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Abstract: Floods rank among the most devastating natural calamities in the Indian plains, where monsoon regimes and large 

river systems result in recurrent flooding. Knowing the hydrometeorological precursors of floods is paramount to enhance 

predictive accuracy and decrease risks. This study investigates the most significant hydrometeorological parameters 

influencing flood events in the Indian plains and develops predictive models using Machine Learning (MI) and Deep 

Learning techniques. This research uses a 60-year historical rainfall record of five cities, Patna, Kanpur, Prayagraj, 

Haridwar, and Varanasi, collected from the India Meteorological Department (IMD). Robust statistical modelling and 

feature selection techniques determine the most significant flood predictors. The research adopts some of the machine and 

deep learning techniques such as Random Forest, Support Vector Machines (SVM), K-Nearest Neighbour (KNN), Long 

Short-Term Memory (LSTM) networks, Fully Connected Networks (FCN), Deep FCN, Convolutional Neural Networks 

(CNNs) to evaluate their performance when making flood forecasts. The results show that the intensity of rainfall plays a 

vital role in determining floods. LSTM networks handle the time sequential data and generate the future rainfall data, 

providing an FCN-trained model for better prediction accuracy. The proposed Deep Learning - based models demonstrate 

the effectiveness of early flood warning systems that allow authorities to initiate preventive measures promptly. The results 

also demonstrate the significance of region-specific flood prevention measures in response to climate variability and land-

use changes in the Indian plains. By improving the accuracy of flood forecasts, the study is helpful to disaster management 

agencies, policymakers, and researchers. 

 

The present research will inspire the integration of onboard data sources from other locations and the model's 

generalizability to other flood-risk areas. Roll-out of Machine Learning and Deep Learning - driven approaches in flood 

forecasting will significantly minimize the socio-economic impact of floods, leading to enhanced preparedness and resilience 

for high-risk communities. 
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I. INTRODUCTION 

 
Floods have always been among the most 

devastating natural disasters, leading to enormous socio-

economic and environmental disruption across the globe. The 

United Nations Office for Disaster Risk Reduction (UN 

Office, 2015) reports that floods account for almost 40% of 

all natural disasters worldwide. The issue is serious in India 

and impacts millions of individuals annually because of its 

distinctive geographical and climatic conditions. The Indo-

Gangetic Plains (IGP), covering states such as Uttarakhand, 

Bihar, Uttar Pradesh (UP), and West Bengal (WB), are 

characterized by large river systems, monsoon-dominated 
regimes of precipitation, and hence are highly sensitive to 

recurrent flooding (Gadgil, 2003).  

 

The Indian summer monsoon (ISM) has always been 

a blessing to the Indian subcontinent; however, the excess 
rainfall, whenever it brings, leads to floods on a vast scale and 

causes damage. The vulnerability to floods in the Indian 

plains has been additionally aggravated by the increasing 

volatility and intensity of rainfall events, owing mainly to 

climate change (IPCC, 2021). Over the last few decades, 

India has witnessed an increased frequency of cloudbursts, 

heavy rain events, and altered monsoons (Singh et al., 2018). 

Such developments have made it imperative for researchers, 

policymakers, and disaster management authorities to 

transcend traditional flood management techniques and 

accept newer prognostic techniques. The key to successful 
mitigation is understanding the hydrometeorological 

antecedents i.e., the combination of atmospheric and 

hydrological factors that provide the setting for flood events 
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(Ward et al., 2015). For India, loss of forest cover, monsoon 
variability, urbanization, and poor drainage facilities also 

increased flood hazards (Mishra and Singh, 2010). Despite 

the abundant rainfall and river discharge data accumulated 

over the decades, flood forecasting in India remains an issue 

due to the complex meteorological hydrological processes. 

The current research analyses these cause factors 

systematically from the vantage point of Artificial 

Intelligence (Deep Learning). The objective is to develop a 

strong and efficient flood prediction system using advanced 

machine learning (ML) and deep learning (DL) algorithms. 

Flood prediction models based on artificial intelligence (Deep 

Learning) will benefit the livelihoods, lives, and 
infrastructure susceptible to India's vulnerable plains. 

