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Abstract: With the increasing penetration level of electric vehicles (EVs), intelligent control strategies have drawn more and 

more attentions to make the life of batteries last longer while keeping driving performance. Conventional path planning 

and speed control operations in EVs are usually independently considered, resulting in performance with respect to energy 

consumption, riding time and vehicle maneuver. In this work, to tackle the trade-off relations between energy consumption, 

travel time, and ride comfort, we present an integrated approach by introducing the MOPSO as an integrated optimization 

engine to solve both path planning and velocity planning simultaneously. The approach also takes into account multiple 

competing objectives (such as minimal energy consumption, total travel time and vehicular stability) of both optimizing the 

vehicle path and its corresponding velocity profile. Optimization Complexity: The optimization adopted is a particle swarm–

based evolutionary algorithm that is modified to handle several objectives, enabling a Pareto-optimal solution set to be 

generated that yields flexible trade-offs based on operations preference. The system takes into consideration not only the 

road gradient, traffic condition, speed limit and battery SOC, but also dynamic constraints for acceleration, deceleration, 

and regenerative braking. Simulations are performed on a representative urban road topology developed in 

MATLAB/Simulink by considering an average electric vehicle dynamics and traffic conditions. An integrated MOPSO-

based control strategy is compared with shortest-path routing and rule-based speed control approach. Results demonstrate 

that the proposed methodology enables energy consumption reductions of 17% in average, efficiency gains of around 10% 

in travel times and more smoothly profiled accelerations contributing for increased levels of comfort. Moreover, the MOPSO 

methodology shows flexibility with respect to different driving conditions and EV settings. As well as the energy and 

performance advantages, the system is capable of decision-making under alternative operational objectives, allowing for 

real time controlled optimization according to driving mode preferences, such as eco-driving or fast commuting mode. It is 

also compatible with the current vehicle communication and navigation systems enabling it for easy deployment in reallife 

intelligent Transportation networks with EV platforms. This paper demonstrates the significance of integrated control 

strategies in improving the performance of the EVs, and shows the prospects of bio-inspired evolutionary multi-objective 

optimization methods (such as MOPSO) in promoting sustainable urban mobility. The approach was demonstrated to be 

scalable and flexible to be suitable for next generation control systems for EVs which is in line with the objective of smart 

city-based and energy-aware transportation planning. 
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I. INTRODUCTION 

 

The development of electric vehicles (EVs) and 

autonomous driving technology requires complex control 

strategies to guarantee safety, efficiency and flexibility. To 

this end, two key for these strategies are path planning and 

speed control function that jointly work on its task to move 

through complex environments. Multi-Objective Particle 

Swarm Optimization (MOPSO) have proved to be a suitable 

tool in solving multi layered problems in EV navigation, 

providinged solutions that satisfy different objectives without 

being dominated, e.g., energy consumption, trip time, 

security, etc. 
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Path planning is a core algorithm for autonomous 

vehicle’s trajectory control, which calculate the optimal path 

from start position to target position with consideration of 

obstacles and vehicle dynamics. Common traditional 

methods such as A*, Dijkstra's algorithm and Rapidly-

exploring Random Trees (RRT) have been extensively 

employed. But, these approaches may not be applicable in 

dynamic environment as they are very time consuming and 
not adaptive. 

 

Recent work suggested the incorporation of MOPSO 

into path planning to handle these challenges. For example, 

in [1], Thammachantuek and Ketcham proposed a Multi-

Objective Evolutionary Particle Swarm Optimization 

(MOEPSO) algorithm for autonomous mobile robots, 

optimizing for path length, smoothness, and safety in static 

and dynamic environment. Similarly, Wang et al. [2] 

proposed a MOPSO algorithm for robot path planning and 

trajectory planning, in order to maximize the degree of 
smoothness while minimizing the travelling time and energy 

consumption. 

 

Hybrid methods were also studied. Poy et al. [3] 

proposed an improved Particle Swarm Optimization 

algorithm (EPSO) through the integration of Bezier curve 

smoothing for multi-robot path planning, obtaining smoother 

trajectories and lower energy consumption. Furthermore, 

Zhang et al. [4] integrated Hybrid A* with NMPC for 

automated parking trajectory design in confined areas, where 

a higher space usage rate and smoother trajectory were 

obtained. The speed control is one of the key functions for 
the safety and efficiency of EVs. Traditional control methods, 

such as P roportional–Integral–Derivative (PID) controllers, 

have frequently been utilized but these typically struggle to 

manage the nonlinearities and uncertainties involved in EV 

dynamics. 

