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Abstract: Accurate segmentation of brain tissues in magnetic resonance imaging (MRI) is essential for clinical diagnosis, 

pathological assessment, prognosis evaluation, and brain development studies. However, tissue heterogeneity resulting from 

bias field distortion, partial volume effects, noise, and magnetic field inhomogeneities poses significant challenges. In this 

study, we propose a Hidden Markov Random Field model combined with a Modified Expectation-Maximization algorithm 

(HMRF-EM) to improve segmentation accuracy by accounting for neighborhood correlation and signal intensity non-

uniformity. The algorithm was implemented in R and evaluated on T1-weighted simulated Brain Web data. The model 

effectively segmented cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) with tissue proportions of 35%, 

47%, and 18%, respectively. Validation results demonstrated a mean square error of 0.0290, misclassification rate of 0.0870, 

and tissue volume errors of 0.0578 (CSF), 0.0246 (GM), and 0.0063 (WM). Dice similarity coefficients were 0.9244, 0.9086, 

and 0.9134 for CSF, GM, and WM, respectively. These findings indicate that the proposed HMRF-EM approach yields 

reliable and accurate brain tissue classification, making it suitable for clinical and research applications.  
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I. INTRODUCTION 

 
The classification of tissues of brain using magnetic 

resonance (MR) images is very important for subsequent 

pathological analysis, diagnosis, prognosis, and following the 

developmental stage of brain [1]. Thus, Accurate 

classification is of significance in neuroscience research and 

clinical applications[2]. Automatic classification of tissues of 

brain into major type: gray white matter (WM), matter (GM) 

and cerebrospinal fluid (CSF) are used in various clinical 

applications to identify several brain diseases including 

Alzheimer's diseases, Aphasia, Multiple Sclerosis, 

Encephalopathy and Epilepsy[3]. Hence, precise disease 

investigation process and proper treatment preparation 

depends largely on the outcome of segmentation algorithm 
employed[4]. 

 

Absolute segmentation is a very difficult task because 

of the tissue mixture, which is caused by non-uniform field, 

partial volume effect (PV) effects, noise, and magnetic field 

non-uniformities[2],[5]. Brain tissue classification from 

magnetic resonance imaging (MRI) T1-weighted (T1W) is of 

becomes vital need in most neuroscience application. 

Moreover, precise brain tissue classification is quite a 

challenging task because of the intensity profiles of non-

uniformity in tissue caused by differences in acquisition 

protocols, models of the scanner and age. Furthermore, many 

algorithms predict healthy state from anatomy and contradict 

pathology result in cases like hyper intensities in white matter 

(WMHs)[5], [6]. 

 

Brain tissue segmentation aids diagnosis and treatment 

but remains challenging due to image artifacts like unclear 

tissue boundaries from imaging limitations [7]. Current brain 

tissue classification algorithms typically use statistical 

modeling of voxel intensities, MRF-based spatial smoothing 

to correct intensity inhomogeneities, and probabilistic brain 

atlases. However, several factors still pose significant 
challenges to their effectiveness [8]. 

 

Markov random field (MRF) based algorithms have 

indicated strong capabilities in handling issues of noisy brain 

image classification compared to other algorithms[9]. In this 

work, a hidden Markov random field fitted with modified 

expectation maximisation algorithm is used for 
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neighbourhood correlation (addressing PV effect) and 

intensity inhomogeneity. 

 

A. Magnetic Resonance Imaging in the Clinic 

Magnetic resonance imaging (MRI) is a key non-
invasive and non-ionizing tool for visualizing brain anatomy. 

The scanned area is divided into 3D voxels, each labeled 

based on anatomical structures using T1-weighted tissue 

classification. The main brain tissues are white matter (WM), 

gray matter (GM), and cerebrospinal fluid (CSF) [10], [11]. 

 

In T1-weighted images cerebrospinal fluid appears with 

dark gray colour, white matter with medium gray colour and 

gray matter with light gray colour[12]. Brain tissue 

classification typically focuses on WM, GM, and CSF, but 

voxels at tissue boundaries often present ambiguity. Fuzzy set 

segmentation addresses this by assigning membership values 

to multiple tissue types, allowing for more accurate feature 

estimation [8]. 