 

II. LITERATURE REVIEW 

 

Over the past years, numerous ML and Deep leaning 

have been explored and applied to enhance the prediction of 

flood susceptibility, particularly in flood-vulnerable areas 

such as the IGP of India. Pradhan et al. (2021) employed 

Random Forest (RF), Support Vector Machines (SVM) and 

gradient boosting machine (GBM) over the state of Bihar 

where RF model outperformed others achieving an 
impressive prediction accuracy of 94.6%. Likewise, Singh 

and Ramesh (2020) used Long Short-Term Memory (LSTM) 

models for time serial rainfall and water level data resulting 

in an accuracy of 92.3%, Another study regarding the 

Convolutional Neural Networks (CNN) model (Roy and 

Sharma, 2022), demonstrated its capability in spatial feature 

extraction for flood prone zone in eastern UP achieving an 

overall accuracy of 91.8%. The integration of AI techniques 

has opened new frontiers for reliable prediction, enabling 

better planning. Further it is noteworthy that several recent 

global studies offered distinct methodologies but with 

limitations which our work addresses. For instance, in 2024 
(Situ et al., 2024), a deeplabv3+ and LSTM combinations for 

urban flooding prediction attained high performance metrics 

NSE: 0.973 but did not incorporate a dedicated rainfall 

generator like the LSTM.  Similarly, a Deep CNN model for 

fluvial flood inundation prediction trained on hydraulic data 

in 2020 (Kabir et al., 2020), reporting low error 0–0.5 meters, 

yet lacked predictive foresight due to absence of rainfall 

forecasting. Moreover, a global flood risk prediction model 

using multimodal framework was proposed by Zeng and 

Bertsimas (2023), where the model attained ROC values of 

77%. Interestingly, their model emphasized risk classification 
rather than spatiotemporal flood forecast. Traditional hybrid 

models (Mosavi et al., 2018), reported efficiencies around 

96%, but these required handcrafted features and lacked 

scalability in future rainfall synthesis and flood foresights.  

 

This study introduces a novel dual-model 

framework that integrates LSTM and FCN for future rainfall 

generation and flood forecasting. Unlike previous flood 

prediction approaches that either rely solely on historic 

rainfall data or focus on short term hydrological modelling, 

our method captures both temporal dynamics and spatial 
dependencies. The LSTM forecast upcoming rainfall 

sequence for next 30 years which are then passed into FCN 

to predict flood occurrences with high spatial resolution. This 

coupling not only improves lead time but also delivers a flood 
prediction with 95% accuracy, demonstrating significant 

advancement over existing models. The two stage pipelines 

ensure proactive, location-specific and accurate flood 

forecasts, making it more robust for real world deployment. 

Our flood forecasting study holds significant real-world 

implications for disaster risk reduction, urban planning by 

combining future rainfall generation (using LSTM) with high 

resolution flood prediction (using FCN). This approach 

provides advance warning with both temporal foresight and 

spatial clarity. Such capability is critical in flood vulnerable 

regions, where early intervention can save lives, reduce 

economic losses and support emergency logistics. This model 
can be integrated into a real time flood early warning system 

used by governments, water resources department, 

environmental agencies, dam regulating authorities, etc. 

 

III. STUDY AREA 

 

The study has been carried out over the Gangetic 

Plains of India (GPI) which is considered as one of the most 

fertile plains across the globe. For the study five major 

densely populated cities beside the river Ganga have been 

selected which include Patna in Bihar, Kanpur, Prayagraj, and 
Varanasi in Uttar Pradesh (UP), and Haridwar in Uttarakhand 

as shown in Fig.1. The locations (cities) so considered over 

the GPI, also have a very dense river network, making them 

highly prone to floods.  

 

IV. DATA AND METHODS 

 

The present work utilizes long-term rainfall data 

(historical record of 60 years between 1962 to 2022) from the 

Indian Meteorological Department (IMD) while the data 

preprocessing and flood forecasting model development has 

been carried out using Machine learning and Deep Learning. 
The variable considered includes date, latitude, longitude, 

and rainfall (in mm). The rainfall values in mm indicate that 

rainfall is measured in millimetres, representing the water 

depth that would accumulate on a surface. The extracted 

rainfall values based on latitude, longitude, and dates are pre-

processed using Python. Python is the most widely used 

programming language in data science due to its powerful 

libraries such as matplotlib, sklearn, tensorflow, keras, and 

seaborn. It helps in data collection, preprocessing, and 

analysis with pandas and numpy (McKinney, 2017). Scikit-

learn for Machine Learning (Fabian, 2011) and Deep 
Learning (Cunha, 2017). We applied a multi-stage procedure 

