https://doi.org/10.38124/ijisrt/25may1721

Gesture Talk -Bridging Silence with Words

Vijay Kumar¹; Vishal Bansal²; Mekhala³; Adnan Shoeb⁴

^{1,2,3,4}Department of Computer Science & Engineering, G.L. Bajaji Institute of Technology and Management, Greater Noida, India

Publication Date: 2025/06/02

Abstract: Gesture Talk is a real-time sign language-to-text conversion to create a communication environment for the deaf and able-bodied, with a touch of inclusivity across many other domains. The whole idea is to further develop a cheap and efficient solution to translate American Sign Language (ASL) gestures into text without the necessity for an interpreter. The process uses convolutional neural networks (CNNs) with a dual-layer classification algorithm, applying Gaussian blur and adaptive thresholding on the pre-processed webcam video frames and incorporating an auto-correct feature to enhance word prediction. The system was trained and tested on a labeled ASL gestures dataset prepared out of pre-processed 128×128 grayscale images obtained from RGB video inputs. Gesture Talk achieves recognition of 98.0% accuracy for ASL gestures, which surpasses many existing systems, and provides a user-friendly interface supporting all platforms, enabling deployment on desktops, mobiles, and web applications for much greater accessibility for deaf individuals.

How to Cite: Vijay Kumar; Vishal Bansal; Mekhala; Adnan Shoeb. (2025). Gesture Talk -Bridging Silence with Words. *International Journal of Innovative Science and Research Technology*, 10(5), 2924-2929. https://doi.org/10.38124/ijisrt/25may1721.

I. INTRODUCTION

Communication is a fundamental human need, but for the deaf and hard-of-hearing, dependence on sign language can create barriers in communication with hearing people, very few of whom understand these languages of gesture. This gap in communication can keep them from essential services, education, and job opportunities and hinder anything that would enable them to be socially integrated; thus, these factors continue to sustain inequalities for millions across the world. Sign language recognition systems have emerged, powered by advancements in computer vision and deep learning, to translate gestures into text or speech in an enabling flow of interaction [1], [2]. However, existing solutions-most notably those using Microsoft Kinect, sensor-based gloves, or EMG devices-are often defined by a high degree of accuracy, whereas the major trade-off comes from needing specially built hardware, rigorous calibration, or working under controlled environments [3], [4].

All these constraints render such systems pricey, impractical for everyday use, and inaccessible to many users, especially in resource-constrained settings. Likewise, many systems cannot ensure real-time processing, robustness in varying backgrounds, or scalability for different sign languages [5].

This paper presents GestureTalk, an innovative, costeffective, and real-time sign language to text conversion system designed to bridge the communication divide for the deaf community.GestureTalk recognizes American Sign Language (ASL) gestures via webcam interfaced with a dual-layer convolutional neural network (CNN)-based architecture, thus bringing up an advanced level of accuracy without depending on specific sensors, or without requiring any kind of background subtraction. This system is created with a combination of improved image preprocessing, feature extraction, and two-layer classification approach for gesture recognition robust in different environments. GestureTalk works very easy to plug over multiple platforms-desktop, mobile, and web-and equipped with an auto-correct feature that improves word prediction. The major intent of such a system is to empower deaf individuals in making communication self-sufficient in very vital domains, such as education, health, and workplaces, as regards cutting out dependency on human interpreters. This work contributes to a high-performance, cost-effective, scalable, and accessible approach in developing advanced technology to inclusively empower society by addressing limitations posed by previous systems.

Fig 1: Flowchart for Hand Gesture Recognition[16].

https://doi.org/10.38124/ijisrt/25may1721

II. RELEATED WORK

Hand gestures are a form of nonverbal communication that humans use to express themselves and convey their thoughts and emotions. Hand gestures are an integral part of human communication and have been used for thousands of years to convey messages, express emotions, and enhance storytelling[9].

The study consisted of 15 relevant research papers published. The contributions are presented in Table 1.

