt/25may1017
http://www.ijisrt.com/
https://arxiv.org/abs/2309.03554
https://openai.com/research/gpt-4

