
Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1092

IJISRT25MAY1092 www.ijisrt.com 2306

Implementation of Robust Real-Time

RV32I Processor

K.Venkanna Niadu1; Akurathi Yamini2;

Yalla Naga Venkata Satya Ajay Kumar3;
Srinivasula Subhadra Supraja4;Gudiwada Sushma5

1Assitant professor Dept.of ECE DNR College of Engineering & Technology, Bhimavaram

2,3,5Dept.of ECE DNR College of Engineering & Technology, Bhimavaram
4Srinivasula Subhadra Supraja Dept.of ECE DNR College of Engineering & Technology, Bhimavaram

Publication Date: 2025/05/29

Abstract: In this project focuses on enhancing 32-bit RV32I Version 2.0 processor robustness and real – time capabilities

through the integration of advanced error handling and real-time capabilities through the integration of advanced error

handling mechanisms and features tailored for Real-Time Operating System (RTOS) support. To improve reliability, a

sophisticated Interrupt Error Checker (IEC) is combined with robust Error Correction Codes (ECC). The IEC classifies

interrupts, performs error checks related to interrupt handling, and provides detailed error information, while ECC

protects data integrity in memory and registers. This synergistic combination creates a multi-layered defense against

errors, crucial for mission critical systems. Simultaneously, the design addresses RTOS requirements by focusing on

deterministic execution and low-latency interrupt handling. Techniques for deterministic execution include predictable

instruction timing, cache management strategies (locking, partitioning, scratchpad memory), and simplified pipeline

design. Low-latency interrupts are achieved through fast dispatch, prioritized interrupts, interrupt nesting, and minimized

overhead. Additional RTOS-related features, such as atomic operations and hardware task management support, are also

considered. This combined approach aims to create a processor capable of reliable operation in demanding real-time

environments, ensuring both integrity and timely responsiveness to critical events

Keywords: RV32I, RTOS, IEC.

How to Cite: K.Venkanna Niadu;Akurathi Yamini; Yalla Naga Venkata Satya Ajay Kumar; Srinivasula Subhadra Supraja;

Gudiwada Sushma; (2025) Implementation of Robust Real-Time RV32I Processor. International Journal of Innovative
Science and Research Technology,10(5), 2306-2312. https://doi.org/10.38124/ijisrt/25may1092

I. INTRODUCTION

The RV32I Real-Time Robust Processor is a

specialized implementation of the RISC-V 32-bit Integer

(RV32I) architecture designed to meet the stringent demands

of real-time applications, including industrial automation,

automotive systems, and aerospace control. This processor

integrates real-time computing capabilities with a robust

architecture that enhances fault tolerance, power efficiency,

and predictable execution. It adheres to the RV32I
instruction set, ensuring compatibility with the open-source

RISC-V ecosystem while incorporating enhancements such

as real-time task scheduling, low-latency interrupt handling,

and resilience to transient faults. The Real-Time RV32I

Robust Processor include: • Deterministic Execution:

Predictable instruction timing and real-time scheduling

support. • Low-Latency Interrupt Handling: Optimized for

quick response to time-critical tasks. • Fault-Tolerant

Design: Error detection and correction mechanisms for high

reliability. • Energy Efficiency: Optimized power

management to support embedded and IoT applications. •
Modular and Scalable Architecture: Customizable for

different real-time workloadsparentheses, following the

example. Some components, such as multi-leveled equations,

graphics, and tables are not prescribed, although the various

table text styles are provided. The formatter will need to

create these components, incorporating the applicable criteria

that follow.

II. RV32I PROCESSOR

A. RV32I
The RV32I is the 32-bit integer base instruction set of

the RISC-V architecture, an open-source and highly modular

instruction set architecture(ISA).It forms the foundation for

many RISC-V processors and is designed to be simple,

efficient, and extensible.

B. RV32I ISA Formats

 The RV32I version of the RISC-V ISA serves as the

foundation for 32-bit RISC-V processors, providing a

streamlined and efficient instruction set architecture for

various computing applications.

https://doi.org/10.38124/ijisrt/25may1092
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25may1092

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1092

IJISRT25MAY1092 www.ijisrt.com 2307

Fig 1 RV32I ISA Formats

Table 1 Reg-Reg type Instruction Format

Register-type RV32I ISA V 2.0. It has six fields. The

R-type format, designed for arithmetic and logical
operations, utilizes registers as both operands and result

destinations. With fields including the opcode for operation

identification, register source index (rs1 and rs2), a

destination registers index (rd), and additional function codes

(funct3 and funct7), it enables efficient execution of
operations like addition, subtraction, and bitwise logical

operations.