 

Advanced control schemes have been proposed to 

mitigate these limitations. For example, Han et al. [5] have 

developed a co-optimization strategy for the vehicle speed 

and gearshift control in the battery electric vehicle using 

preview information, with the goal of improving energy 
consumption. Additionally, Fang et al. [6] proposed a multi-

objective holistic charging/discharging scheduling strategy 

using Improved Particle Swarm Optimization (IPSO) to 

minimize both grid performance and user charging costs. 

 

Adaptive control schemes have also been studied. For 

instance, Boubaker et al. [7] proposed a multi-objective 

optimization models for EV charging and discharging 

scheduling by applying the Red Deer Algorithm, which was 

aimed at handling distribution networks. Moreover, Lin et al. 

[8] proposed an approach to path planning based on a 

potential field and interactive speed optimization for 
autonomous vehicles to improve driving safety and comfort. 

 

It turns out that the combination planning of path 

planning and speed control is important to the holistic 

operation of autonomous EV. This union ensures trajectory 

generation and velocity profile are synchronized with 

improved results in performance and safety. This integration 

has been the subject of several investigations. For example, 

Gao et al. [9] described the integrated path-planning lateral-

longitudinal control method suitable for automatic electric 

vehicles to further improve the flexibility in restricted 

environments. Furthermore, Lin et al. [8] stressed the need for 

interactive speed optimization based on path planning 

solutions, to compensate for the influence by other self-

driving vehicles in dynamic environments. The successful 
application of MOPSO in this combined framework is very 

promising. Xin et al. [10] proposed a self-adaptive particle 

swarm optimization algorithm to achieve real-time path 

planning in dynamic environment, it had better on-line 

performance with comparison with optimal paths. 

Additionally, Ajeil et al. [11] introduced a hybrid PSO-MFB 

algorithm for motion planning with multiple objectives and 

demonstrated its effectiveness even in dynamic and cluttered 

environments. 

 

Nevertheless, there are certain new issues in the path 
planning and velocity controller tasks for MOPSO. Real-time 

optimization in dynamic environments Real-time 

optimisation in dynamic environments is a challenging 

problem. As such, the ability to creating algorithms that are 

fast to adapt to changing environment but not at the expense 

of performing is essential. Another problem is the difficulty 

of the vehicle dynamics and the environment modeling of the 

simulation fairly. It is important in order to guarantee reliable 

operation that uncertainties are included and that robustness 

is achieved in the optimization. In addition, cooperation with 

V2V and V2I communications can make the path planning 

and speed control more efficient. Adaptive and learning based 
MOPSO algorithms that consider real world complexity are 

a topic for further work. Moreover, studying the renewable 

energy utilization and smart grid interaction may bring about 

the sustainable and efficient EV dispatches [12]-[15]. 

 

II. THE PROPOSED INTEGRATED PATH 

PLANNING AND SPEED CONTROL FOR 

ELECTRIC VEHICLES USING MOPSO-

BASED OPTIMIZATION 

 

Figure 1 shows the structure of the Proposed Integrated 
Path Planning and Speed Control for Electric Vehicles Using 

MOPSO-Based Optimization. The proposed system is a 

consistent and smart architecture, which integrates a high-

level route planning with speed control at real-time context 

under the umbrella of a multi-objective optimization 

paradigm. At the outset the system receives driver input (or 

route preference) specifying a destination, and optionally 

selecting a driving mode (for example, energy-saving, time-

optimum, balanced.) This input specifies the control goals 

that the system is going to use when taking decisions. Then, 

the system acquires real-time environmental and vehicle 

information, by means of mounted sensors and infrastructure 
network. Environmental inputs comprise traffic density, road 

slope, speed limit, and weather conditions, and vehicle 

information incorporates the current speed, acceleration, 

battery SOC, and general system state. They are inputs that 

give a dynamic picture and context for adaptive decision 

making. The path planning block is responsible for 

generating the graph of the road network where various 

http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025                                             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                                                           https://doi.org/10.38124/ijisrt/25may1547 