for this study. The initial step involved feature engineering 

and data preprocessing, encompassing dataset cleaning, rain 

pattern normalization, and selecting the concerned 

hydrometeorological factors. Then, we trained several 

machine learning algorithms, such as Random Forest, 

Support Vector Machines (SVM), and Extreme Gradient 

Boosting (XGBoost), to identify the non-linear patterns 

between rainfall attributes and flooding events. To identify 

spatiotemporal patterns within the data, a Fully Connected 

Network (FCN) based deep learning model was utilized 
(Krizhevsky et al., 2012). The model was calibrated to predict 

the probability of a flood year using trends of monthly and 

annual rainfall patterns. After validating the model using 
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historical records, we continued forecasting flood 
probabilities for subsequent years (2023–2053) under 

different rainfall scenarios.  

 

The rainfall observations (1962 to 2022) are firstly 

computed into monthly and annual rainfall means. The 

individual rainfall values are grouped monthly and yearly, 

then each year's total monthly and annual rainfall is calculated 

and analyzed. We computed the average monthly rainfall 

values over the years, annual average rainfall, and long-term 

average rainfall for each location. Further, we assigned 

standard deviation (𝜎) to the rainfall value and adjusted it per 
the location's data. A threshold value is used to find the flood 

year. Threshold values are calculated as monsoon average 

rainfall plus 0.x times the standard deviation multiplied by the 

standard deviation of annual rainfall (threshold = monsoon 

average rainfall + 0.x * standard deviation of annual rainfall), 

where any years that touch or crosses the threshold value will 

be taken flood years as 1 and if not then 0 as non-flood year, 

and created a preprocessed new dataset for each location. 

Instead of setting a fixed flood threshold, this method 

considers how rainfall changed over the years; different 

regions may have different rainfall variations, so this method 
ensures a more region-specified flood classification.  

 

We merged all five location datasets into a single 

dataset to train our machine learning and deep learning 

model. It increases data size to train on a larger dataset, helps 

the models learn diverse patterns across different regions and 

years, and more data reduces overfitting, making predictions 

more generalized to new data. Rainfall patterns vary across 

regions; by adding a column ‘location’ into the dataset, the 

model can learn location-based trends, helping capture 

region-specific flood risks and more diverse rainfall patterns, 

improving feature representation, and learning better 
correlations between rainfall and floods, improving 

prediction accuracy. 

 

To train and test the ML model, K-Fold cross-

validation (splits=5) was used, a technique which splits data 

into 5 parts, training on 4 and testing on 1, then repeating the 

process 5 times. For the deep learning model, data splits into 

80 to train and 20 to test. The model is trained for 50 epochs, 

meaning it sees the entire dataset 50 times to learn better 

patterns. Here we have used multiple ML and DL models 

such as Random Forest classifier XGBoost, K-Nearest 
neighbours (KNN), Logistic regression, Support vector 

machine, Decision tree, CNN, LSTM, FCN and Deep FCN. 

 

 Fully Connected Network 

FCN is a deep learning model where every neuron in 

one layer is connected to every neuron in the next layer. The 

input layer takes raw data features, e.g., rainfall in different 

months. The hidden layer has multiple layers with neurons 

which apply the activate functions like ReLU and Sigmoid to 

learn patterns. The output layer produces final predictions 

like flood occurrence, yes or no. It models complex non-

linear relationships between input features. Each connection 
in FCN has a weight, and the model learns these weights 

during training to lower the prediction error. The training 

utilizes backpropagation, where error is propagated backward 

to adjust weights using optimization techniques like gradient 
descent (Heaton, 2017). 

 

Neuron Activation in Hidden Layers 

 

z = W ⋅ X + b                                 (Eq. 1) 

 

Where X is the input feature vector, W is the weight 

matrix, b is the bias term (learned during training), z is the 

weighted sum before activation, and ReLU activation is 

applied: a = max(0, z) Output Layer Calculation 

 
The single neuron applies the Sigmoid function to 

produce a probability:  

 

�̂� = 𝜎(𝑊 ∗ 𝑋 + 𝑏) =
1

1+ⅇ−(𝑤𝑥+𝑏                  (Eq. 2) 

 

Where �̂�  is the prediction of flood occurrence. 