 

Brain tissue analysis plays a key role in diagnosing 

psychiatric and neurological disorders like schizophrenia, 
Alzheimer’s, and bipolar disorder, and is also used in studies 

of brain development, aging, and surgical planning [10]. MRI 

holds strong potential as a biomarker for disease progression 

and treatment monitoring, relying on accurate brain tissue 

classification, with advancing MRI technology enabling 

faster 3D data acquisition, clinicians can use segmented brain 

data alongside age-adjusted norms for enhanced 

diagnosis[10]. 

 

B. Existing Brain Tissue Classification Methods 

Several methods have been developed for brain tissue 

classification, each with its strengths and limitations. Manual 

classification, carried out by experienced professionals such 

as radiologists and anatomists, involves manually labeling 

pixels of similar intensities, but it is time-consuming, 

subjective, and affected by factors like poor contrast and 

complex imaging techniques[4], [13]. Region-based methods 

rely on intensity homogeneity and are effective in handling 

shape and boundary detection using T1- or T2-weighted MR 

images. However, they are sensitive to noise, intensity 
inhomogeneity, and require post-processing due to weak 

edges[4], [14]. Thresholding methods, including fixed and 

adaptive techniques, are simple and computationally efficient 

but often fail in noisy or multimodal images. Clustering-

based methods group pixels based on similarity measures and 

typically use T1-weighted images. Mixture models can 

handle intensity variation and spatial regularization but lack 

spatial context among voxels, leading to local optima[4], 

[15]. Feature extraction and classification methods apply 

machine learning algorithms such as support vector machine 

(SVM), artificial neural network (ANN), K-Nearest 

Neighbors (KNN), and Self-Organizing Map (SOM) on 

extracted features[5], [16]. Clustering algorithms classify 

brain tissue by grouping pixels or voxels with similar 

intensity or structural features into clusters, typically 

representing gray matter, white matter, and cerebrospinal 

fluid. Techniques like K-means, Fuzzy C-means, and SOM 
are commonly used in MRI analysis to segment and study 

brain structures. However, it is sensitive to noise and 

performs poorly on overlapping tissue[16], [17], [18]. These 

are efficient and capture local properties but are sensitive to 

heterogeneous intensities, noise, and unclear tissue 

boundaries[4] see Table 1 for some related literature. Hidden 

Markov Random Field and Expectation Maximization 

(HMRF-EM) is a brain segmentation algorithm that combines 

spatial context (HMRF) with statistical modeling (EM) to 

classify brain tissues in MRI images. It models the spatial 

dependencies between neighboring pixels/voxels to improve 

segmentation accuracy. It has the strengths of noise reduction 

by considering neighborhood information, handles intensity 

inhomogeneity better than simple clustering and Enhances 

tissue boundary detection compared to non-spatial methods. 

 

Table 1: Some Selected Work in the Literature of the State of the Art of Brain Tissue Segmentation 

Method Year Input Problem accounted Reference 

Clustering methods 2024 Comparing k-means (KM) and 

Fast fuzzy C-means (FFCM) 

Evaluation of performance [19] 

Feature extraction 2016 Likelihood function Intensity inhomogeneity 

and special location 

[20] 

Thresholding segmentation 2017 Post processing pipeline (TS-PP) Improve performance [21] 

Barkerly wavelet transformation 

(BWT) and support vector machine 

(SVM) 

2017 Handling multi-scan image 

acquisition 

Tumour detection and 

feature extraction using 

biologically inspired BWT 

[22] 

Clustering technique 2018 Super-voxel and efficient 

ensemble-based clustering 

Improve performance [23] 

Feature extraction 2018 Two steps: extraction of gray scale 

level co-occurrence metric (GLM) 
feature followed by morphological 

filtering 

Noise removal [24] 

Feature base (random forest) 2020 Robust in multi-centre and multi-

scan data 

Data variation with age 

using T1-weighted MRI 

[5] 

Clustering technique based on 

particle swarm optimization (PSO) 

algorithm and hierarchical 

evolutionary (HEA algorithm 

2010 Combination of PSO and HEA Improved performance [25] 
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Clustering methods 2020 Super-voxel clustering with 3D 

description for brain tissue 

segmentation 

Replace the traditional 

handling strategies of 2D 

with 3D data 

[26] 

