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Abstract—The rapid expansion of genomic datasets, particularly those encompassing entire human chromosomes, 

presents formidable computational challenges for conventional sequence alignment techniques. Among these, the Longest 

Common Subsequence (LCS) problem plays a fundamental role in comparative genomics and DNA sequence alignment. 

However, its inherent time and space complexity—typically quadratic in nature—renders traditional sequential and 

statically parallelized implementations insufficient for large-scale genomic analysis. In response to this limitation, we 

propose a dynamic, memory- efficient parallel architecture based on the Message Passing Interface (MPI) framework, 

specifically optimized for large DNA sequence comparisons. Our approach introduces a master-worker model that 

dynamically distributes computational workload at runtime. By dividing the input sequences into smaller, manageable 

segments and assigning these chunks to worker processes on demand, the system ensures effective load balancing across 

processing units. The architecture leverages a space-optimized dynamic programming technique, where only two rows of 

the LCS matrix are stored at any time, significantly reducing memory consumption without sacrificing correctness. To 

evaluate the scalability and performance of our method, we conducted extensive experiments using complete human 

chromosome datasets across an MPI cluster with eight processes. The results indicate that while the dynamic strategy 

introduces moderate communication overhead, it consistently outperforms static distribution methods in terms of 

scalability, adaptability to heterogeneous environments, and memory efficiency. Notably, the proposed solution maintains 

stability and performance even as sequence sizes grow, making it suitable for deployment in high- performance computing 

(HPC) environments and cloud-based bioinformatics platforms. 

 

Keywords: Longest Common Subsequence (LCS), Parallel Computing, Message Passing Interface (MPI), Dynamic Load 

Balancing, DNA Sequence Alignment, Bioinformatics, High- Performance Computing (HPC), Genome-Scale Processing, Memory 

Optimization, Master-Worker Architecture. 
 

How to Cite: Shubham Kumar Singh; Dharanya T; Aarthi N; Nagadevi S. (2025) A Dynamic MPI-Based Memory-Efficient 

Framework for Longest Common Subsequence Computation on Massive DNA Sequence. International Journal of  

Innovative Science and Research Technology, 10(5), 971-977. https://doi.org/10.38124/ijisrt/25may1297 

 

I. INTRODUCTION 

 

The significant rise in genomic data during the post-

genomic era can largely be credited to breakthroughs in 

next-generation sequencing technologies. These 

innovations have remarkably accelerated DNA 

sequencing procedures and substantially reduced 
expenses. The capacity to sequence an entire human 

genome in just a few days generates enormous volumes of 

raw sequencing data, necessitating meticulous 

processing, comparative assessments, and interpretation. 

This influx of biological data presents substantial 

computational hurdles, especially in sequence alignment, 

which seeks to discover shared characteristics that may 

unveil functional, structural, or evolutionary relationships 

among genes or chromosomes. 

 

 

A considerable challenge in sequence alignment is 

the Longest Common Subsequence (LCS) dilemma. The 

LCS is crucial for pinpointing conserved genetic 

sequences across two different sequences, acting as a key 

asset in areas such as comparative genomics, mutation 

evaluation, and evolutionary research. Though the idea is 

relatively simple, the classic LCS algorithm is resource-
intensive, employing a dynamic programming approach 

with a complexity of O(m×n), where m and n signify the 

lengths of the sequences being compared. When this is 

applied to entire chromosomes comprising hundreds of 

millions of base pairs, the method necessitates substantial 

computational resources, often surpassing conventional 

computing system capabilities regarding memory and 

processing time. 
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To address these challenges, several parallel 
computing strategies, especially those leveraging the 

Message Passing Interface (MPI), have been explored. 

MPI-centric implementations segment the issue across 

various processes or computing nodes, thus distributing 

the workload to boost computational speed. However, 

many current solutions depend on a static chunk 

allocation model, where predetermined data segments are 

assigned to worker processes at the initiation phase. This 

fixed partitioning can result in load imbalances, 

particularly when segment computational demands vary, 

which may impair performance and lead to memory 

limitations as large sequence segments are processed 
without adequate optimization. 