Table 1: Literature Review

		Tuele It Enternature ite it		
S. no.	Scope of improvement	Aim	Method	Result
1	Data diversity	Real-time	Transfer learning	98.7% accuracy
	enhancement;	conversion of ASL signs	with CNN on an ASL	achieved through
	robustness improvement	into text	dataset	transfer learning
2	Merge the temporal	recognize sign	semantics of	CNN-LSTM
	gesture analysis	language using	gesture sequences	accuracy-89.24%
	and overfitting reduction	deep CNN and LSTM	with deep CNN and LSTM	
3	Optimize the	Silent speech	ML-based soft	Phoneme accuracy:
	design for	recognition from	magnetic skin	93.2%, word
	non-intrusiveness and increase	articulatory	signal processing	accuracy: 87.3%
	phoneme accuracy	movements		
4	Continuous signing	Sign language	ML with Raspberry	Well-performing
	support; better	interpretation	Pi for static and	results with 60
	scaling	system for	temporal gesture	participants
		deaf-mute communication	recognition	
5	Enhance emotion	Identify emotions	An SVM-based	Achieved 61.92%
	recognition in sign	in affective	verbal/nonverbal	accuracy in emotion
	language; improve	conversations, including	audio detector with	recognition in
	its accuracy	nonverbal sounds	prosodic tagging	spoken words
6	Improve	Automating	ANN and ensemble Ensemble classifi	
	generalizability of	recognition of	vote classifier for	at 99.45%
	gestures by	hand gestures making use	gesture recognition	identifying
	expanding gesture vocabulary	of machine learning		accuracy
7	Enhance two-way	It also converts	Converts sign	The accuracy of the
	real-time	both sign	lan-guage	CNN model is
	communication;	languages in	preferences into	95.5%
	User interface	real-time for deaf	speech using CNN	
	improvement	and dumb assistance		
8	Make it more viable	A deep learning	Temporal gesture	Gesture
	by supporting more	model for British	pattern recognition	classification
	sign languages and	and American	with CNN	accuracy is very high
	real-time	Sign Language		but not specified
	performance	recognition should		
	enhancement	be developed		
9	Provide the ease of taking it;	Develop a voice	Raspberry Pi with	Capable of
	Allowing for dynamic gestures	conversion system	flexible sensors	recognizing certain
		for sign languages	and LCD display	characters/phrases
		using Raspberry Pi		accurately

https://doi.org/10.38124/ijisrt/25may1721

10	Putting into the	An overview of AI,ML,	A literature review	Insights into AI
	context of NLP;	and DL in	of the application of	applications related
	extent to real-life situations	deaf-mute	AI, ML, and DL	to deaf
		communication		communication
11	Approach enlarged	Convert sign	Using Arduino Recognize ASL	
	in support of	language gestures	Nano along with	ISL gestures with
	multilingualism; reduce	into speech output	SVM classifier and	speech output
	latency		Bluetooth	
12	Support Offline	Develop sign	Android application	Use full advantage of
	Functionality, UI	language	with video	learning and
	improvements	recognition	interpreter for sign	translating sign
		system based on	language to	language
		android	translation	
13	Enhancement of	Real-time Filipino	Web-based	User-friendly
	cross-cultural applicability;	Sign Language	statistical analysis	interface for simple
	refinement of accuracy	text converter	of FSL recognition	communication in
				FSL
14	Mobilize and	Create an Indian	Hand tracking with	Enabling
	Minimize	Sign Language	HSV color mode in	communication for
	Computational	Converter an	MATLAB	deaf people
	Cost	Android App		
15	Dynamically	Automating	Synchronous	automated
	Gesture	conversational	Colored Petri Net	conversational
	Enactment; Improved Real-	gesture learning	(SCPN) with ML for	gestures learning
	Time Processing	for human robot	gesture learning	
	_	interaction		

III. METHODOLOGY

This section discusses the methodology of GestureTalk, a multi-layered real-time ASL-to-text conversion system with standard webcam and CNNs. The system approach-wise integrates image preprocessing, feature extraction, and dual-layer classification algorithms to obtain the best result. The methodology is arranged in these subtopics: system overview, algorithm, CNN architecture, preprocessing, and training.

A. System Overview

The system converts ASL gestures into text in real-time through the webcam. This system performs its operation by preprocessing images for hand gesture segmentation, followed by a dual layer CNN for gesture recognition, and an auto-correction feature to help with word prediction. Being multi-platform (desktop, mobile, and web), the system comprises a very simple interface that displays recognized text that might be very useful in education, in healthcare, and in social applications.

B. Algorithm Design

GestureTalk implements a dual-layered classification algorithm to further optimize the accuracy of recognizing gestures that are quite similar:

• Layer 1 Classification: Pre-process and then classify each video frame of 27 classes (26 ASL alphabets plus 1 blank symbol) through the CNN. Once a gesture is detected consistently for 50 frames, it is recognized as a valid gesture, since very short gestures could be false positives caused by random movements; • Layer 2 Classification: Specialized classifiers separate visually similar gestures (e.g., {D, R, U}, {T, K, D, I}, {S, M, N}) by further feature analysis for enhancement in precision. Thus, the two layers guarantee the highest accuracy for real-time operations.