Clustering 2020 Fully automatic modified fuzzy C-

means (MFCM) 

Reduce processing time [27] 

Graph-self-constructed and fusion 

network 

2021a Using multiple types of image 

features 

Improve performance [28] 

Deep multi modal fusion 2021b Multi modal fusion segmentation Evaluation of performance [29] 

Contextual multiscale multilevel 

network (CMM-net) 

2021 Use deep learning in biomedical 

image segmentation 

Tool use for various 

medical image 

segmentation 

[30] 

Feature extraction 2021 Fully automated brain 

segmentation method based on 

sparse representation of DWI 

signals 

Improve performance [31] 

Hidden Markov Random Field 2023 Maximization algorithm Partial volume effect [32] 

 

II. METHODOLOGY 

 
A. Materials  

 

 Hardware: Laptop with 4.00 GB RAM, 1.10 GHz 

processor, 64-bit OS. Software: R: A programming 

language for statistical computation and image creation, 
downloaded from www.r-project.org.  

 Rtools (4.0.028): Required for building R packages, 

downloaded and set as the working directory in RStudio.  

 RStudio (1.4.1717): Integrated development environment 

for R[33].  

 

B. Method:  

The study follows a structured workflow (Figure1), 

from data import to algorithm performance evaluation, using 

the Hidden Markov Random Field fitted with Expectation-

Maximization (HMRF-EM), Normal Mixture method fitted 

with expectation maximization (NMM-EM), and Hidden 

Normal Mixture method fitted with iterated conditional mode 

(HNMM-ICM algorithms. The performance metrics are as 

follows: 

 Misclassification Rate (misclass): Measures voxel 

segmentation accuracy against the original anatomical 

structure. 

 Mean Square Error (MSE): Evaluates the algorithm’s 

ability to handle partial volume effects by comparing 

estimated and true tissue distributions. 

 Dice Similarity Measure (DSM): Defined by: 
 

𝐷𝑆𝑀𝑎,𝑏
𝑡 =

2𝑁𝑎∩𝑏
𝑡

𝑁𝑎
𝑡2+𝑁𝑏

𝑡2                                    (1)            

 

Where 𝑁𝑎
𝑏 and 𝑁𝑏

𝑡 are the number of voxels classified at 

tissue t by method 𝑎 𝑎𝑛𝑑 𝑏 respectively, and 𝑁𝑎∩𝑏
𝑡  is the 

number of voxels classified as tissue t by both methods 

𝑎 𝑎𝑛𝑑 𝑏. The larger the DSM, the more similar the result 

from both methods  

 

 Confusion Table (conTable): Assesses classification 

accuracy on a per-tissue basis.   

 Tissue Volume Error (rsevolume): Quantifies differences 

between calculated and true tissue volumes. 

 

 
Fig 1: Schematic Representation of the Experimental Workflow, Illustrating the Sequential Steps Involved in Data Import, 

Preprocessing, Analysis, and Interpretation 
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HMRF is a Stochastic, undirected graphical model it 

works base on HMRF-EM algorithm shown in Figure 2. The 

segmentation process begins with an initial parameter set θ⁽⁰⁾. 

Using this, the likelihood distribution P(𝑦ᵢ | Xᵢ, θₓᵢ) is 

computed. Based on the current parameter set θ⁽ᵗ⁾, provisional 

labels are estimated. The posterior distribution P⁽ᵗ⁾(l | 𝑦ᵢ) is 

then calculated for all labels l ∈ L and pixels 𝑦ᵢ. These 

posterior probabilities are used to update the parameter set 

iteratively, refining the segmentation with each iteration. 

 

 
Fig 2: Schematic Representation of the HMRF-EM Algorithm, Illustrating the Iterative Process of Parameter Initialization, 

Likelihood Estimation, Label Inference, Posterior Computation, and Parameter Update for Brain Tissue Segmentation 

 

III. RESULTS AND DISCUSSION 
 

The study results are presented for the three MR brain tissue classification methods: HMRF-EM, NMM-EM, and HNMM-

ICM. Results are organized as follows: Image plots using MISC3D, tkrplot (grayscale), and color plots. Density plots comparing 

predicted and actual data. Validation metrics: MSE, misclassification rate, DSM, confusion Table, and tissue volume error 

(rsevolume). Summary statistics Percentages for the three major brain tissue classifications. 

