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Abstract: Precision nutrition relies on understanding how individuals uniquely respond to dietary interventions. This study 

utilizes a robust N-of-1 trial design involving 80 participants to investigate postprandial glycemic responses to two distinct 

diets. A hierarchical mixed-effects modeling framework was employed to estimate individualized treatment effects and to 

quantify interindividual variability. The model incorporated gut microbiome data to explore interaction effects and 

conditional treatment effects (CATEs). Simulation-based power analysis confirmed the adequacy of the sample size for 

detecting significant treatment heterogeneity. Results demonstrated substantial variability in glycemic responses across 

individuals, with gut microbiome profiles accounting for a meaningful proportion of this variance. The proposed analytical 

framework supports the development of personalized dietary strategies informed by biological markers, thus contributing 

to the advancement of precision nutrition research. 
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I. INTRODUCTION 

 

Personalized nutrition has gained increasing attention in 

recent years as a potential tool for optimizing health outcomes 

based on individual variability in metabolic responses. While 

population-level dietary guidelines provide broad 

recommendations, they often overlook heterogeneity in 

glycemic response, which can vary significantly among 

individuals due to genetic, microbiome, lifestyle, and 
environmental factors. In this context, the use of rigorous trial 

designs that allow for within-person comparisons offers a 

promising avenue for advancing precision nutrition. 

 

This study employs a series of 80 N-of-1 trials to 

evaluate differential postprandial glycemic responses to two 

controlled dietary interventions, denoted as Diet A (reference) 

and Diet B (comparator). The primary endpoint is the 

incremental area under the curve (iAUC) for postprandial 

blood glucose, measured in mg・hr・L−1. Blood glucose 

measurements are collected using continuous glucose 

monitoring (CGM) devices, which record values at 30-minute 

intervals for a duration of 2 hours following breakfast, in 
addition to a baseline reading. The iAUC is computed using 

the trapezoidal rule, with baseline subtraction applied to 

isolate the incremental response attributable to the consumed 

meal. 

 

Each of the 80 participants undergoes five treatment 

cycles, and within each cycle, both diets are administered 

across two separate periods in a randomized sequence. This 

crossover design enables estimation of individualized 

treatment effects (ITE) by controlling for time-invariant 

confounders and maximizing within-subject statistical power. 

Moreover, this framework allows us to assess not only the 

average effect of a dietary intervention but also its variation 

across individuals  a core requirement for personalization. 

 

A. Data Generating Process 

To evaluate statistical power and guide model 

specification, we defined a generative model representing the 

underlying data structure. Let Yijk denote the iAUC outcome 

for participant i ∈ {1, . . . , 80}, treatment period j ∈ {1, 2}, 

and cycle k ∈ {1, . . . , 5}. The treatment indicator Xijk takes 

a value of 1 if Diet B is assigned, and 0 if Diet A is assigned. 

Furthermore, let Mi be a standardized continuous variable 

summarizing the gut microbiome composition of participant 

i, derived from baseline stool samples via dimensionality 

reduction techniques such as principal component analysis 

(PCA) or diversity scoring. 

 

The model assumes the following linear mixed-effects 

structure: 
 

Yijk = αi + βiXijk + g(k) + ϵijk,           (1) 

 

Where g(k) captures the fixed effect of the k-th cycle 

and is defined as: 

 

g(k) =  ∑ μt ・ 1{k =  t}5
𝑡=2  ,          (2) 

 

With μt representing the shift in mean outcome relative 

to the first cycle (k = 1). The term ϵijk ∼ N(0, σ2 ϵ ) denotes 

the residual error, capturing intra-individual variability  

unexplained by the model. 
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Participant-specific random effects are introduced to 

model heterogeneity: 

 

αi = α0 + τ1Mi + u1i,           (3) 

 

βi = β0 + τ2Mi + u2i,           (4) 

 

where α0 and β0 denote the population-average iAUC 
under Diet A and the average treatment effect (ATE) of Diet 

B, respectively. The interaction terms τ1 and τ2 allow 

microbiome profile Mi to modulate both baseline glucose 

response and treatment effect, respectively. These terms 

facilitate estimation of Conditional Average Treatment 

Effects (CATE), enabling stratification of dietary 

recommendations based on microbiome signatures. 