 

In our study, we propose a dynamic and memory-

efficient MPI- based framework specifically crafted for 

LCS computation linked to extensive genomic sequences. 

Our strategy utilizes a master-worker model with 

dynamic task allocation, enabling the master node to 

distribute segments of input sequences to available 

worker nodes based on needs throughout the execution. 

This adaptable scheduling system improves workload 

distribution across processing units, enhancing 
throughput and reducing idle periods. Additionally, to 

combat memory restrictions, we developed a space-

optimized dynamic programming technique that 

maintains only two rows of the dynamic programming 

matrix in memory concurrently. This method 

significantly lowers memory requirements while 

maintaining the precision of LCS calculations. The 

primary contributions of this research can be outlined as 

follows: 

 

 Dynamic Chunked Parallelization:  

We introduce a novel MPI- based LCS algorithm that 
allocates workloads dynamically during execution, which 

enhances processor effectiveness and scalability across 

various computing settings. 

 

 Memory-Efficient Computation:  

We offer a two-row matrix optimization technique 

that effectively conserves memory, enabling 

comprehensive chromosome comparisons on systems 

with constrained resources. 

 

 Comprehensive Performance Evaluation:  
A comparative analysis of static and dynamic 

parallelization methodologies reveals notable 

improvements in execution speed, memory efficiency, 

and adaptability. 

 

The remainder of the document is structured as 

follows: Section II reviews pertinent research and highlights 

the limitations of traditional LCS algorithms in large-scale 

bioinformatics applications. Section III describes the 

architecture and fundamental design principles of the 

proposed system. Section IV presents experimental results 
and performance measures. Section V explores the 

implications of the findings and proposes directions for 

future research. Section VI concludes the paper. 

II. LITERATURE SURVEY 
 

The Longest Common Subsequence (LCS) problem, 

foundational in DNA sequence alignment, has been the 

focus of extensive computational research due to its 

quadratic time and space complexity. Numerous attempts 

have been made to accelerate LCS computation using 

both CPU-based and GPU- based parallel strategies. This 

section reviews key developments in the field, 

highlighting existing limitations and motivations for our 

dynamic, memory-efficient, MPI-based approach. The 

original LCS challenge was addressed through dynamic 

programming by Hirschberg, who developed a version that 
minimizes memory usage with linear space complexity. 

However, Hirschberg's approach is inherently sequential 

and does not adapt well to effective parallel execution. 

Early attempts to implement parallel LCS on shared-

memory systems using OpenMP achieved only limited 

speed enhancements while facing scalability problems. 

Subsequent studies explored implementations with 

distributed memory using MPI. For example, Saeed and 

his team introduced a static MPI parallel LCS algorithm 

that segments sequences into fixed blocks allocated 

during initialization. This method is effective for smaller  
to medium-sized inputs but often faces load imbalance 

and memory limitations when processing full genome 

data, due to disparate computational requirements across 

the divisions. To circumvent CPU limitations, there is an 

increasing inclination among researchers to leverage 

GPUs for bioinformatics issues. Liu and Wong presented 

a CUDA LCS solution that takes advantage of the 

extensive core architecture of GPUs to accelerate matrix 

calculations. Their findings indicated significant speed 

gains compared to CPU methods; however, it required 

the entire LCS matrix to reside in GPU memory, which 

limited scalability for longer sequences. Similarly, Liu 
and colleagues introduced tiled GPU LCS methods aimed 

at optimizing global memory access. Although these 

approaches work well, they often confront the limitations 

of GPU architectures and typically do not generalize 

effectively across data sets of varying sizes and structures. 

