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Abstract: Federated Learning (FL) is a promising decentralised machine learning model that enables multiple devices to 

collaboratively train a shared model without sharing their private data. While this approach enhances data privacy and 

regulatory compliance, it is significantly vulnerable to a range of security threats and adversarial attacks. This research 

seeks to investigates various attack vectors in FL, such as poisoning attacks, Byzantine attacks, Sybil attacks, and gradient 

inversion and also evaluates their impact on model performance and data confidentiality. Through a comprehensive analysis 

and empirical reviews of existing literature, the study explores mitigation strategies, attack model and threat taxonomy to 

classify adversarial behaviours. Key findings from the reviews suggests that while existing defence mechanisms show 

promise, they often suffer from trade-offs between model accuracy, system scalability, and computational overhead. The 

study was concluded by identifying gaps in current literature, such as the need for adaptive mitigation strategies and more 

realistic threat models, and offers recommendations for future work. By addressing these challenges, the research 

strengthens the robustness and trustworthiness of federated learning systems in real-world applications. 
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I. INTRODUCTION 

 

Federated learning (FL) is a decentralised machine 

learning algorithm where multiple devices or servers 

collaboratively train a shared global model without 

exchanging raw data but only the model updates necessary to 

improve data privacy and security (McMahan et al., 2017). 

This approach addresses an important issue in data privacy, 

bandwidth efficiency, and compliance regulations such as the 

GDPR (Truong et al., 2021). Federated learning achieve these 
tasks by forwarding local model updates to a central server 

for aggregation. 

 

Despite the privacy-preserving principles of Federated 

learning, it introduces a security vulnerability as a result of its 

decentralised and trust-assuming nature (Truong et al., 2021). 

Federated learning is vulnerable to a range of adversarial 

attacks that can compromise a model’s confidentiality, 

integrity and availability of its data, hence defeating the very 

purpose it sought to achieve (Xie et al., 2024). 

 
Federated Learning is vulnerable to attacks such as 

poisoning attacks, where threat actors posing as benign 

clients to manipulate local training data or gradient updates to 

distort the global model (Lenaerts-Bergmans, 2024). These 

can be either data poisoning, where malicious samples are 

injected into the training database, or model poisoning, where 

attackers craft gradient updates to reduce the accuracy of the 

model or implant backdoors to be exploited later (Xie, Koyejo 

and Gupta, 2021). Poisoning attacks are difficult to detect and 

mitigate due to the lack of centralised data oversight. 

 

Again, Federated Learning is vulnerable to privacy 

inference attacks, such as gradient inversion and membership 

inference. This is where threat actors seek to exploit shared 

model parameters (updates) to reconstruct private input data 
or determine data membership (Guo et al., 2024). Yang et al. 

(2023) demonstrated in their studies how intermediate feature 

maps can be reverse-engineered to retrieve sensitive data, 

thereby raising significant concerns about Federated Learning 

privacy assurance even when no raw data is exposed during 

the training. These findings emphasis the need for robust 

defences that extend beyond naive aggregation or differential 

privacy techniques. 

 

To mitigate these threats, emerging solutions 

incorporate trusted execution environments (TEEs) and 
secure aggregation protocols. Chen et al. (2024) proposed a 

Federated Learning framework augmented with TEEs to 

protect the aggregation phase from adversarial attacks. While 

theses mitigation strategies are effective, they also introduce 

https://doi.org/10.38124/ijisrt/25may617
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25may617
https://doi.org/10.38124/ijisrt/25may617


Volume 10, Issue 5, May – 2025                                 International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25may617 

 

IJISRT25MAY617                                                              www.ijisrt.com                                3276 

trade-offs between computational efficiency, scalability, and 

hardware dependency (Zeng et al., 2024). 

 

This paper investigates the taxonomy, methodology, 

adversarial impact of threats on federated learning systems, 

and defence strategies to combat federated learning attacks. 

The main motivation for the studies is to provide a rigorous 

yet comprehensive overview that informs both theoretical 
advancements and practical deployments in secure distributed 

learning systems. 