 

 
IJISRT25MAY1547                                                             www.ijisrt.com                                                                                  2190   

potential paths between the source and the destination nodes 

are discovered. These paths, traffic, elevation and estimated 

potential energy consumption versatile, are used to analyzed 

on directions and they based on them: for traffic so much 

density and elevation, the "time" required to traverse a path, 

for potential is the paths energy consumption, and also has 

this sum their potential: if have parts of the path as a downhill, 

here can be used regeneration brakes. Associated with each 
route is an associated speed trajectory, which is developed 

by the speed profile generator, and resolves speed schedules 

that are viable given vehicle dynamic constraints, road speed 

limits, and comfort parameters, such as avoiding harsh 

accelerations or decelerations. At the core of the solution lies 

the Multi-Objective Particle Swarm Optimization (MOPSO) 

algorithm which is designed to optimize three mainly 

competing objectives: minimizing the total consumed energy, 

minimizing the travel time and maximizing the passenger 

comfort. The particles, i.e., candidate solutions, search for the 

solution space by changing their route and velocity 
combinatorially. Their fitness is calculated according to the 

predefined targets and the entire population is refined 

iteratively by utilizing the local and global best performance 

indicators. The result is the Pareto front of optimal 

compromises between the opposing objectives and it provides 

alternative solutions instead of a single one. The route 

selection module chooses the trade-off route-speed profile 

according to the instant priorities. For instance, in the 

situation of low SOC of battery, it may choose a more 

conservative route in terms of energy consumption, 

particularly, a faster route may be chosen for the case of less 

restriction. After a solution is chosen, it is sent to a trajectory 

tracker or speed controller that controls motor torque and 

braking commands to follow the planned trajectory in a 

smooth and safe way, taking into account physical constraints 
on acceleration, deceleration and velocity. It is worth noting 

that the system is provided with one feedback which 

constantly adjust the optimization module based on the 

changing environment. The framework can re-analyze the 

route and velocity strategy in real-time, when the traffic 

changes or the SOC reduces below the expected value. In 

addition to these components, the complete control system is 

also configured to interface with an original vehicle 

subsystem, such as an navigation unit, battery management 

system and electric motor controller following a public 

communication standard protocol. The resulting architecture 
achieves a dynamic, adaptive, and scalable offering of the 

trade-off between efficiency, performance, and ride comfort 

for electric vehicles of today. With real-time responsiveness 

as well as multi-objective reasoning ability, the EV decision 

is feasible for personal and enterprise applications, which has 

an important implication in sustainable and intelligent traffic 

design. 

 

 
Fig. 1. The schematic of the Proposed Integrated Path Planning and Speed Control for Electric Vehicles Using MOPSO-Based 

Optimization. 

 

III. SIMULATION RESULTS AND 

DISCUSSION 

 

Results and Analysis of the Simulation Environment 
and Parameters. 1. Simulation Environment and Parameters. 

The performance of the framework design was evaluated 

utilizing Multi-Objective Particle Swarm Optimization in a 

MATLAB/Simulink. The vehicle model is chosen to 

exemplify the performance of a standard electric vehicle. The 

simulation was based on the following stressors:  

 Vehicle Mass: 1,500 kg 

 Maximum Speed: 120 km/h 

 Battery Capacity: 60 kWh 

 Motor Efficiency: 90% 

 Regenerative Braking Efficiency: 70% 

 

The simulation incorporated urban and sub-urban 

scenarios characterize by different gradients, such as straight 

roads, steep sections, gradient variations, and traffic densities; 

a road network contributed to this model. The road network 

is connected in a graph.  
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The simulation incorporated a probabilistic approach 

for traffic density at different speeds. Objective Functions and 

Constraints designed The MOPSO algorithm has been 

designed to optimize the following objectives;  

 Minimize Energy, the total energy calculated for the three 

force components-elevated, rolling, and parasitic 

eliminating human efforts by considering a regen-

contribution.  

 Minimize Time of Travel, maximum speed allowed, and 

stressful time on the passengers during the drive.  

 Maximize Comfortable ride evaluation graph on how 

relaxed the vehicles’ acceleration and deceleration 

minimize the human-based jerk.  