C. CNN Architecture

The CNN operates on 128×128 grayscale images with the following architecture:

- 1st Convolution Layer: 32 filters of size 3×3 giving 126×126 feature maps.
- 1st Max-Pooling Layer: Size 2×2 downsampling to 63×63.
- 2nd Convolution Layer: 32 filters of size 3×3 giving 60×60 feature maps.
- 2nd Max-Pooling Layer: Size 2×2 downsampling to 30×30.
- Fully Connected Layers: Two fully connected layers with 128 and 96 neurons with 0.5 dropout which prevents overfitting.
- Output Layer: SoftMax activation giving probabilities for each of the 27 classes.
- The layers make use of ReLU activation with the Adam optimizer used to minimize cross-entropy loss.

D. Preprocessing and Training

The RGB video frames are preprocessed for enhancement of gesture recognition.

- Grayscale Conversion: Reduces the computational power needed by converting RGB images to grayscale.
- Adaptive Thresholding: Does the segmentation of hand gestures with respect to the local intensity of pixels.

Volume 10, Issue 5, May - 2025

International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165

• Resizing: Resizes images to 128×128 for consumption by the CNN.

The CNN is trained on labeled ASL gesture data, with normalized input. SoftMax layer normalizes the output probabilities, and parameters are optimized via the Adam algorithm with gradient descent. Data augmentation such as rotation and scaling ensures better robustness toward gesture variations.

https://doi.org/10.38124/ijisrt/25may1721

Thus, this simplified procedure allows GestureTalk to become a real-time ASL recognition tool of high accuracy under fairly standard computing hardware, henceforth promoting access for the deaf community.

Fig 2: Block Diagram of Sign Language to Text Converter

IV. RESULT

The GestureTalk system was evaluated on a labeled dataset of American Sign Language (ASL) gestures with both static images and video sequences recorded across varying light conditions. Major emphasis was then made on evaluating their classification accuracy and robustness against environmental specifications while comparing them with existing methods of performance measures.

The system was able to reach an accuracy of 95.8% using the Layer 1 CNN classifier alone. Although using the

Layer 2 specialized classifiers for disambiguation among similar gesture sets (e.g., {D, R, U}, {T, K, D, I}, {S, M, N}), it increased overall accuracy by a further 98.0%. The confusion matrix, illustrated in Fig. 1, shows the performance of the system over the 27 classes (26 ASL letters plus blank). The misclassification mainly concerned visually similar gestures, such as D and R, which were compensated well by means of the Layer 2 classifiers.

In contrast to currently existing works GestureTalk performs better than many benchmarks.

Work	Method	Accuracy	Limitations					
GestureTalk	Dual-layer CNN with	98.0%	Minor errors (1.2%) in complex					
	webcam input		backgrounds					
Bhama et al. [2]	CNN-LSTM model	89.24%	High computational complexity					
Hsu et al. [5]	SVM-based verbal/nonverbal	61.92%	Limited to emotion recognition in					
	sound detector		conversations					
R. K et al. [7]	CNN for sign language to	95.5%	May require optimization for real-					
	speech conversion		time use					

Table 2: Accuracy Comparison

https://doi.org/10.38124/ijisrt/25may1721

Fig 3: Confusion Matrix for Gesture Talk Model

V. CONCLUSION

GestureTalk presents a cost-effective and accurate solution for real-time American Sign Language (ASL) to text conversion, achieving a 98.0% accuracy using a duallayer CNN architecture and standard webcam input. By eliminating the need for specialized hardware or controlled environments, the system surpasses many existing methods [1], [2] in accessibility and deployability. The autocorrection feature and cross-platform availability of the app increase its usability, allowing for easy communication by the deaf in example educational facilities, health, and socialization. GestureTalk decreases dependency on human interpreters and further aids inclusion. Future works will focus on increasing the range of gestures supported for recognition and adding natural language processing for context-aware translation.