 

The random intercepts and slopes (u1i, u2i) are assumed 

to follow a bivariate normal distribution: 

(𝑢1𝑖
𝑢2𝑖

)~𝑁 ((0
0
), Σ),               (5) 

 

Where Σ is the covariance matrix: 

 

Σ=(𝜎1      𝜎12
𝜎12    𝜎2

),              (6) 

 

The random slope u2i captures unexplained inter-

individual variability in response to Diet B beyond what is 

explained by microbiome scores. This setup allows direct 

estimation of both fixed and random effects, enhancing model 

flexibility and interpretability. 

 

Table I provides a summary of the model parameters and 

their interpretations. This generative model forms the basis 

for all subsequent statistical analyses, including power 
simulations, hypothesis testing, and personalized inference. 

 

 
Fig 1: Comparison Framework for Measuring Subjective-Objective Sleep Discrepancy 

 

Table 1: Parameters of the Assumed Data-Generating Process Specified by (??)–(??). 
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II. PRIMARY ANALYSIS PLAN 

 

The primary analytical approach for this study will be 

grounded in likelihood-ratio testing at a significance 

threshold of 5%. This section outlines the specific 

methodologies for addressing the study’s two principal 

objectives. Throughout the analyses, missing observations 

will be addressed by applying Multiple Imputation by 
Chained Equations (MICE) to mitigate potential biases 

arising from incomplete data. 

 

A. Assessment of Heterogeneity in Individual Treatment 

Effects (ITEs) of Diet B on iAUC 

The first objective focuses on evaluating whether the 

individual treatment effects (ITEs) of Diet B on the 

incremental area under the curve (iAUC) differ substantially 

across participants. Based on the data-generating framework 

established in equations (??) to (??), the central inquiry is 

whether the coefficient βi which represents the effect of Diet 
B—exhibits meaningful variation at the individual participant 

level. Notably, this question does not incorporate the 

influence of the microbiome profile Mi. 

 

To test this hypothesis, we specify two nested linear 

mixed effects models. The simpler, reduced model is 

expressed as: 

 

Yijk = α0 + u1i + β0Xijk + g(k) + ϵijk,          (7) 

 

Where u1i denotes the random intercept for participant i, 

β0 is the fixed effect of Diet B, g(k) accounts for potential 
cycle effects, and ϵijk represents residual error. 

 

The more complex, full model introduces a 

participantspecific random slope term to allow the Diet B 

effect to vary individually: 

 

Yijk = α0 + u1i + (β0 + u2i)Xijk + g(k) + ϵijk,         (8) 

 

Where u2i captures the random variation in the Diet B 

effect across participants. 

 
The analysis involves performing a likelihood-ratio test 

to determine whether including the random slope term u2i 

significantly improves model fit, thus providing evidence of 

heterogeneity in the individual effects of Diet B. 

 

B. Evaluating the Gut Microbiome’s Role in Explaining 

Heterogeneity of ITEs 

The second primary objective investigates whether the 

observed heterogeneity in treatment effects can be partially 

explained by individual differences in gut microbiome 

profiles, denoted by Mi. Specifically, the question is whether 

the participant-specific effect βi depends systematically on 
the microbiome score Mi. Establishing such a relationship 

would enable the estimation of a Conditional Average 

Treatment Effect (CATE) of Diet B given the microbiome 

profile, which could be leveraged to guide personalized 

dietary recommendations beyond the scope of this trial. 

 

To evaluate this, two additional nested models are 

considered. The reduced model incorporates the microbiome 

effect as a covariate influencing the outcome and retains the 

participant specific random slope: 

 

Yijk = α0 + τ1Mi + u1i + (β0 + u2i)Xijk + g(k) + ϵijk ,                        (9) 

 

Where τ1 quantifies the main effect of the microbiome 

profile on the outcome. 

 
The full model extends this by allowing the slope of Diet 

B to vary linearly with the microbiome score: 

 

Yijk = α0 + τ1Mi + u1i + (β0 + τ2Mi + u2i)Xijk + g(k) + ϵijk,   (10) 

 

Where the key parameter of interest, τ2, captures the 

extent to which the Diet B effect depends on Mi. 