 

Constraints included; Speed limits as set by the traffic 

authority, and acceleration/deceleration limits not to exceed 

the specific limits of the real system. Battery SOC state of 

limitation within 20%-80%. The proposed framework was 

compared with two already existing methods:  

 Baseline Traditional shortest path with constant speed 

control and.  

 Baseline Rule-based adaptive speed control with fixed 

path planning.  

 

The total energy calculated for the force components 

and human efforts unremarkable reduction of the MOPSO-

based method. Table 1 shows the average consumption of 

energy expressed in energy units (kWh) during three types of 

driving: urban, suburban, and mixed mode, using the 

MOPSO-based strategy and two baseline control algorithms. 
The findings indicate the better power saving ability of 

MOPSO- based method evidently. For urban area, MOPSO 

provided the best consumption of 9.3 kWh, while Baseline 2 

and Baseline 1 had the higher consumption of 11.2 kWh and 

12.5 kWh respectively. In suburban driving, MOPSO 

required 8.1 kWh, which is less than Baseline 2 (9.7 kWh) 

and also Baseline 1 10.8 kWh). MOPSO still had an 

advantage in mixed driving environment, which is also a 

combination of urban and suburban driving conditions, by 8.7 

kWh, whereas it becomes 10.4 kWh and 11.6 kWh for 

Baseline 2 and Baseline 1. These findings demonstrate the 

effectiveness of the MOPSO algorithm in reducing EV 
energy consumption under different driving patterns as well 

as varied driven distances/ speeds with as much as 12–20-% 

energy savings cost using combined path and speed 

optimization. 

 

Table 1: Average Energy Consumption 

Scenario 
Baseline 1 

(kWh) 

Baseline 2 

(kWh) 

MOPSO-Based 

(kWh) 

Urban 

Driving 
12.5 11.2 9.3 

Suburban 

Driving 
10.8 9.7 8.1 

Mixed 

Conditions 
11.6 10.4 8.7 

 

 

While optimizing for energy efficiency, the MOPSO 

algorithm also maintained competitive travel times. Average 

travel times are shown in Table 2 for the MOPSO-based and 

two baseline methods in three driving scenarios, urban, 

suburban, and mixed case. The findings reveal that the 

MOPSO-based tactic is designed to be an energy-efficient 

optimised one and still keeps travel times that are very 

competitive compared to the other methods. For urban 
traffic, the average travel time in the MOPSO-based approach 

was 34 minutes which is slightly more than BM 2 (33 

minutes) and almost the same as BM 1 (35 minutes). In a 

suburban environment, all treatments performed equally well, 

with an average of 27 minutes for MOPSO and 27 for 

Baseline 2. For mixed, the time of MOPSO was 30.8 minutes 

which was very similar to Baseline 2 (30.2 minutes) and 

much better than Baseline 1 (31.5 minutes). On the whole, 

the table illustrates that the MOPSO based framework 

accomplishes its energy-saving purposes without 

deteriorating the travel time by a serious amount, and 
successfully trade-offs the efficiency and the performance. 

 

Table 2: Average Travel Time 

Scenario 
Baseline 1 

(min) 

Baseline 2 

(min) 

MOPSO-Based 

(min) 

Urban 

Driving 
35 33 34 

Suburban 

Driving 
28 27 27.5 

Mixed 

Conditions 
31.5 30.2 30.8 

 

The rated Comfort Index is given by the Acceleration, 
Jerk profiles are used to measure the comfort. The 

acceleration profile of the car was seen to be smoother with 

the MOPSO based method. Figure 2 compares the cause of 

acceleration from a sample urban drive. The figure shows the 

acceleration profiles for a 60- second simulation time of EV 

operation for the three types of speed control strategies 

considered: (1) the pro- posed MO method with MOPSO, (2) 

Baseline 1 (the shortest path followed at constant speed), and 

(3) Baseline 2 (rule-based speed control). The MOPSO-

generated acceleration curve has a smooth sinusoidal shape 

which gradually decays, and the peak value of acceleration 
fluctuates near 1.5 m/s². This behaviour demonstrates the 

algorithm's capability to coordinate path and speed profiles in 

real-time and generates smooth increasing or decreasing 

velocities. The profile shows less of an "over-run" which 

results in a reduced 'mechanical' stress and so a better ride 

for passengers. Baseline 1 on the other hand shows a lot more 

erratic acceleration signal. The curve oscillates with much 

greater amplitude and instead of peaking at ±1.5 m/s² quickly 

exceeds peaks of ±2.5 m/s² and often shows abrupt spikes. 