Table 2 Immediate type Instruction Format

Fig 2 Decoding an I-type Instruction

Immediate-type RV32I ISA V 2.0. the I-type format

facilitates operations involving immediate values alongside a

single register operand. Employing fields such as the

immediate value (imm), a source register index (rs1), a

destination register index (rd), and a function code (funct3),

it enables instructions like immediate addition (add) and

bitwise immediate logical operations (ori).

https://doi.org/10.38124/ijisrt/25may1092
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1092

IJISRT25MAY1092 www.ijisrt.com 2308

Table 3 Store (S-type) RV32I Instruction Format

Fig 3 Decoding an S-type Instruction

Store-type RV32I ISA V 2.0. The S-type format,

optimized for memory stores, involves transferring register

values to memory locations, utilizing source register indices

(rs1 and rs2), an immediate offset (imm), and a function code

(funct3) to define memory addresses and access instructions

such as store word (sw).

Table 4 Branch (B-Type) RV32I Instruction Format

Fig 4 Decoding a B-type Instruction

Branch-type RV32I ISA V2.0. the B-type format

supports conditional branches, utilizing source register

indices (rs1 and rs2), an immediate branch offset (imm), and

a function code (funct3) to evaluate conditions and execute

branch instructions like branch if equal (beq).

Table 5 Jump Type Instruction Format

https://doi.org/10.38124/ijisrt/25may1092
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1092

IJISRT25MAY1092 www.ijisrt.com 2309

Fig 5 Decoding a J-type Instruction

Table 6 Upper Type Instruction Format

Fig 6 Decoding U-type Instruction

U-type and J-type RV32I ISA V 2.0, the decoding of U-

type format and J-type format are similar to each other U-type

is used for operations on the upper immediate value in a

register and J-type facilitates unconditional jumps through
immediate address offsets, featuring a destination register index

(rd) and an immediate value (imm) for instructions like load

upper immediate (lui).

 R-Type : register operations (rd, rs1, rs2, funct, opcode)

 I-Type : immediate operations & loads (rd, rs1, imm,

funct, opcode)

 SB-Type : branching (rs1, rs2, imm, funct, opcode)

 UJ-Type : jump instructions (rd, imm, opcode)

III. METHODOLOGY

 ECC Memory Module

This module implements a memory system with ECC

(Hamming code) to detect and correct single-bit errors in the

stored data.

 Error Detection and Correction

When reading data, the generate ECC function is used to

recalculate the ECC code for the stored data.

 Hamming Code Generation

The generate ECC function calculates the 3-bit ECC

code for the 8-bit data using XOR operations.

Data Encoding Before data is stored in memory Parity

bits are calculated and embedded into the data word using the

Hamming Code algorithm. These parity bits are positioned at

specific locations within the memory word (addresses that are

powers of 2: 1, 2, 4, 8, etc.). For example, a data word of 8 bits

might expand to 12 bits after adding 4 parity bits. Each parity

bit ensures that a specific subset of bits (including itself) has
either an even or odd number of 1s, depending on the chosen

parity scheme. Data Storage The encoded word (data + parity

bits) is stored in memory. This added redundancy allows the

system to detect and correct errors later during data retrieval.

Data Retrieval and Error Detection When data is read from

memory. The system recalculates the parity bits using the

retrieved data and compares them to the stored parity bits. If all

https://doi.org/10.38124/ijisrt/25may1092
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1092

IJISRT25MAY1092 www.ijisrt.com 2310

recalculated parity bits match the stored values, the data is
considered error-free. If there’s a mismatch, it indicates an

error, and the exact location of the error can be determined.

Error Correction Hamming Code identifies the position of the

faulty bit using the parity bits. This is done as follows. The

parity bits are used to form a binary number, where each bit

represents whether a parity check passed or failed. The binary

number indicates the position of the erroneous bit in the

memory word. Single Error Correction, Double Error Detection

(SECDED) Many memory systems implement an extended

form of Hamming Code called SECDED, which Detects and

corrects single-bit errors. Detects, but does not correct, double-

bit errors (to signal more serious faults). Adds an additional
overall parity bit to the encoded word for distinguishing

between single-bit and multi-bit errors.

 Example in Memory

Suppose a 4-bit data word (1011) is to be stored in a

memory system using Hamming Code with 3 parity bits:

 Calculate parity bits for the positions P1, P2, P4P_1, P_2,

P_4:

 P1P_1: Covers bits 1, 3, 5, 7 → Value: 1.

 P2P_2: Covers bits 2, 3, 6, 7 → Value: 0.

 P4P_4: Covers bits 4, 5, 6, 7 → Value: 0.