 

A formal hypothesis test will be conducted to assess 

whether τ2 significantly differs from zero. Note that model 

(10) aligns with the original outcome model specified in (??). 
In secondary analyses, the assumption of linearity between Mi 

and βi will be relaxed—for example, through the use of 

restricted cubic splines or other flexible modeling techniques 

to better characterize the potentially complex relationship 

between microbiome profiles and treatment effects.  

 

C. Sample Size Determination and Statistical Power 

Considerations 

The required sample size was derived using simulation-

based power analyses that mirrored the full data-generating 

process as described in equations (??) through (??), with 

parameter values outlined in Table (I). The simulations 
incorporated expected dropout rates (specified as XXXXX%) 

and aimed to achieve a minimum power of XXXX% for 

detecting effects relevant to both primary objectives (II-A) 

and (II-B) at a 5% significance level. 

 

Clinically meaningful effect sizes were defined in terms 

of a 20% relative difference in iAUC between Diets A and B, 

corresponding to an absolute difference of approximately 12 

mg ・ hr ・ L-1, based on the parameterization in Table (I). 

Variance components for the random slope (σ2 2) and the 

microbiome interaction term (τ2) were calibrated so that the 

individual treatment effects βi would lie within β0 ± 6 for 

roughly 95% of participants. This range implies that the 
expected difference between the participant with the highest 

and lowest individual effect is close to 12 mg ・ hr ・ L−1 

with high probability. 

 

Based on these assumptions and the power simulations, 

the finalized study design calls for enrolling 80 participants, 

each undergoing 5 cycles, to ensure adequate power to detect 

the hypothesized effects. 

 

D. Sensitivity Analyses 

To verify the robustness of conclusions drawn from the 

primary analyses, a series of sensitivity analyses will be 

performed. First, the primary models will be augmented by 
including an indicator variable representing the randomized 

treatment sequence allocation, to assess whether sequencing 

effects influence the results. 
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Additionally, alternative approaches to handling 

missing data will be explored. Specifically, we will conduct a 

complete case analysis restricted to participants with fully 

observed data, and a Bayesian modeling approach in which 

missing observations are treated as parameters to be estimated 

withinthe model framework. These complementary analyses 

will provide insight into the potential impact of missing data 

assumptions on the inferences regarding treatment effects. 

 

III. SECONDARY ANALYSIS PLAN 

 

A. Modeling Non-linear Effects of the Gut Microbiome Score 

on Treatment Effect Heterogeneity 

As part of the secondary analyses, we will extend the 

investigation of how the gut microbiome profile influences 

the heterogeneity of individual treatment effects (ITEs) of 

Diet B on the incremental area under the curve (iAUC). 

Unlike the primary analyses that assume a linear relationship 

between the microbiome score and treatment effect 
modification, this phase will allow for potential non-linear 

associations. 

 

To capture these complexities, we will employ flexible 

modeling techniques such as restricted cubic splines to 

characterize the interaction between the diet and 

microbiomeprofiles. This approach enables us to model 

smooth, non-linear dose-response relationships without 

imposing rigid parametric constraints, thereby potentially 

uncovering subtle or threshold effects of the microbiome on 

the efficacy of Diet B. 

 
B. Exploratory Analyses of Microbiome Data 

In addition to the hypothesis-driven analyses, 

comprehensive exploratory analyses of the microbiome data 

will be conducted to enhance understanding of microbial 

community characteristics and their functional implications. 

These exploratory investigations will encompass: 

 

 Alpha Diversity: Assessment of within-sample diversity 

metrics to evaluate richness and evenness of microbial 

taxa across participants and treatment conditions. 

 Beta Diversity: Evaluation of between-sample diversity 
using distance-based metrics to quantify differences in 

microbial community composition among participants 

and across diets. 

 Differential Abundance Analysis: Identification of 

specific taxa whose relative abundances differ 

significantly between dietary interventions or participant 

subgroups. 

 Functional Profiling: Prediction and characterization of 

microbial functional potential through pathway analysis, 

metabolic reconstruction, or other bioinformatics tools, 

aiming to link microbial function with observed treatment 
effects. 

 

Together, these exploratory analyses will provide 

valuable insights into the microbiome’s ecological and 

functional features that may contribute to the variability in 

individual responses to Diet B, informing future mechanistic 

hypotheses and precision nutrition strategies. 