 

 
(a) 

 

 
(b) 
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(c) 

Fig 3: (a) Original T1-Weighted Image, NMM-EM Classification Result, and Overlay. (b) Original T1-Weighted Image, HNMM-

ICM Classification Result, and Overlay. (c) Original T1-Weighted Image, HMRF-EM Classification Result, and Overlay. In all 

(a), (b) and (c) White Matter Appears White, Gray Matter Light Gray, and Cerebrospinal Fluid Dark Gray, with Respective 

Overlay Colors as green, yellow-green, and Sandy Brown. Black Voxels Indicate Regions Outside the Brain 

 

 
Fig 4: Density Plots of the Actual and Predicted Tissue Classes using (a) HMRF-EM, (b) HNMM-ICM and (c) NMM-EM 

Algorithms 

 

Figure 3 presents the tissue segmentation results from 

the three methods: (a) NMM-EM, (b) HNMM-ICM, and (c) 

HMRF-EM. In each panel, the original T1-weighted image is 

displayed alongside the respective classification result and 

overlay, with white matter (WM) appearing white, gray 
matter (GM) light gray, and cerebrospinal fluid (CSF) dark 

gray. The overlay colors correspond to green for WM, 

yellow-green for GM, and sandy brown for CSF, while black 

voxels indicate regions outside the brain. Figure 4 compares 

the actual and predicted tissue classes using density plots for 

each algorithm. (a) HMRF-EM shows the closest alignment 

with the actual data, with only minor differences in CSF and 

slight variations in GM and WM. In contrast, both (b) 

HNMM-ICM and especially (c) NMM-EM exhibit more 
significant mismatches, particularly in CSF segmentation. 

These findings highlight the superior performance of HMRF-

EM in accurately classifying brain tissues. 
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Table 2: Misclassification Rate (Misclass) and Average Mean Square Error (MSE) for the Different Methods 

Method MSE Misclass 

HNMM-ICM 0.03023166 0.08898279 

NMM-EM 0.03753136 0.11202600 

HMRF-EM 0.02901258 0.08698963 

 

 
Fig 5: Comparison of Misclassification Rates and Mean Squared Error (MSE) Across the Three Methods 

 

A comparison of misclassification rates and mean 
squared error (MSE) across the three methods reveals that the 

HMRF-EM algorithm outperforms both HNMM-ICM and 

NMM-EM, demonstrating superior segmentation accuracy 

and robustness. Specifically, HMRF-EM achieves the lowest 
MSE and misclassification rate, indicating better overall 

performance in tissue segmentation see Table 2 and Figure 5. 

 

 

Table 3: Tissue Volume Error (rse volume) for the Different Methods 

Tissue /Method HNMM-ICM NMM-EM HMRF-EM 

CSF 0.06984997 0.0648337 0.057795173 

GM 0.03455316 0.14343400 0.02458168 

WM 0.014221461 0.16647681 0.006265323 

 

 
Fig 6: RSE Volume Comparison for Three Methods using the Tissue Type Based on Table 3, HMRF-EM Shows the Lowest 

Tissue Volume Error for CSF, GM, and WM, Outperforming NMM-EM and HNMM-ICM 

 

The lower the value of the tissue volume error, the better 
the performance of an algorithm method and this indicates the 

probability of classifying voxel[34].  Based on the relative 

standard error (RSE) volume comparison presented in Table 

3, the HMRF-EM algorithm exhibits the lowest tissue volume 

estimation error across all tissue types: cerebrospinal fluid 
(CSF), gray matter (GM), and white matter (WM). This 

indicates that HMRF-EM provides more accurate tissue 

volume quantification compared to NMM-EM and HNMM-

ICM see Figure 6. 
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Table 4: Dice Similarity Measures (DSM) for the Different Methods 

Tissue /Method HNMM-ICM NMM-EM HMRF-EM 

CSF 0.9241746 0.9255292 0.9244405 

GM 0.9060223 0.8915103 0.9085912 

WM 0.9112816 0.8634850 0.9134111 

 

