
Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1297

IJISRT25MAY1297 www.ijisrt.com 971

A Dynamic MPI-Based Memory-Efficient

Framework for Longest Common Subsequence

Computation on Massive DNA Sequence

Shubham Kumar Singh1; Dharanya T2; Aarthi N3; Nagadevi S4

1,2,3Department of Networking and Communications SRM Institute of Science and Technology

Chennai, India

Publication Date: 2025/05/22

Abstract—The rapid expansion of genomic datasets, particularly those encompassing entire human chromosomes,

presents formidable computational challenges for conventional sequence alignment techniques. Among these, the Longest

Common Subsequence (LCS) problem plays a fundamental role in comparative genomics and DNA sequence alignment.

However, its inherent time and space complexity—typically quadratic in nature—renders traditional sequential and

statically parallelized implementations insufficient for large-scale genomic analysis. In response to this limitation, we

propose a dynamic, memory- efficient parallel architecture based on the Message Passing Interface (MPI) framework,

specifically optimized for large DNA sequence comparisons. Our approach introduces a master-worker model that

dynamically distributes computational workload at runtime. By dividing the input sequences into smaller, manageable

segments and assigning these chunks to worker processes on demand, the system ensures effective load balancing across

processing units. The architecture leverages a space-optimized dynamic programming technique, where only two rows of

the LCS matrix are stored at any time, significantly reducing memory consumption without sacrificing correctness. To

evaluate the scalability and performance of our method, we conducted extensive experiments using complete human

chromosome datasets across an MPI cluster with eight processes. The results indicate that while the dynamic strategy

introduces moderate communication overhead, it consistently outperforms static distribution methods in terms of

scalability, adaptability to heterogeneous environments, and memory efficiency. Notably, the proposed solution maintains

stability and performance even as sequence sizes grow, making it suitable for deployment in high- performance computing

(HPC) environments and cloud-based bioinformatics platforms.

Keywords: Longest Common Subsequence (LCS), Parallel Computing, Message Passing Interface (MPI), Dynamic Load

Balancing, DNA Sequence Alignment, Bioinformatics, High- Performance Computing (HPC), Genome-Scale Processing, Memory

Optimization, Master-Worker Architecture.

How to Cite: Shubham Kumar Singh; Dharanya T; Aarthi N; Nagadevi S. (2025) A Dynamic MPI-Based Memory-Efficient

Framework for Longest Common Subsequence Computation on Massive DNA Sequence. International Journal of

Innovative Science and Research Technology, 10(5), 971-977. https://doi.org/10.38124/ijisrt/25may1297

I. INTRODUCTION

The significant rise in genomic data during the post-

genomic era can largely be credited to breakthroughs in

next-generation sequencing technologies. These

innovations have remarkably accelerated DNA

sequencing procedures and substantially reduced
expenses. The capacity to sequence an entire human

genome in just a few days generates enormous volumes of

raw sequencing data, necessitating meticulous

processing, comparative assessments, and interpretation.

This influx of biological data presents substantial

computational hurdles, especially in sequence alignment,

which seeks to discover shared characteristics that may

unveil functional, structural, or evolutionary relationships

among genes or chromosomes.

A considerable challenge in sequence alignment is

the Longest Common Subsequence (LCS) dilemma. The

LCS is crucial for pinpointing conserved genetic

sequences across two different sequences, acting as a key

asset in areas such as comparative genomics, mutation

evaluation, and evolutionary research. Though the idea is

relatively simple, the classic LCS algorithm is resource-
intensive, employing a dynamic programming approach

with a complexity of O(m×n), where m and n signify the

lengths of the sequences being compared. When this is

applied to entire chromosomes comprising hundreds of

millions of base pairs, the method necessitates substantial

computational resources, often surpassing conventional

computing system capabilities regarding memory and

processing time.

https://doi.org/10.38124/ijisrt/25may1297
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25may1297

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1297

IJISRT25MAY1297 www.ijisrt.com 972

To address these challenges, several parallel
computing strategies, especially those leveraging the

Message Passing Interface (MPI), have been explored.

MPI-centric implementations segment the issue across

various processes or computing nodes, thus distributing

the workload to boost computational speed. However,

many current solutions depend on a static chunk

allocation model, where predetermined data segments are

assigned to worker processes at the initiation phase. This

fixed partitioning can result in load imbalances,

particularly when segment computational demands vary,

which may impair performance and lead to memory

limitations as large sequence segments are processed
without adequate optimization.

In our study, we propose a dynamic and memory-

efficient MPI- based framework specifically crafted for

LCS computation linked to extensive genomic sequences.