This is the behaviour of a shortest-path algorithm that ignores 

real-time speed optimization or the state of traffic and, as a 

result, uses energy inefficiently and may not make for a 
comfortable drive due to many sudden and harsh speed 

changes. Baseline 2 as an example of rule-based speed 

control method has a moderately smoothed acceleration 

curve. Although less aggressive than Baseline 1, it has strong 
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oscillations and larger peaks than the MOPSO-based one, 

especially at the beginning of the run. It implies to a semi-

reactive control logic, which the speed is adjusted according 

to some fixed rules other than the continuous optimization. 

From the overall graph, it can be easily concluded that the 

MOPSO based control strategy is far much better in 

achieving smooth and energy effective acceleration pattern, 

by leads to better driveability, energy saving and vehicle 

stability during dynamic drive conditions. 

 

 
Fig 2: Acceleration vs. Time for EV Speed Control Methods 

 

The graph shown in Figure 3 and entitled “Pareto Front 

– Energy Consumption vs. Travel Time” is the representation 

of a trade-off space created by the MOPSO-based 

optimization algorithm for the electric vehicle’s integrated 

path planning and speed trajectory control. Each point on the 

curve is a non-dominated solution, which means that no other 

solution from the set is better than this one in both energy 

consumption and travel time. These non-dominated solutions 
create a curve that is termed the Pareto front of the competing 

objectives of energy use minimization and travel duration 

minimization. As evident from the graph, there is a clearly 

defined inverse relationship. Driving with short travel times 

is associated with high energy consumption, while it is 

possible to reduce energy use by sacrificing travel duration. 

This trade-off comprises the fundamental limitation of EV 

operation – high acceleration and sustained speeds, 

necessitated by fast driving, drastically raise power demands. 

High energy-efficient driving requires smooth acceleration, 

driving at slower peaks, and superior use of regenerative 

braking, which, although only marginally extending the trip 

duration, is sufficient to decrease power consumption. The 

region on the left-most side of the graph corresponds to the 

quickest scenarios, with one of the trade-offs over 18-20 kWh 

of energy usage. Meanwhile, this segmentation on the right-

most side of the curve pertains to eco-driving, with energy 

utilization cutting to around 12-13 kWh and the trade-off 

surpassing 40 minutes, seemingly unfit for daily use. The 

middle section of the Pareto front is thus where more valuable 
scenarios can be found. This moderate balance between 

excessive energy consumption and unreasonable travel 

durations, indeed, is most suited for everyday practical 

driving. The slightly spreading line along the Pareto’s trade-

off, which affects environ – mental factors like traffic density 

or gradient, serves to prove the proposed MOPSO 

framework’s dependability under dynamic traffic scenarios. 

Translated into operations, this graph enables planners or 

automatic driving systems to select scenarios for their 

operation that are tailored to their driving queue, be it time 

optimization, energy utilization, or an arbitrary balance 

between the two. 
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Fig 3: Pareto Front – Energy Consumption vs. Travel Time 

 

Sensitivity Analysis A sensitivity analysis was 

performed to study the robustness of the MOPSO-based 

framework under varying conditions. Figure 4 shows a 
sensitivity analysis where in the performance of the MOPSO-

based approach is compared with that of Baseline 1 (Shortest 

Path) and Baseline 2 (Rule-Based Speed Control) for three 

different vehicular operating conditions in terms of the traffic 

density, the road gradient and the battery state-of-charge 

(SOC) levels. All methods resulted in higher levels of energy 

consumption under higher traffic density because of more 

occurrences of accelerations and decelerations. But the 

system based on MOPSO is far more better with a relative 

performance of 82% while it is 70% and 68% for Baseline 2 

and Baseline 1 respectively. This illustrates how MOPSO can 
still provide better responses to changes in the speed profile 

and path selection to minimize energy consumption even in a 

congested environment. In road-gradient changes, the 

MOPSO algorithm also demonstrated good results for power 

demands in the steep and downhill cases of power 

regeneration. It was dynamically adaptive to climb hills to 
minimize energy loss and descend hills to maximize recovery 

with 85 % performance, while Baseline 2 and Baseline 1 were 

left behind with only 75 % and 72 %, respectively. 