Additionally, the absence of dynamic task scheduling 

leads to suboptimal resource utilization in diverse 

environments. Recent research has explored hybrid 

approaches. Zhang and his team integrated GPU kernels 

with MPI to support cross-node communication for large-

scale LCS processing. Nonetheless, their method for 
chunk allocation was rigid, and their system faced load 

balancing issues due to uneven data distributions. In 

contrast, dynamic scheduling models, like the one 

proposed by Bo Peng and his group, demonstrate greater 

adaptability but have primarily been utilized for sequence 

alignments via heuristic methods, rather than for accurate 

LCS computation. Cloud- based solutions such as 

CloudBurst and Crossbow offer distributed DNA analysis 

services, prioritizing mapping and alignment over LCS. 

These platforms do not optimize for memory efficiency 

or precise sequence comparison and typically depend on 
Hadoop or Spark, leading to delays that are ill-suited for 

fundamental dynamic programming tasks. 
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Tackling memory limitations has been a central 
theme in the research community. Ukkonen's banded 

alignment and Hirschberg's space optimization represent 

significant advancements; however, few implementations 

integrate these techniques with dynamic chunking and 

distributed scheduling. The framework we propose aims 

to address this gap by incorporating a two-row dynamic 

programming method along with on-demand task 

allocation within MPI, specifically targeting genome-

scale data sets. Significant parallel and distributed efforts 

also include work by Aluru and Jammula, who explored 

fine-grained parallelism in bioinformatics algorithms 

while emphasizing cache-aware improvements to reduce 
memory latency during sequence processing. Although 

their methods are effective for shorter sequences, they 

struggle when applied to comparisons involving entire 

genomes. Bhaskar et al. [12] introduced a method driven 

by MapReduce for sequence comparison that distributed 

the LCS problem across multiple nodes within a Hadoop 

framework. Although their solution provided scalability, 

it incurred considerable communication costs and was 

limited by the inherent delays of MapReduce's batch 

processing. In a more recent investigation, Singh and 

Kaur [13] examined hybrid tiling techniques across 
various CPU-GPU clusters. Their adaptive tiling strategy 

improved the functionality of different devices, but it was 

deficient in fault tolerance and encountered issues 

regarding data distribution. Moreover, contemporary 

implementations driven by FPGAs [14] have 

demonstrated the benefits of hardware acceleration for 

LCS computations. Despite their impressive throughput, 

these methods require specialized development tools and 

hardware, potentially restricting their use in conventional 

research environments. Collectively, these studies 

underscore the trade-offs between performance, memory 

efficiency, scalability, and ease of deployment. Our 
proposed dynamic MPI-based framework aims to strike a 

balance by utilizing minimal memory usage, dynamic 

load balancing, and applicability at a genomic level 

without relying on hardware-specific elements. 

 

 

 

 

III. METHODOLOGY 
 

This section describes the architectural framework 

and core algorithmic strategy behind the proposed 

Dynamic MPI-Based Chunked Longest Common 

Subsequence (LCS) Computation System, which is 

tailored for large-scale DNA sequence comparison. The 

primary objective is to address the computational 

inefficiencies and memory constraints that hinder traditional 

LCS implementations, especially when processing entire 

human chromosomes. The solution harnesses Message 

Passing Interface (MPI) to implement a scalable, 

memory- efficient, and dynamically load-balanced 
parallel processing model. 

 

A. System Architecture: Dynamic Master-Worker Model 

At the core of the system lies a dynamic parallel 

architecture based on the master-worker paradigm 

implemented through MPI. Unlike traditional static 

parallelization models where tasks are assigned at the start 

of execution, this architecture enables real-time task 

distribution. The master process assumes the role of 

orchestrator, initiating sequence loading, dividing the 

data into computationally manageable segments, and 
coordinating communication and task assignment with 

worker processes. Each worker process operates 

independently, requesting work when available, 

computing partial results, and returning them 

asynchronously. This dynamic work assignment model 

ensures that faster or less burdened processors receive 

more work over time, thereby improving load balancing 

and minimizing idle periods. Such flexibility is critical in 

high-performance computing environments where node 

performance may vary due to system heterogeneity or 

transient loads. Moreover, this model avoids memory 

overload by distributing tasks in small, discrete units 
rather than requiring the full input sequences to reside in 

memory on each node. Initial sequence data or metadata 

is broadcast once, while actual chunk indices are 

managed centrally by the master during execution. The 

result is a system that scales effectively across a wide 

range of processor counts and adapts to the runtime 

conditions of the computing environment. 