Our strategy utilizes a master-worker model with

dynamic task allocation, enabling the master node to

distribute segments of input sequences to available

worker nodes based on needs throughout the execution.

This adaptable scheduling system improves workload

distribution across processing units, enhancing
throughput and reducing idle periods. Additionally, to

combat memory restrictions, we developed a space-

optimized dynamic programming technique that

maintains only two rows of the dynamic programming

matrix in memory concurrently. This method

significantly lowers memory requirements while

maintaining the precision of LCS calculations. The

primary contributions of this research can be outlined as

follows:

 Dynamic Chunked Parallelization:

We introduce a novel MPI- based LCS algorithm that
allocates workloads dynamically during execution, which

enhances processor effectiveness and scalability across

various computing settings.

 Memory-Efficient Computation:

We offer a two-row matrix optimization technique

that effectively conserves memory, enabling

comprehensive chromosome comparisons on systems

with constrained resources.

 Comprehensive Performance Evaluation:
A comparative analysis of static and dynamic

parallelization methodologies reveals notable

improvements in execution speed, memory efficiency,

and adaptability.

The remainder of the document is structured as

follows: Section II reviews pertinent research and highlights

the limitations of traditional LCS algorithms in large-scale

bioinformatics applications. Section III describes the

architecture and fundamental design principles of the

proposed system. Section IV presents experimental results
and performance measures. Section V explores the

implications of the findings and proposes directions for

future research. Section VI concludes the paper.

II. LITERATURE SURVEY

The Longest Common Subsequence (LCS) problem,

foundational in DNA sequence alignment, has been the

focus of extensive computational research due to its

quadratic time and space complexity. Numerous attempts

have been made to accelerate LCS computation using

both CPU-based and GPU- based parallel strategies. This

section reviews key developments in the field,

highlighting existing limitations and motivations for our

dynamic, memory-efficient, MPI-based approach. The

original LCS challenge was addressed through dynamic

programming by Hirschberg, who developed a version that
minimizes memory usage with linear space complexity.

However, Hirschberg's approach is inherently sequential

and does not adapt well to effective parallel execution.

Early attempts to implement parallel LCS on shared-

memory systems using OpenMP achieved only limited

speed enhancements while facing scalability problems.

Subsequent studies explored implementations with

distributed memory using MPI. For example, Saeed and

his team introduced a static MPI parallel LCS algorithm

that segments sequences into fixed blocks allocated

during initialization. This method is effective for smaller
to medium-sized inputs but often faces load imbalance

and memory limitations when processing full genome

data, due to disparate computational requirements across

the divisions. To circumvent CPU limitations, there is an

increasing inclination among researchers to leverage

GPUs for bioinformatics issues. Liu and Wong presented

a CUDA LCS solution that takes advantage of the

extensive core architecture of GPUs to accelerate matrix

calculations. Their findings indicated significant speed

gains compared to CPU methods; however, it required

the entire LCS matrix to reside in GPU memory, which

limited scalability for longer sequences. Similarly, Liu
and colleagues introduced tiled GPU LCS methods aimed

at optimizing global memory access. Although these

approaches work well, they often confront the limitations

of GPU architectures and typically do not generalize

effectively across data sets of varying sizes and structures.

Additionally, the absence of dynamic task scheduling

leads to suboptimal resource utilization in diverse

environments. Recent research has explored hybrid

approaches. Zhang and his team integrated GPU kernels

with MPI to support cross-node communication for large-

scale LCS processing. Nonetheless, their method for
chunk allocation was rigid, and their system faced load

balancing issues due to uneven data distributions. In

contrast, dynamic scheduling models, like the one

proposed by Bo Peng and his group, demonstrate greater

adaptability but have primarily been utilized for sequence

alignments via heuristic methods, rather than for accurate

LCS computation. Cloud- based solutions such as

CloudBurst and Crossbow offer distributed DNA analysis

services, prioritizing mapping and alignment over LCS.