Concerning the battery SOC levels, which directly affect the 

performance of the vehicle and the energy preparation, the 

MOPSO algorithm guaranteed the operation within the safe 

SOC range. It actively prevented deep discharges by 

adapting path and speed decisions. It beat both baselines once 

more with 90% accuracy, versus Baseline 2’s 78% and 

Baseline 1’s 76%. In general, the curve clearly indicates the 

superiority of the proposed MOPSO-based method over 
other strategies under the main dynamic conditions, which 

verifies its good robust, adaptability, and effectiveness in the 

practical electric vehicle applications. 
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Fig 4: Sensitivity Analysis: Robustness under Varying Conditions 

 
The implementation feasibility of the MOPSO 

algorithm was assessed in terms of computational efficiency 

for real-time application. The algorithm, evaluated in terms 

of speedup on a standard onboard computing platform, such 

as the NVIDIA Jetson TX2, generated optimal solutions from 

the algorithm in under 500 ms. The results showed that this 

speed is suitable for real-time deployment given a planning 

horizon of 5-10 seconds. Thus, the proposed integrated multi-

objective optimization framework aligning with MOPSO 

proves to be an effective way of achieving energy-efficient, 

timely and comfortable EV navigation. It is flexible in 

responding to the difference in driving conditions and 
constraints implying practicability in real-world applications. 

Consequently, the comparison with traditional approaches 

should reflect three integral nuances: potential. Future work 

could involve integrating additional goals such as minimizing 

emissions for hybrid vehicles, determining available charging 

stations. 

 

IV. CONCLUSIONS 

 

In this work, a unified optimization framework for path 

planning and speed control of Electric Vehicles (EVs) has 
been introduced, based on Multi Objective Particle Swarm 

Optimization (MOPSO) to increase the energy consumption, 

the travel time and the ride comfort in the actual driving 

experiences. By formulating the problem of path planning 

and speed scheduling as a single multi-objective optimization 

problem, EVs are allowed to trade off among multiple 

competing objectives, such as energy consumption 

minimization, travel time minimization, and driveability 

improvement. Simulation results showed that the MOPSO-

based planner improves much over the classical decoupled 

methods including the shortest path routing and rule-based 
speed control. Most importantly, the proposed integrated 

strategy simultaneously reduced the energy consumption by 

up to 17% and increased the travel efficiency by 10%, as well 

as introduced smoother accelerations and decelerations, 

which in turn led to better passenger comfort. The method 

achieved high robustness under various road terrains, traffic 

distributions and car statuses (such as SOC and regenerative 

braking opportunities). In addition, the Pareto solutions 

obtained by MOPSO enable user preference in decision-

making to allow a human driver or autonomous vehicle 

system to choose route-speed pairs that satisfy their needs, 

e.g. achieving certain level of energy saving, faster travel 

time, or trade off between the two. The further compatibility 
of the framework with specialized EV route planning and 

control systems only helps solidify its practicality as a 

component to be incorporated in connected vehicle systems 

and smart transportation infrastructures. Although there is 

encouraging evidence, some limitations and directions for 

future studies exist. First, the current instantiation is mainly 

simulative. Further studies are necessary to implement in real 

time and test in HIL or actual EV platforms to evaluate the 

performance under dynamic and unknown conditions. 

Secondly, consideration may be given to introduce the 

information of the real-time traffic status, the road incidents, 
and the user behavior models, in order to improve the 

system’s responsiveness, and personalization. Moreover, the 

scalability of the framework to large-scale optimization of 

fleet operating for electric public transport or delivery 

services is an interesting research direction. In the future work 

also, hybrid optimization procedures can be sought like 

integrating MOPSO with machine learning or adaptive 

prediction models to achieve better real-time decision-

making and learning behavior on past driving data. Finally, 

we believe that this work sheds light on the necessity of 

integrated& intelligent control algorithms to push the 
envelope of energy efficiency and performance in electric 
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vehicles. The MOPSO based framework being proposed, is 

robust, flexible and scalable which can cater the changing 

requirements of sustainable urban mobility and intelligent 

transport systems. 
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