 

 
Fig 1 Master process distribution 
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B. Chunked and Space-Efficient LCS Computation 
To address the quadratic space complexity inherent in 

traditional LCS algorithms, the proposed framework 

implements a chunk- based decomposition strategy 

coupled with a memory-efficient dynamic programming 

approach. Both input sequences are divided into smaller, 

fixed-length segments—typically ranging from 1000 to 

5000 base pairs—forming a grid of chunk pairs, each of 

which defines a subproblem in the LCS computation 

space. By processing these chunk pairs individually, the 

memory footprint of each computation is reduced from O 

(m × n), where m and n are the full sequence lengths, to 

O (c × c), where c is the chunk size. Each worker 
computes the LCS of its assigned chunk pair using a row-

wise optimization of the dynamic programming 

algorithm. Instead of constructing the entire two-

dimensional LCS matrix, which becomes infeasible for 

large input sizes, only two rows—the current and the 

previous—are stored and updated iteratively during 

computation. This optimization reduces the space 

complexity per task from O(c²) to O(2c), allowing the 

system to process large data volumes using only modest 

hardware resources. 

 

 
Fig 2 Dynamic MPI-Based Chunked LCS Computation 

 

This diagram outlines a parallel system designed to 

process large DNA sequences and find their Longest 

Common Subsequence (LCS). The process starts with a 

preprocessing step where the input sequence is divided into 

smaller parts using a method called dynamic chunk sizing. 

These chunks are then managed by a central Master Node, 
which assigns work to different processors. Each processor 

handles part of the LCS computation, with one specifically 

managing the overlapping regions between chunks. Once all 

partial results are ready, a final assembly step combines 

them into the complete LCS result and generates an 

alignment report. The system also includes features for 

checkpointing, monitoring, and performance tracking to 

ensure smooth operation during large-scale computations. 

 

Communication between the master and workers relies 

on MPI's point-to-point messaging primitives, such as 

MPI_Send and MPI_Recv, enabling a responsive and 
lightweight control mechanism. Workers notify the master 

when ready for a new task, and the master dispatches the 

next available chunk pair. This decentralized execution 

model allows the system to scale horizontally: adding more 

worker processes increases parallel throughput, while the 

small-memory footprint of each task ensures that data size 

remains a non-limiting factor. Although the current 

implementation does not include fault-tolerant mechanisms, 

the architecture is designed with extensibility in mind. 

  
Versus Chromosome 22), the static strategy 

encountered significant challenges. In several instances, 

attempts to compute full LCS matrices led to segmentation 

faults and memory exhaustion, a consequence of the global 

allocation of full-size dynamic programming tables. This 

limitation rendered the static approach impractical for full-

genome comparisons on standard hardware configurations. 

It successfully processed large chromosome pairs without 

runtime failures, completing alignments that were infeasible 

under the static model. For example, comparisons such as 

Chromosome 1 versus Chromosome 22 and Chromosome 2 

versus Chromosome 22 completed in 91 and 122 seconds, 
respectively. While these execution times were longer due to 

the communication overhead introduced by dynamic task 

scheduling, the approach provided a reliable and scalable 

solution suitable for large-scale genomic data analysis. 

 

https://doi.org/10.38124/ijisrt/25may1297
http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025         International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                           https://doi.org/10.38124/ijisrt/25may1297 

 

IJISRT25MAY1297                                                              www.ijisrt.com                                                                                   975  

 
Fig 3 Time taken by Dynamic MPI & Static MPI 

 

IV. RESULTS & DISCUSSION 

 

To assess the practical viability and performance of the proposed dynamic MPI-based LCS computation framework, a series 

of experiments were conducted using real-world genomic data. Specifically, full-length DNA sequences corresponding to various 

human chromosomes were obtained from the NCBI GenBank repository. The implementation was developed in C, utilizing the 

OpenMPI library to support distributed computation across multiple processes. 