These platforms do not optimize for memory efficiency

or precise sequence comparison and typically depend on
Hadoop or Spark, leading to delays that are ill-suited for

fundamental dynamic programming tasks.

https://doi.org/10.38124/ijisrt/25may1297
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1297

IJISRT25MAY1297 www.ijisrt.com 973

Tackling memory limitations has been a central
theme in the research community. Ukkonen's banded

alignment and Hirschberg's space optimization represent

significant advancements; however, few implementations

integrate these techniques with dynamic chunking and

distributed scheduling. The framework we propose aims

to address this gap by incorporating a two-row dynamic

programming method along with on-demand task

allocation within MPI, specifically targeting genome-

scale data sets. Significant parallel and distributed efforts

also include work by Aluru and Jammula, who explored

fine-grained parallelism in bioinformatics algorithms

while emphasizing cache-aware improvements to reduce
memory latency during sequence processing. Although

their methods are effective for shorter sequences, they

struggle when applied to comparisons involving entire

genomes. Bhaskar et al. [12] introduced a method driven

by MapReduce for sequence comparison that distributed

the LCS problem across multiple nodes within a Hadoop

framework. Although their solution provided scalability,

it incurred considerable communication costs and was

limited by the inherent delays of MapReduce's batch

processing. In a more recent investigation, Singh and

Kaur [13] examined hybrid tiling techniques across
various CPU-GPU clusters. Their adaptive tiling strategy

improved the functionality of different devices, but it was

deficient in fault tolerance and encountered issues

regarding data distribution. Moreover, contemporary

implementations driven by FPGAs [14] have

demonstrated the benefits of hardware acceleration for

LCS computations. Despite their impressive throughput,

these methods require specialized development tools and

hardware, potentially restricting their use in conventional

research environments. Collectively, these studies

underscore the trade-offs between performance, memory

efficiency, scalability, and ease of deployment. Our
proposed dynamic MPI-based framework aims to strike a

balance by utilizing minimal memory usage, dynamic

load balancing, and applicability at a genomic level

without relying on hardware-specific elements.

III. METHODOLOGY

This section describes the architectural framework

and core algorithmic strategy behind the proposed

Dynamic MPI-Based Chunked Longest Common

Subsequence (LCS) Computation System, which is

tailored for large-scale DNA sequence comparison. The

primary objective is to address the computational

inefficiencies and memory constraints that hinder traditional

LCS implementations, especially when processing entire

human chromosomes. The solution harnesses Message

Passing Interface (MPI) to implement a scalable,

memory- efficient, and dynamically load-balanced
parallel processing model.

A. System Architecture: Dynamic Master-Worker Model

At the core of the system lies a dynamic parallel

architecture based on the master-worker paradigm

implemented through MPI. Unlike traditional static

parallelization models where tasks are assigned at the start

of execution, this architecture enables real-time task

distribution. The master process assumes the role of

orchestrator, initiating sequence loading, dividing the

data into computationally manageable segments, and
coordinating communication and task assignment with

worker processes. Each worker process operates

independently, requesting work when available,

computing partial results, and returning them

asynchronously. This dynamic work assignment model

ensures that faster or less burdened processors receive

more work over time, thereby improving load balancing

and minimizing idle periods. Such flexibility is critical in

high-performance computing environments where node

performance may vary due to system heterogeneity or

transient loads. Moreover, this model avoids memory

overload by distributing tasks in small, discrete units
rather than requiring the full input sequences to reside in

memory on each node. Initial sequence data or metadata

is broadcast once, while actual chunk indices are

managed centrally by the master during execution. The

result is a system that scales effectively across a wide

range of processor counts and adapts to the runtime

conditions of the computing environment.

Fig 1 Master process distribution

https://doi.org/10.38124/ijisrt/25may1297
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1297

IJISRT25MAY1297 www.ijisrt.com 974

B. Chunked and Space-Efficient LCS Computation
To address the quadratic space complexity inherent in

traditional LCS algorithms, the proposed framework

implements a chunk- based decomposition strategy

coupled with a memory-efficient dynamic programming

approach. Both input sequences are divided into smaller,

fixed-length segments—typically ranging from 1000 to

5000 base pairs—forming a grid of chunk pairs, each of

which defines a subproblem in the LCS computation

space. By processing these chunk pairs individually, the

memory footprint of each computation is reduced from O

(m × n), where m and n are the full sequence lengths, to

O (c × c), where c is the chunk size. Each worker
computes the LCS of its assigned chunk pair using a row-

wise optimization of the dynamic programming

algorithm. Instead of constructing the entire two-

dimensional LCS matrix, which becomes infeasible for

large input sizes, only two rows—the current and the

previous—are stored and updated iteratively during

computation. This optimization reduces the space

complexity per task from O(c²) to O(2c), allowing the

system to process large data volumes using only modest

hardware resources.

Fig 2 Dynamic MPI-Based Chunked LCS Computation

This diagram outlines a parallel system designed to

process large DNA sequences and find their Longest

Common Subsequence (LCS). The process starts with a

preprocessing step where the input sequence is divided into

smaller parts using a method called dynamic chunk sizing.