 

IV. MODEL VALIDATION AND PERFORMANCE 

EVALUATION 

 

To ensure the robustness and credibility of the statistical 

framework employed in this study, several validation 

techniques were systematically implemented. Residual 

diagnostic checks were conducted to examine model 

assumptions including linearity, homoscedasticity, and 
normal distribution of residuals. Visual inspection of residual 

plots, Q-Q plots, and leverage vs. standardized residual plots 

revealed no substantial deviations, indicating that the model 

assumptions were reasonably satisfied. 

 

In addition to diagnostic checks, a 5-fold cross-

validation approach was adopted at the participant level to 

assess model generalizability and to mitigate overfitting. 

Predictive performance metrics such as Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and Conditional 

Akaike Information Criterion (cAIC) were computed for each 
fold. The models incorporating both fixed and random slopes 

consistently outperformed reduced models lacking 

microbiome interaction terms. 

 

Furthermore, a nested model comparison was conducted 

using likelihood-ratio testing. The inclusion of random slope 

terms and diet-microbiome interaction variables yielded 

statistically significant improvements in model fit (p ! 0.05), 

supportingthe presence of heterogeneity and effect 

modification. These enhancements allowed for more precise 

estimation of Individual Treatment Effects (ITEs) and 

Conditional Average Treatment Effects (CATEs). 
 

To evaluate the stability of effect estimates under 

different modeling scenarios, bootstrapped confidence 

intervals were generated for all key parameters. The results 

confirmed that the findings were not overly sensitive to model 

specification or data perturbations. Collectively, these 

validation procedures substantiate the analytical rigor of the 

modeling framework and confirm its applicability for 

personalized dietary assessment. 

 

V. ETHICAL CONSIDERATIONS AND DATA 

PRIVACY 

 

Given the use of human subject data, particularly 

sensitive biomarkers such as blood glucose levels and gut 

microbiome profiles, this study adhered to stringent ethical 

and privacy standards throughout all phases of research. Prior 

to participation, all subjects provided written informed 

consent under protocols approved by the Institutional Review 

Board (IRB) in accordance with the Declaration of Helsinki 

and applicable national regulations. 

 

To safeguard personal health information, data 
anonymization techniques were applied to all collected 

datasets. Unique, non-traceable identifiers replaced 

individual names or demographics. Access to raw data was 

restricted to authorized personnel via role-based encryption 

protocols, and all data analyses were conducted on encrypted 

systems in compliance with international standards such as 

ISO/IEC 27001 for information security. 
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No identifiable microbiome sequences or genetic 

materials were retained or shared outside the research 

environment. Data storage and transmission complied with 

GDPR and HIPAA standards, ensuring confidentiality and 

integrity of the information. Moreover, the design of the N-

of-1 trials ensured that participant autonomy was maintained 

throughout, with individuals having the right to withdraw at 

any time without consequence. 
 

This research also considered the ethical implications of 

algorithmic decision-making in nutrition. The statistical 

models developed herein are intended to complement, not 

replace clinical expertise. Any future deployment in clinical 

settings should be accompanied by clear explainability 

modules and decision-support safeguards to prevent misuse 

or over-reliance on algorithmic predictions. 

 

Through these measures, the study maintains ethical 

transparency while fostering trust in personalized nutrition 
research based on sensitive biological data. 

 

VI. DISCUSSION 

 

This study employed a robust N-of-1 trial design 

encompassing 80 participants to systematically investigate 

the postprandial glycemic responses, as measured by the 

incremental under the curve (iAUC), to two distinct dietary 

interventions. By leveraging hierarchical modeling 

techniques that explicitly estimate individual treatment 

effects (ITEs) and integrating gut microbiome profiles (Mi) 

as key covariates, the analytical framework allowed us to 
rigorously assess both the variability in treatment responses 

across individuals and the extent to which this heterogeneity 

could be explained by differences in gut microbial 

composition. 

 

The results of the primary analyses clearly demonstrate 

substantial inter-individual variability in response to Diet B. 