 

Loss function: Binary cross-entropy �̂�𝑖 

 

𝐿𝑜𝑠𝑠 =  −
1

𝑁
∑ [𝑦𝑖 𝑙𝑜𝑔 𝑙𝑜𝑔 (�̂�𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔 (1 − 𝑦𝑖)]𝑁

𝑖=1               

(Eq. 3) 
 

Where N is the number of samples, 𝑦𝑖 is actual flood 

occurrence, and  is predicted probability from the model. 

 

V. RESULTS AND DISCUSSION 

 

 Mean Rainfall Distribution 

Fig.2 shows the monthly rainfall distribution pattern 

over the considered locations over the GPI as Patna (Fig.2.1), 

Kanpur (Fig.2.2), Prayagraj (Fig.2.3), Haridwar (Fig.2.4) and 
Varanasi (Fig.2.5). The x-axis represents the month, and the 

y-axis represents the rainfall value in mm. Monsoon months, 

i.e., June (06), July (07), August (08), and September (09), 

get higher rainfall, which highly influences the chances of 

flood occurrence. Each box represents the middle 50% of 

rainfall data (from 25th to 75th percentile), while the horizontal 

line inside each box denotes the median (50th percentile). The 

extended lines indicate the minimum and maximum rainfall 

values, showing high variability in monsoon rainfall, and 

outliers are the extreme rainfall values for that month.  

 

Annual rainfall trends are shown in the upper rows in 
Fig.3 (Fig.3.1 to Fig.3.5), representing the trend analysis of 

rainfall with the line plot. The trend line (blue) shows the 

general trend over time, with the highest and lowest rainfall 

values with annotations and a horizontal (dashed) line for 

average annual rainfall. Deviation from average annual 

rainfall (Fig.3.1 to Fig.3.5 bottom rows) are shown where it 

has been calculated from the deviation from mean annual 

rainfall; grey bars show the normal years, red bars highlight 

years with above +1 standard deviation (sd) rainfall, and blue 

bars highlight years with below -1 sd rainfall. It helps to 

measure rainfall variability; if rainfall exceeds the mean of +1 
sd, it indicates an unusually wet year that could be a potential 

flood risk; if rainfall is below the mean of -1 sd, it indicates 

an unusually dry year that could mean possible drought.  
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Fig.3.1 shows the rainfall distribution for Patna, which 
has an average annual rainfall of 1105.24 mm, a maximum 

annual rainfall of 1952 mm in 2022, and a minimum rainfall 

of 428 mm in 1966. 8 years are found in +1 sd, while 11 years 

are found in -1 sd from average annual rainfall. Kanpur has 

an average annual rainfall of 752.88 mm, a maximum annual 

rainfall of 1660 mm in 1980, and a minimum rainfall of 108 

mm in 1998. 9 years are present in +1 sd and 5 years in -1 sd 

from the average annual rainfall (Fig.3.2). Similarly, 

Prayagraj has an average annual rainfall of 836 mm, a 

maximum annual rainfall of 1466 mm in 2003 and a 

minimum rainfall of 435 mm in 1997 (Fig.3.3). Here, we find 

10 years in +1 sd and 8 years in -1 sd from average annual 
rainfall for the Prayagraj. Fig.3.4 shows the rainfall pattern 

for Haridwar. It has an average annual rainfall of 568.25 mm, 

a maximum annual rainfall of 1357 mm in 1988, and a 

minimum rainfall of 186 mm in 1972. It has 11 years in +1 sd 

and 8 years in -1 sd from the average annual rainfall. Fig.3.5 

depicts the rainfall distribution pattern over Varanasi, which 

shows an average annual rainfall of 859.28 mm, a maximum 

annual rainfall of 1760 mm in 1987, and a minimum rainfall 

of 482 mm in 2009. Here, 8 years are seen in +1 sd and 11 

years in -1 sd range from the average annual rainfall. 

 
 Long-Term Average Rainfall (LPA) 

LPA is the average rainfall recorded over a long period 

(60-year period for June, July, August, and September 

(JJAS)). This is used to compare current rainfall patterns with 

past trends and detect abnormal monsoon variations. The 

LPA monsoon rainfall is shown in Fig.4. The bar chart shows 

the average monsoon rainfall for each month, and the error 

bars show rainfall variability. The more extended error bar 

shows that rainfall varied extensively over the years, and the 

less extended bars show more stable rainfall in those years. A 

dashed red line represents the overall monsoon rainfall 

average. If rainfall is much below LPA, it may indicate 
drought, whereas excess rainfall may indicate flood risk. 