These chunks are then managed by a central Master Node,
which assigns work to different processors. Each processor

handles part of the LCS computation, with one specifically

managing the overlapping regions between chunks. Once all

partial results are ready, a final assembly step combines

them into the complete LCS result and generates an

alignment report. The system also includes features for

checkpointing, monitoring, and performance tracking to

ensure smooth operation during large-scale computations.

Communication between the master and workers relies

on MPI's point-to-point messaging primitives, such as

MPI_Send and MPI_Recv, enabling a responsive and
lightweight control mechanism. Workers notify the master

when ready for a new task, and the master dispatches the

next available chunk pair. This decentralized execution

model allows the system to scale horizontally: adding more

worker processes increases parallel throughput, while the

small-memory footprint of each task ensures that data size

remains a non-limiting factor. Although the current

implementation does not include fault-tolerant mechanisms,

the architecture is designed with extensibility in mind.

Versus Chromosome 22), the static strategy

encountered significant challenges. In several instances,

attempts to compute full LCS matrices led to segmentation

faults and memory exhaustion, a consequence of the global

allocation of full-size dynamic programming tables. This

limitation rendered the static approach impractical for full-

genome comparisons on standard hardware configurations.

It successfully processed large chromosome pairs without

runtime failures, completing alignments that were infeasible

under the static model. For example, comparisons such as

Chromosome 1 versus Chromosome 22 and Chromosome 2

versus Chromosome 22 completed in 91 and 122 seconds,
respectively. While these execution times were longer due to

the communication overhead introduced by dynamic task

scheduling, the approach provided a reliable and scalable

solution suitable for large-scale genomic data analysis.

https://doi.org/10.38124/ijisrt/25may1297
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1297

IJISRT25MAY1297 www.ijisrt.com 975

Fig 3 Time taken by Dynamic MPI & Static MPI

IV. RESULTS & DISCUSSION

To assess the practical viability and performance of the proposed dynamic MPI-based LCS computation framework, a series

of experiments were conducted using real-world genomic data. Specifically, full-length DNA sequences corresponding to various

human chromosomes were obtained from the NCBI GenBank repository. The implementation was developed in C, utilizing the

OpenMPI library to support distributed computation across multiple processes.

Fig 4 Execution log of the Dynamic MPI-based Chunked LCS

All tests were executed on a shared-memory system

equipped with eight processing cores and 16 GB of RAM.

The primary objective of the evaluation was to compare the

behaviour of the dynamic master-worker model against a

baseline static MPI implementation under varying input

sizes and sequence combinations. In both cases, the

sequences were partitioned into fixed-size chunks of 1000

base pairs to facilitate controlled memory usage. The static

approach involved predefined task allocation at the start of

execution, whereas the dynamic version employed runtime

chunk scheduling based on process availability, as described

earlier. The results revealed a distinct contrast between the

two paradigms. The static model exhibited favourable

execution times when aligning relatively short sequences,

completing certain comparisons such as Chromosome 1

versus Chromosome 2 in approximately three seconds.

However, as the input size increased, particularly in

scenarios involving large chromosomes (e.g., Chromosome

1

https://doi.org/10.38124/ijisrt/25may1297
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1297

IJISRT25MAY1297 www.ijisrt.com 976

A key observation from the experiments was the
improved load balancing achieved through dynamic

scheduling. The master process effectively distributed work

based on worker availability, allowing faster or

underutilized processes to handle a greater portion of the

workload. This led to more uniform resource utilization and

reduced idle time. Furthermore, the space-optimized

implementation at the worker level, which retained only two

rows of the LCS matrix at any given time, ensured that the

system operated comfortably within memory limits—even

for full-length chromosome comparisons.

V. CONCLUSION & FUTURE WORK

This study introduces a dynamic, MPI-based

framework tailored for efficient computation of the Longest

Common Subsequence (LCS) across large-scale genomic

sequences. By adopting a chunked alignment strategy within

a master-worker model, the system dynamically assigns

computational tasks to available processing units during

runtime. This design enables the framework to overcome the

scalability and memory limitations that typically hinder

traditional or statically parallelized LCS implementations.

Experimental evaluations on full-length human

chromosomes validate the robustness and adaptability of the

proposed approach. Unlike static task allocation, which

often results in

memory exhaustion or inefficient resource use, the

dynamic framework demonstrated reliable performance

across a range of sequence sizes. The system was able to

align entire chromosomes without exceeding memory limits,

while also achieving consistent load balancing across

multiple cores. These characteristics make the method

particularly well-suited for environments with limited
memory resources, such as commodity clusters or mid-tier

cloud computing instances. Although the dynamic

scheduling mechanism introduces a modest increase in

communication overhead, particularly for smaller input

datasets, this trade-off is offset by significant gains in

scalability and memory efficiency. As a result, the

framework is a strong candidate for deployment in high-

performance computing contexts that require large-scale

DNA sequence comparisons, including genomic variation

analysis, phylogenetics, and personalized medicine

pipelines.