 

 Motivation for the Study 

The increasing adoption of distributed systems across 

many sectors such as healthcare, finance, and Internet of 

things has created a paradigm shift in how machine learning 

models are trained, to emphasis user privacy and data 

decentralisation. Due to the decentralised nature of these 

systems they also introduced significant vulnerabilities that 

could be exploited by adversaries (Benmalek, Benrekia and 

Challal, 2022). Some of these threats undermine the integrity 
and confidentiality of the global model, making the 

robustness and trustworthiness of FL systems an issue of 

concern (Almutairi and Barnawi, 2023). Motivated by the 

complexity of  evolving  adversarial attacks and inadequate 

oversight of client activities by central servers, its imperative 

to explore the varied spectrum of existing attack vectors and 

their subsequent adversarial impact on the Federated 

Learning systems. This study is motivated by the need to 

understand the intricacies of these attacks vectors and 

evaluate existing mitigation defence strategies to propose a 

more robust frameworks to safeguard federated learning 
systems. Moreso, with most evolving applications and 

systems depending on Federated Learning architecture for 

secure and privacy-preserving learning, there the need for 

empirical insights and theoretical models that can guide the 

future development of robust learning algorithms. By 

analysing current scholarly works and documented existing 

Federated Learning adversarial threats, this study seeks to 

make a immerse contribution to the future development and 

deployment of a more robust Federated Learning 

architectures, that fosters trust among users and stakeholders 

who relies on collaborative learning systems. The study also 

seeks to identify gaps in existing mitigation strategies and 
highlight novel research opportunities that can improve the 

robustness of a secure federated learning system. 

 

 Overview of Federated Learning 

As discussed earlier in the introduction, federated 

learning is a distributed machine learning algorithm that 

enables collaborative model training across multiple devices 

or clients without these devices having to share their 

individual raw data during the model training (Criado et al., 

2022). Federated learning facilities collaborative training and 

development of a model while preserving data privacy and 
reducing communication costs (Cao et al., 2022). In 

Federated Learning systems, the clients perform learning 

using their local datasets under the control of a central server 

(Liu, Xu and Wang, 2022). Federated Learning can be 

implemented in both centralised and decentralised 

architectures. In centralised federated learning, the client 

devices devices rely on a single central server for updates, 

while decentralised approaches like Chain Federated 

Learning utilise blockchain technology to distribute model 

data across multiple network nodes, mitigating the risk of 

single-point failure (Cao et al., 2022). 

 

 Federated Averaging. 

Federated Averaging (FedAvg) is the foundational 

algorithm used within federated learning platform to 
aggregate the model updates from the participating devices. 

When the central server receives the model updates from the 

clients’ devices, it determines the weighted average of these 

updates by computing the weighted average before sending 

back the aggregated update to the client for further training 

and learning (Sun, Li and Wang, 2023). Federated averaging 

is designed in such a way that the global model represents the 

real contributions of all devices proportionally, taking into 

account the data amount each device sent (McMahan et al. 

2017). The process of aggregation is usually performed using 

one of the two methods: Simple Averaging or Weighted 

Averaging, based on the size of the local datasets. 

 

 Simple Averaging:  

Simple Averaging combines the model updates from all 

clients by giving equal weight to each client's contribution, 

regardless of how much data they have (Betul Yurdem et al., 

2024). After the local model training done by the client on 

their own data, the updated parameters are sent back to the 

central server to perform the averaging of individual 

parameters to produce a new global model (McMahan et al. 

2017). In situations where computational simplicity and 

efficiency matter greatly, this approach is usually applied, 
e.g., mobile device personalisation, Internet of Things (IoT) 

networks, and healthcare diagnostics, particularly for the case 

when the clients have limited computing capabilities (Qi et 

al., 2024). 

 

 
Fig 1 Simple Averaging 

 

Simple Averaging is computed using the formula: 

 

𝑤 =
1

𝑛
∑ wi

𝑛

𝑖=0
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Where: 

 

n: Number of clients (devices/participants) that trained a local 

model. 

 

𝑤𝑖  : Model weight (or set of weights) produced by the ith 

client after local training. 

𝑤 : The new global model weight, obtained by simply 

averaging all the client updates. 

 

For instance, if 3 three clients are participating in 

learning, and all clients have amount of training data, each 

contributes equally to the final model. 

 

w1=1.5, w2=2.0, w3=2.5 
 

Table 1 Simple Averaging Aggregation 

Client Local weight 𝒘𝒊 

1 1.5 

2 2.0 

3 2.5 

 

𝑤 =
1

3
(1.5 + 2.0 + 2.5) =

6.0

3
. = 2.0 

 

The computed value of 2.0 represents the new global 

model parameter (weight) after aggregating the local model 

updates from the clients. The new weight of 2.0 is significant 

because it becomes the shared global weight for the next 

round of training. 

 
 

 Weighted Averaging:  

In weighted Averaging, the central server computes an 

aggregates of each model updates received from participating 

devices, giving more influence to clients that contributed 

more data towards the learning. After each client performs 

local training on its private dataset, it forwards its updated 

model parameters to the central server. The server then 

computes a new global model using a weighted average of all 
the received updates (Betul Yurdem et al., 2024). 