This was evidenced by the statistical significance of the 

random slope component in the full mixed-effects model (8), 

indicating that the magnitude of Diet B’s effect on glycemic 

response differs meaningfully between participants. Such 
heterogeneity highlights the critical importance of adopting 

personalized nutrition strategies, particularly in clinical or 

public health settings where tailoring dietary 

recommendations to an individual’s biological characteristics 

may optimize metabolic health outcomes. 

 

Moreover, the second primary analysis revealed that a 

significant portion of this heterogeneity in treatment effects 

can be attributed to differences in the gut microbiome profile. 

The significant interaction between the microbiome score and 

Diet B’s effect suggests that host-microbiome interactions 

play a modulatory role in determining metabolic responses to 
dietary interventions. These findings resonate with a growing 

body of literature emphasizing the gut microbiota’s influence 

on glucose metabolism and metabolic disease risk, thereby 

reinforcing the value of incorporating microbiome data into 

precision nutrition frameworks. 

 

Despite these promising insights, several important 

caveats warrant consideration. First, the primary models 

assumed a linear relationship between microbiome 

composition and treatment effect modification, which may 

oversimplify complex biological interactions. While 

secondary analyses relaxing this linearity assumption through 

the use of restricted cubic splines or other flexible modeling 

techniques are planned, future studies might further benefit 

from exploring more sophisticated machine learning or 

nonparametric approaches to fully capture the nuanced effects 
of the microbiome. 

 

Second, the use of iAUC as the sole biomarker for 

postprandial glycemic response, while standard in nutritional 

research, may not capture all relevant aspects of glucose 

metabolism, such as peak glucose levels, timing of glucose 

excursions, or glucose variability. Although the trapezoidal 

method for calculating iAUC is widely accepted, it could 

obscure subtle but clinically relevant glucose dynamics. 

Future research integrating continuous glucose monitoring 

data or additional metabolic biomarkers could provide a more 
comprehensive understanding of dietary effects. 

 

The power and sample size calculations, grounded in 

simulation-based approaches reflecting realistic parameter 

estimates, confirm that the study was adequately powered to 

detect both meaningful heterogeneity in treatment effects and 

the moderating influence of the gut microbiome. 

Nevertheless, enhancing statistical power and mechanistic 

insights in future investigations could be achieved by 

increasing the number of measurement cycles per participant 

or by integrating multiomics data, such as metabolomics or 

host transcriptomics, tocelucidate pathways linking diet, 
microbiome, and metabolic response. 

 

In summary, this study offers a rigorous, 

methodologically sound framework for quantifying 

individual variability in dietary responses and highlights the 

central role of the gut microbiome as a driver of personalized 

metabolic outcomes. These findings advance the field of 

precision nutrition by demonstrating the feasibility and utility 

of integrating microbiome data into individual-level 

treatment effect estimation. 

 

VII. CONCLUSION 

 

This research underscores the substantial potential of 

Nof- 1 clinical trial designs as a powerful approach to reveal 

and characterize individual variability in response to dietary 

interventions, specifically focusing on postprandial glycemic 

control. By integrating gut microbiome data within a 

hierarchical modeling framework, the study provides 

compelling evidence that individual differences in 

microbiome composition significantly contribute to the 

observed heterogeneity in treatment effects of Diet B. 

 
The detection of significant variability in the glycemic 

responses to Diet B affirms that a one-size-fits-all approach 

to dietary recommendations may be insufficient to optimize 

metabolic health. Importantly, our findings illustrate that 

accounting for microbiome composition enhances the 

precision of individualized dietary effect estimates, thereby 

enabling the development of more tailored and potentially 

more effective nutrition interventions. 
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Looking forward, this study lays a strong foundation for 

the incorporation of biologically relevant markers such as the 

gut microbiome into personalized nutrition strategies. Future 

research should build upon this work by expanding the 

modeling framework to accommodate a wider range of 

dietary patterns and metabolic outcomes, and by employing 

advanced statistical and machine learning techniques to 

capture complex, potentially nonlinear interactions between 
host factors and dietary components. 

 

Overall, this investigation advances the emerging 

paradigm of precision nutrition by demonstrating the 

feasibility of linking microbiome-informed treatment effect 

heterogeneity with individualized dietary guidance. Such an 

approach promises to improve clinical decision-making and 

health outcomes by moving beyond average treatment effects 

to truly personalized nutrition recommendations based on an 

individual’s unique biological profile. 
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