Fig.4.1 shows LPA for Patna. The overall LPA rainfall is 

233.52 mm where the month of June receives the least rainfall 

and varies significantly yearly. July receives the highest 

rainfall with large variability. August receives moderate 

rainfall, and September is just below LPA with moderate 

variability. The LPA for Kanpur (Fig.4.2) shows an overall 

LPA rainfall of 163.12 mm. Here, June receives the least 

rainfall with high variability in rainfall each year, July 

receives the highest with considerable variability, meaning 

some years have significantly more or less rainfall, August 
receives moderate rainfall, and September is slightly above 

LPA with considerable variability (Fig.4.2). Fig.4.3 shows 

LPA for Prayagraj. The overall LPA rainfall is 185.73 mm, 

June receives the least rainfall with high variability in rainfall 

each year, July receives the highest rainfall, August receives 

above LPA rainfall with very high variability, and September 

is slightly below LPA with considerable variability. Fig.4.4 

shows LPA for Haridwar. The overall LPA rainfall is 185.73 

mm, June receives the least rainfall with high variability in 

rainfall each year, July receives the highest rainfall with high 

variability, August receives above LPA rainfall with very 
high variability, and September receives below LPA with 

large variability. The LPA for Varanasi is shown in Fig.4.5. 

The overall LPA rainfall is 193.12 mm, June receives the low 

rainfall, July receives the highest with considerable 
variability, meaning some years have significantly more or 

less rainfall, August receives above LPA rainfall with high 

variability in rainfall each year and September is slightly 

below with very large variability. 

 

 Daily Rainfall with Flood Risk 

Rainfall exceeding 100 mm rainfall in a day causes 

urban and river flooding (Dhar and Nandragi, 2000). Across 

different parts of the world, 100–150 mm of rain in a single 

day leads to severe river flooding, while rainfall more than 

200 mm in a day often results in flash floods (Ashley and 

Ashley, 2008). Fig.5 shows the dates where rainfall occurred, 
80 mm or more. With the values assigned as rainfall of 100 

mm caused flood, 150 mm caused widespread flood, and 200 

mm caused flash in the presented region (Dhar and Nandragi, 

2000; Ashley and Ashley 2008). Fig.5.1 shows Patna's 

extreme rainfall dates (> 100 mm) from 1962 to 2022. 

Subsequent figures (Fig.5.2, Fig.5.3, Fig.5.4, Fig.5.5) show 

the dates exceeding rainfall of 100 mm in a day for cities 

Kanpur, Prayagraj, Haridwar, and Varanasi, respectively.  

 

 Flood Risk Based on Rainfall Threshold 

Fig.6 shows the flood years over the cities with the 
assigned threshold value according to their region-specified 

thresholds. The years in those regions that crossed the 

threshold rainfall value were set to flood year as 1 in the 

dataset, and those that did not were set as 0.  

 

In Fig.6.1, flood risk for Patna has been computed with 

flood years based on rainfall threshold value with 𝜎 = 0.75, 

red bars represent the flood year with rainfall values in mm 

from 1962 to 2022. The years that had floods included 1975, 

2003, 2019, and 2021, matching with flood records (British 

Pathé, 1975; Hindustan Hindi News, 2019; FMISC, 2021). 
Similarly, for Kanpur, flood years are based on rainfall 

threshold values with 𝜎 = 0.4 are computed and shown in 

Fig.6.2. The red bars represent the flood year with rainfall 

values in mm, from 1962 to 2022. Fig.6.3 shows Prayagraj 

flood years based on rainfall threshold value with 𝜎 = 0.5 with 

flood years, including 1978, 2013, and 2020, matching with 

flood records (TOI, 2020). Fig.6.4 and Fig.6.5 show the 

cities, Haridwar and Varanasi, respectively with flood years 

based on rainfall threshold value with 𝜎 = 0.5 and 𝜎 = 0.6. 
Haridwar had floods in 2010, and 2021, matching with flood 

records (Central Water Commission, 2011; DDMA, 2022). 

The city of Varanasi showed floods in 1978 matching with 

flood records (Mishra, 2022). 