 

 
Fig 4 Execution log of the Dynamic MPI-based Chunked LCS 

 

All tests were executed on a shared-memory system 

equipped with eight processing cores and 16 GB of RAM. 

The primary objective of the evaluation was to compare the 

behaviour of the dynamic master-worker model against a 

baseline static MPI implementation under varying input 

sizes and sequence combinations. In both cases, the 

sequences were partitioned into fixed-size chunks of 1000 

base pairs to facilitate controlled memory usage. The static 

approach involved predefined task allocation at the start of 

execution, whereas the dynamic version employed runtime 

chunk scheduling based on process availability, as described 

earlier. The results revealed a distinct contrast between the 

two paradigms. The static model exhibited favourable 

execution times when aligning relatively short sequences, 

completing certain comparisons such as Chromosome 1 

versus Chromosome 2 in approximately three seconds. 

However, as the input size increased, particularly in 

scenarios involving large chromosomes (e.g., Chromosome 

1 
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A key observation from the experiments was the 
improved load balancing achieved through dynamic 

scheduling. The master process effectively distributed work 

based on worker availability, allowing faster or 

underutilized processes to handle a greater portion of the 

workload. This led to more uniform resource utilization and 

reduced idle time. Furthermore, the space-optimized 

implementation at the worker level, which retained only two 

rows of the LCS matrix at any given time, ensured that the 

system operated comfortably within memory limits—even 

for full-length chromosome comparisons. 

 

V. CONCLUSION & FUTURE WORK 
 

This study introduces a dynamic, MPI-based 

framework tailored for efficient computation of the Longest 

Common Subsequence (LCS) across large-scale genomic 

sequences. By adopting a chunked alignment strategy within 

a master-worker model, the system dynamically assigns 

computational tasks to available processing units during 

runtime. This design enables the framework to overcome the 

scalability and memory limitations that typically hinder 

traditional or statically parallelized LCS implementations. 

 
Experimental evaluations on full-length human 

chromosomes validate the robustness and adaptability of the 

proposed approach. Unlike static task allocation, which 

often results in 

  

memory exhaustion or inefficient resource use, the 

dynamic framework demonstrated reliable performance 

across a range of sequence sizes. The system was able to 

align entire chromosomes without exceeding memory limits, 

while also achieving consistent load balancing across 

multiple cores. These characteristics make the method 

particularly well-suited for environments with limited 
memory resources, such as commodity clusters or mid-tier 

cloud computing instances. Although the dynamic 

scheduling mechanism introduces a modest increase in 

communication overhead, particularly for smaller input 

datasets, this trade-off is offset by significant gains in 

scalability and memory efficiency. As a result, the 

framework is a strong candidate for deployment in high-

performance computing contexts that require large-scale 

DNA sequence comparisons, including genomic variation 

analysis, phylogenetics, and personalized medicine 

pipelines. 
 

Looking ahead, several extensions are envisioned to 

enhance the system's capabilities. One promising direction 

involves implementing adaptive chunk sizing based on the 

complexity or structure of the input sequences, which could 

further optimize memory use and execution time. 

Additionally, a hybrid parallelization scheme combining 

MPI with thread-level parallelism via OpenMP could 

leverage multi-core architectures more effectively. 

Deployment on distributed cloud infrastructures represents 

another avenue for future exploration, offering opportunities 
for large-scale comparative genomics across multiple 

datasets simultaneously. Finally, integration with biological 

annotation tools and mutation detection frameworks could 

transform this computational engine into a full-fledged 
bioinformatics analysis platform capable of real- time 

genome analysis. Through its combination of scalability, 

resilience, and efficient resource utilization, the proposed 

dynamic LCS framework lays a strong foundation for 

advanced genomic data processing in both research and 

clinical settings. 
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