 Encoded word: 1010011 (positions:

P1P2D3P4D5D6D7P_1 P_2 D_3 P_4 D_5 D_6 D_7).

 If a bit flips during storage (e.g., position 5 changes from 1

to 0), the parity checks on retrieval will fail.

 The error position is determined (binary 101 → decimal
position 5), and the memory system corrects the error by

flipping the bit back.

 Advantages of Hamming Code in Memory Systems

 High Reliability: Corrects single-bit errors and detects

double-bit errors efficiently.

 Low Overhead: Requires relatively few additional bits for

parity.

 Real-Time Operation: Detects and corrects errors on-the-fly

during read operations.

 Hamming Code’s simplicity and effectiveness make it an
integral part of memory systems in servers, embedded

systems, and mission-critical applications.

IV. DESIGN PROCESS

1.Processor Core: This is the central processing unit

responsible for executing instructions and managing the overall

operations of the system. 2. Error Handling Layer: 1. This layer

ensures reliability by detecting, classifying, and managing

errors during processing. 2. It includes mechanisms like: 1.

Interrupt Error Checker (IEC): Checks for interrupt-related

errors, classifies interrupts, and provides detailed error reports.
2. Error Correction Codes (ECC): Protects data integrity in

memory and registers through robust coding mechanisms. 3.

RTOS Layer: 1. Represents the Real-Time Operating System

support integrated into the processor. 2. Provides deterministic

execution, low-latency interrupt handling, and features like

atomic operations and task scheduling, which are essential for

real-time environments. 4.Mission-Critical Application Layer:

1. Designed for high-priority applications that require reliable,

timely, and efficient execution. 2. Focuses on robust operations

to meet the demands of mission-critical systems.

V. SIMULATION RESULTS

Using Xilinx Vivado, the design for the Interrupt checker and Real-Time Operating System (RTOS).

Fig 7 Schematic of Interrupt Controller

https://doi.org/10.38124/ijisrt/25may1092
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1092

IJISRT25MAY1092 www.ijisrt.com 2311

Fig 8 Simulation Design of Interrupt Controller

Fig 9 Schematic of IEC and ECC

Fig 10 Simulation Design of IEC and ECC

https://doi.org/10.38124/ijisrt/25may1092
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1092

IJISRT25MAY1092 www.ijisrt.com 2312

VI. CONCLUSION

This design transforms the RV32I processor into a robust,

RTOS-ready platform capable of balancing reliability and real-

time responsiveness. By addressing both error resilience (via

IEC/ECC) and determinism (through pipeline/cache

optimizations), it provides a foundation for deploying mission-

critical systems in unpredictable environments. Future work

includes silicon validation and benchmarking against industry-

standard RTOS workloads.

REFERENCES

[1]. S. Prabhakaran, M. N and V. Veda Narayanan, "Design

and Analysis of a Multi Clocked Pipelined Processor

Based on RISC-V," 2022 International Conference on

Communication, Computing and Internet of Things

(IC3IoT), Chennai, India, 2022, pp. 1-5, doi:

10.1109/IC3IOT53935.2022.9767960.J.

[2]. Waterman, K. Asanovic and SiFive Inc., “The RISC-V

Instruction Set Manual Volume I: Unprivileged ISA,”

Document Version 20191213, EECS Dept, University

of California, Berkeley, CA, USA, December 13, 2019.

[3]. Thanga Dharsni, K. S. Pande and M. K. Panda,
"Optimized Hazard Free Pipelined Architecture Block

for RV32I RISC-V Processor," 2022 3rd International

Conference on Smart Electronics and Communication

(ICOSEC), Trichy, India, 2022, pp. 739-746, doi:

10.1109/ICOSEC54921.2022.9952122.

[4]. W. Zhang, Y. Zhang and K. Zhao, “Design and

Verification of Three-stage Pipeline CPU Based on

RISC-V Architecture,” 2021 5th Asian Conference on

Artificial Intelligence Technology (ACAIT), Haikou,

China, 2021, PP. 697-703, doi:

10.1109/ACAIT53529.2021.9731161.

[5]. K. Dennis et al., "Single cycle RISC-V micro
architecture processor and its FPGA prototype," 2017

7th International Symposium on Embedded Computing

and System Design (ISED), Durgapur, India, 2017, pp.

1-5, doi: 10.1109/ISED.2017.8303926.

https://doi.org/10.38124/ijisrt/25may1092
http://www.ijisrt.com/

	A. RV32I
	1.Processor Core: This is the central processing unit responsible for executing instructions and managing the overall operations of the system. 2. Error Handling Layer: 1. This layer ensures reliability by detecting, classifying, and managing errors d...
	REFERENCES