 
Fig 7: Dice Similarity Comparison for Three Methods using the Tissue Type 

 

The dice similarity measure (DSM) as a statistical tool 

measures spatial overlapping, the higher the value for a 

particular tissue type the better the reproducibility of the 

method for DSM=0 indicates no overlapping, for 0<DSM<1 

indicates partial overlapping and DSM=1 indicates complete 

overlapping [35]. The Dice similarity coefficient (DCM) 

comparison across the three methods reveals that HMRF-EM 

outperforms both HNMM-ICM and NMM-EM in 

segmenting gray matter (GM) and white matter (WM), while 

NMM-EM slightly excels in cerebrospinal fluid (CSF) 

segmentation see Table 4 and Figure 7. 

 

Table 5: Summary in Percentages of the Classification for the Different Methods 

 Reference 

WM/% GM/% CSF/% 

HNMM-ICM 18 47 35 

NMM-EM 16 55 29 

HMRF-EM 18 47 35 

 

 
Fig 8: Summary of the Tissue Percentage Classification Comparison for Three Algorithms using CSF, GM, and WM 

 

Table 5 presents the tissue volume percentage 
classification for CSF, GM, and WM across three algorithms. 

Both HNMM-ICM and HMRF-EM yield similar brain tissue 

volume percentages for all tissue types, with approximately 

18% WM, 47% GM, and 35% CSF. In contrast, NMM-EM 

shows significant deviations in tissue classification, with 16% 
WM, 55% GM, and 29% CSF. This highlights the 

consistency of HNMM-ICM and HMRF-EM in tissue 

volume estimation, while NMM-EM exhibits notable 

discrepancies see Figure 8. 
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Table 6 of confusion matrix for the tissue segmentation 

methods reveals HNMM-ICM and HMRF-EM demonstrate 

high accuracy in segmenting white matter (WM) and gray 

matter (GM), with minimal misclassification in CSF. In 

contrast, NMM-EM shows a noticeable discrepancy in 

segmenting WM and GM, with higher misclassification rates, 

particularly for CSF. Overall, HMRF-EM provides a robust 

segmentation performance across all tissue types, achieving 

near-identical accuracy to HNMM-ICM, but with superior 

handling of GM and CSF. 
 

Table 6: Confusion Table for the Different Methods for Brain Web Data 

 Reference 

WM GM CSF 

HNMM-ICM WM 0.9564514 0.03925961 0.00000000 

GM 0.0435486 0.89036938 0.08224165 

CSF 0.0000000 0.07037101 0.91775835 

NMM-EM WM 0.8961513 0.01397483 0.0000000 

GM 0.1038487 0.95544675 0.2083901 

CSF 0.0000000 0.03057842 0.7916099 

HMRF-EM WM 0.9511546 0.03691994 0.0000000 

GM 0.0488454 0.89742455 0.0837275 

CSF 0.0000000 0.06565552 0.9162725 

 

IV. CONCLUSION 
 

Brain tissue classification is vital for diagnosis, 

prognosis, and treatment planning, but clinical application 

remains challenging due to imaging artefacts like noise, 

intensity non-homogeneity, and abnormal tissue signals. 

Rather than replacing experts, classification methods are 

intended to support clinical decisions. This study presents a 

soft clustering approach using the Hidden Markov Random 

Field with Expectation Maximization (HMRF-EM) for brain 

tissue classification. The method successfully segmented 

white matter (WM), gray matter (GM), and cerebrospinal 

fluid (CSF) in 18%, 47%, and 35% of simulated brain 

datasets from BrainWeb. It accounted for the partial volume 

effect through a 3D six-neighbor model and addressed 
intensity non-homogeneity using adaptive lower potentials. 

The method also improves classification accuracy for 

detecting tumors or MS lesions in T1-weighted MR images. 

Integration into MRI systems could enhance diagnostic 

reports by revealing more anatomical and physiological 

details. Compared to the Normal Mixture Model EM (NMM-

EM) and iterated conditional mode approach, the HMRF-EM 

algorithm at the pure voxel level outperformed in classifying 

major brain tissues. 
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