 

 Forecasting the Flood Years with FCN 

Multiple ML and DL models were used for training and 

testing, which included RF, XGBoost, KNN, Logistic 

regression, SVM, Decision tree, CNN, LSTM, FCN, and 

Deep FCN. Fig.7 shows the results for these training and 

testing and accuracy comparison (Fig.7.1) of different ML 

and DL models. The FCN has the highest accuracy, i.e., 95%, 
which caused this model to be chosen for forecasting the 

flood.  

 

We have performed rainfall prediction for the next 30 

years (2023 to 2053) and subsequent flood forecasting using 
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LSTM and FCN model. The LSTM is designed to predict and 
process sequential data, such as time serial data. It has a 

memory shell that helps them remember important 

information over long sequences (Hochreiter and 

Schmidhuber, 1997). Here, LSTM generates annual rainfall 

for the next 30 years based on historical rainfall data. Then 

after, this information is sent to the FCN model to predict the 

probability of floods by loading a pre-trained FCN model, 

where the model takes multiple rainfall-related features and 

gives the probability of flood. The results are visualized into 

a plot showing flood prediction. This combined LSTM-FCN 

approach helps in long-term flood forecasting by predicting 

future rainfall first and then assigning flood risks based on the 
data later.  

 

Fig.8.1 shows 2030, 2032, and 2044 with an extremely 

high chance of facing a flood in Patna. Similarly, Fig.8.2. 

shows high flood risk years as 2039, 2043, and 2045 for 

Kanpur. Fig.8.3 shows years 2032, 2039, 2043, and 2047 as 

extreme flood risk years predicted for Prayagraj. The city of 

Haridwar (Fig.8.4) shows 2032, 2037, 2039, 2043, and 2044 

as high flood-risk years. Fig.8.5 shows 2032, 2043, and 2049 

with an extremely high chance of facing a flood in Varanasi.  

 
 

VI. CONCLUSIONS 

 

Floods pose a significant threat to life, infrastructure 

and agriculture, especially in the flood prone regions of India. 

The present research develops a reliable flood forecasting 

system using ML and Deep learning techniques by analysing 

long term rainfall trends. We investigated the potential flood 

years in the upcoming future with high accuracy. The use of 

advance models such as RF, SVM, LSTM CNN, FNN enable 

us to capture both spatial and temporal pattern in the data, 

these models, trained and validated on historical data from 

1962 to 2022, demonstrated promising accuracy level in flood 

forecasting, with FCN model achieving 95% predictive 
performance. Moreover, the merging of multiple datasets 

while maintaining location specific attributes allowed for a 

more generalized and robust model training process. This 

approach can be extended to other flood prone regions for 

regional analysis.  

 

Future work may include integrating real-time 

weather data, river discharge levels, satellite imagery to 

enhance the prediction capabilities further. Thus, this 

research contributes toward building a data-driven, proactive 

approach for assessing flood risks and protecting vulnerable 
communities. 

 
Fig 1 Map of the Study Area with the Five Cities Considered 
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Fig 2 Monthly Rainfall Distribution over the Districts of (2.1) Patna; (2.2) Kanpur; (2.3) Prayagraj; (2.4) 

Haridwar; and (2.5) Varanasi during 1962-2022 

 

 
Fig 3 Annual Rainfall Trend over the Districts of (3.1) Patna; (3.2) Kanpur; 32.3) Prayagraj; (3.4) Haridwar; and (3.5) Varanasi 

during 1962-2022 
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Fig 4 Long-term Average Rainfall (LPA) over the Districts of (4.1) Patna; (4.2) Kanpur; (4.3) Prayagraj; 

(4.4) Haridwar; and (4.5) Varanasi during 1962-2022 
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Fig 5 Dates of Flood Happened by Rainfall >100 mm over the districts of (5.1) Patna; (5.2) Kanpur; (5.3) Prayagraj; (5.4) 

Haridwar; and (5.5) Varanasi during 1962-2022 
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Fig 6 Flood Years over the Districts of (6.1) Patna; (6.2) Kanpur; (6.3) Prayagraj; (6.4) Haridwar; and (6.5) Varanasi during 

1962-2022 
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Fig 7 Chart of Machine and Deep Learning Model Accuracy and Fig.7.1: Deep Learning And Machine 

Learning Models’ Accuracy Comparison 
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Fig 8 FCN Predicted Flood Year over the Districts of (8.1) Patna; (8.2) Kanpur; (8.3) Prayagraj; (8.4) Haridwar; and (8.5) 

Varanasi for 2022-2052 
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