REFERENCES

- S. Thakar, S. Shah, B. Shah, and A. V. Nimkar, "Sign language to text conversion in real time using transfer learning," in Proc. IEEE Int. Conf. Adv. Comput., Commun. Control Netw. (ICACCCN), 2022, pp. 1– 6. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/99719 53
- [2]. J. P, P. R. K. S. Bhama, and M. B, "Sign language recognition using deep CNN with normalised keyframe extraction and prediction using LSTM," J. Sci. Ind. Res., 2023. [Online]. Available: https://or.niscpr.res.in/index.php/JSIR/article/view/2 375

- [3]. P. Dong, Y. Li, S. Chen, J. T. Grafstein, I. Khan, and S. Yao, "Decoding silent speech commands from articulatory movements through soft magnetic skin and machine learning," Mater. Horizons, 2023.
 [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2023/ mh/d3mh01062g/unauth
- [4]. M. B. Munir, F. R. Alam, S. Ishrak, S. Hussain, and M. Shalahuddin, "A machine learning based sign language interpretation system for communication with deaf-mute people," in Proc. ACM Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), 2021, pp. 91–96. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3471391.347142 2
- [5]. J.-H. Hsu, M.-H. Su, C.-H. Wu, and Y.-H. Chen, "Speech emotion recognition considering nonverbal vocalization in affective conversations," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2021, pp. 7438–7442. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/94202 85
- [6]. M. Mahzabin, M. Hasan, S. Nahar, and M. U. Ahmed, "Automated hand gesture recognition using machine learning," in Proc. IEEE Int. Conf. Robot., Autom., Artif. Intell. (RAAI), 2021, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/96898 17
- [7]. R. K, P. A, P. K. S, S. Sasikala, and S. A. Kumar, "Two-way sign language conversion for assisting deaf-mutes using neural network," in Proc. IEEE Int. Conf. Electron., Commun. Aerosp. Technol.

(ICECA), 2022, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/97850 57

- [8]. S. N. Koyineni, G. K. Sai, K. Anvesh, and T. Anjali, "Silent expressions unveiled: Deep learning for British and American sign language," Procedia Comput. Sci., 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1 877050924005751
- [9]. S. Küçükdermenci, "Sign language voice convertor design using Raspberry Pi for impaired individuals," in Proc. Int. Conf. Recent Innov. Res. Eng. Technol. (ICRIRET), 2023. [Online]. Available: https://asproceeding.com/index.php/icriret/article/vi ew/1395
- [10]. H. ZainEldin, S. A. Gamel, F. M. Talaat, M. Aljohani, N. A. Baghdadi, A. Malki, M. Badawy, and M. A. Elhosseini, "Silent no more: A comprehensive review of artificial intelligence, deep learning, and machine learning in facilitating deaf and mute communication," Artif. Intell. Rev., 2024. [Online]. Available: https://link.springer.com/article/10.1007/s10462-

024-10816-0

- [11]. M. M. Chandra, S. Rajkumar, and L. S. Kumar, "Sign languages to speech conversion prototype using the SVM classifier," in Proc. IEEE Int. Conf. Electron., Comput. Commun. Technol. (CONECCT), 2019, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/89293 56
- [12]. Gayathri and A. S. Kumar, "Sign language recognition for deaf and dumb people using Android environment," SSRN Electron. J., 2017. [Online]. Available:

https://papers.ssrn.com/sol3/papers.cfm?abstract_id =3374759

- [13]. S. C. M. Murillo, M. C. A. E. Villanueva, K. I. M. Tamayo, M. J. V. Apolinario, M. J. D. Lopez, and Edd, "Speak the sign: A real-time sign language to text converter application for basic Filipino words and phrases," Cent. Asian J. Math. Theory Comput. Sci., 2021. [Online]. Available: https://cajmtcs.centralasianstudies.org/index.php/CA JMTCS/article/view/92
- [14]. P. Loke, J. Paranjpe, S. Bhabal, and K. Kanere, "Indian sign language converter system using an Android app," in Proc. IEEE Int. Conf. Electron., Commun. Aerosp. Technol. (ICECA), 2017, pp. 436– 440. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/82128 52
- [15]. Singh and A. K. Bansal, "An integrated model for automated identification and learning of conversational gestures in human-robot interaction," in Proc. Int. Conf. Comput. Vis. Robot., 2023, pp. 25–36. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-031-44127-1_3

- https://doi.org/10.38124/ijisrt/25may1721 [16]. Researchgate.net. Retrieved May 7, 2025, from
- https://www.researchgate.net/profile/Rupesh-Jaiswal/publication/371831685/figure/fig1/AS:1143 1281170202362@1687639425044/Hand-gesturerecognition-process-of-the-proposed-model.ppm