Looking ahead, several extensions are envisioned to

enhance the system's capabilities. One promising direction

involves implementing adaptive chunk sizing based on the

complexity or structure of the input sequences, which could

further optimize memory use and execution time.

Additionally, a hybrid parallelization scheme combining

MPI with thread-level parallelism via OpenMP could

leverage multi-core architectures more effectively.

Deployment on distributed cloud infrastructures represents

another avenue for future exploration, offering opportunities
for large-scale comparative genomics across multiple

datasets simultaneously. Finally, integration with biological

annotation tools and mutation detection frameworks could

transform this computational engine into a full-fledged
bioinformatics analysis platform capable of real- time

genome analysis. Through its combination of scalability,

resilience, and efficient resource utilization, the proposed

dynamic LCS framework lays a strong foundation for

advanced genomic data processing in both research and

clinical settings.

The template will number citations consecutively

within brackets [1]. The sentence punctuation follows the

bracket [2]. Refer simply to the reference number, as in

[3]—do not use “Ref. [3]” or “reference [3]” except at the

beginning of a sentence: “Reference [3] was the first ...”

Number footnotes separately in superscripts. Place the

actual footnote at the bottom of the column in which it was

cited. Do not put footnotes in the abstract or reference list.

Use letters for table footnotes.

Unless there are six authors or more give all authors’

names; do not use “et al.”. Papers that have not been

published, even if they have been submitted for publication,

should be cited as “unpublished” [4]. Papers that have been

accepted for publication should be cited as “in press” [5].
Capitalize only the first word in a paper title, except for

proper nouns and element symbols. For papers published in

translation journals, please give the English citation first,

followed by the original foreign-language citation [6].

REFERENCES

[1]. G. Eason, B. Noble, and I. N. Sneddon, “On certain

integrals of Lipschitz- Hankel type involving

products of Bessel functions,” Phil. Trans. Roy. Soc.

London, vol. A247, pp. 529–551, April 1955.

(references)
[2]. J. Clerk Maxwell, A Treatise on Electricity and

Magnetism, 3rd ed., vol.

[3]. Oxford: Clarendon, 1892, pp.68–73.

[4]. I. S. Jacobs and C. P. Bean, “Fine particles, thin films

and exchange anisotropy,” in Magnetism, vol. III, G.

T. Rado and H. Suhl, Eds. New York: Academic,

1963, pp. 271–350.

[5]. K. Elissa, “Title of paper if known,” unpublished.

[6]. R. Nicole, “Title of paper with only first word

capitalized,” J. Name Stand. Abbrev., in press.

[7]. Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa,
“Electron spectroscopy studies on magneto-optical

media and plastic substrate interface,” IEEE Transl. J.

Magn. Japan, vol. 2, pp. 740–741, August 1987

[Digests 9th Annual Conf. Magnetics Japan, p. 301,

1982].

[8]. M. Young, The Technical Writer’s Handbook. Mill

Valley, CA: University Science, 1989.

[9]. K. Eves and J. Valasek, “ Adaptive control for

singularly perturbed systems examples, ” Code

Ocean, Aug. 2023. [Online]. Available:

https://codeocean.com/capsule/4989235/tree
[10]. D. P. Kingma and M. Welling, “Auto-encoding

variational Bayes,” 2013, arXiv:1312.6114. [Online].

Available: https://arxiv.org/abs/1312.6114

https://doi.org/10.38124/ijisrt/25may1297
http://www.ijisrt.com/

Volume 10, Issue 5, May – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25may1297

IJISRT25MAY1297 www.ijisrt.com 977

[11]. S. Liu, “Wi-Fi Energy Detection Testbed (12MTC),”
2023, gitHub repository. [Online]. Available:

https://github.com/liustone99/Wi-Fi-

[12]. Energy-Detection-Testbed-12MTC

[13]. “Treatment episode data set: discharges (TEDS-D):

concatenated, 2006 to 2009.” U.S. Department of

Health and Human Services, Substance Abuse and

Mental Health Services Administration, Office of

Applied Studies, August, 2013, DOI:10.3886

/ICPSR30122.v2

https://doi.org/10.38124/ijisrt/25may1297
http://www.ijisrt.com/