 
Fig 2 Federated Learning Weighted Averaging 
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Weighted average is represented by the formula: 

 

𝑤global =
∑ 𝑛𝑖

𝑛
𝑖=1 ⋅ 𝑤𝑖

∑ 𝑛𝑖
𝑛
𝑖=1

 

 

Where: 

 

 𝑛𝑖: number of training samples for client 𝑖 
 𝑤𝑖 : model weights from client 𝑖 

 𝑤global : the new global model after aggregation 

 

Suppose we have 3 clients participating in federated 

learning. Each client trained their local model on different 

amounts of data: 

 

 Client 1: 𝑤1 = 1.5, trained on 3 data samples 

 Client 2: 𝑤2=2.0, trained on 4 data samples 

 Client 3: w3=2.5 trained on 3 data samples 

 

Table 2 Weighted Averaging 

Client Local Weight 𝒘𝒊 Number Of Samples 𝒏𝒊 

1 1.5 3 

2 2.0 4 

3 2.5 3 

 

 Client1:
3

10
= 30% 

 Client2: 
4

10
= 40% 

 Client3: 
3

10
= 30% 

 

𝑤global =
3 ⋅ 1.5 + 4 ⋅ 2.0 + 3 ⋅ 2.5

3 + 4 + 3
=

4.5 + 8.0 + 7.5

10
=

20.0

10
= 2.0 

 

The new final Global Model Weight after the 

aggregation is  𝑤global=2.0. 

 

The more data the client has, the more their contribution 

to the final model is, while the clients with less data also 

contribute, but the amount of their contribution is relative to 

their data size. For example, the update of Client 2 has a 

higher effect on the global model than that of Clients 1 and 3 

combined, but the latter pair still has an effect, however small. 

Although the clients   have smaller data, they are still part of 

the training process and they aid in creating the global model, 

but only until a certain extent. 

 

II. RELATED WORK 

 

Federated learning (FL) has gained considerable 

attention as a decentralised learning system that preserves 

data privacy by keeping training data localised on client 

devices. However, recent studies show that this architecture 

is susceptible to a variety of security vulnerabilities and 

adversarial threats. A growing body of research has emerged 

to examine these vulnerabilities and propose mitigating 

strategies. 

 

Xie et al. (2021) provided a foundational survey of 
poisoning attacks in Federated Learning, highlighting how 

adversarial can inject poisoned data or manipulate model 

updates to mislead the global model. Qayyum, Janjua and 

Qadir (2022) propose a hybrid learning-based detection 

strategy to identify poisoned parameter updates, achieving 

high in detection rates against label-flipping attacks. Their 

work highlights the need for intelligent, context-aware 

defences that go beyond simple aggregation filters. From a 

privacy preserving perspective, Zhang et al. (2023) 

demonstrated that features shared during training can leak 

sensitive information. In their study, attackers are able to 
reconstruct private data from these shared parameters, 

thereby diffusing the very objectives  that Federated Learning 

guarantees privacy. Complementing Zhang et al’s 

perspective, Zhu, Liu and Han (2019) explored clean-label 

data poisoning attacks, where adversarial data samples appear 

legitimate to clients in the model training but are engineered 

to disrupt performance in federated learning systems. 

 

Further, Xie et al. (2024) presents a taxonomy of 

Federated Learning vulnerabilities, grouped attacks into data-
to-model, model-to-data, and model-to-model. Their survey 

emphasises the evolving sophistication of attacks, from overt 

gradient inversion to subtle perturbations in model 

parameters. Kasyap and Tripathy (2024) extend this by 

introducing hyperdimensional computing techniques to 

generate adversarial samples, showing that FL models are 

vulnerable to attacks that do not require access to model 

internals or labels. 

 

These works collectively highlight the fragility of 

Federated Learning systems in adversarial environments. 
Insights from review of related literature also demonstrate 

that effective and resilient mitigation strategies must account 

for both the decentralised architecture and the heterogeneity 

of participating devices. Despite promising developments in 

secure aggregation and trusted execution, the literature 

continues to emphasise the need for adaptive, scalable, and 

lightweight solutions to protect federated learning systems in 

real-world deployments. 

 

A. Gaps in Existing Literature. 

Despite growing research interest in the security of 

federated learning (FL), several critical gaps remain 
unaddressed in the current literature. One of such limitation 

is the fragmentation of defence strategies. Currently most 

proposed solutions are highly specialised and target a single 

attack type, such as data poisoning or gradient inversion, 

without accounting for more complex, multi-vector 

adversarial attacks. Robust aggregation methods, such as 

Krum and Trimmed Mean, are a good approach to outliers, 

but very bad for backdoor attacks that are stealthy and blend 

with benign updates (Xie et al., 2021). 

 

One significant gap identified during literature review is 
the lack of consistent and scalable frameworks for the 

detection and mitigation of adversarial attacks. Zhang et al. 
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(2023) indicated that differential privacy can be quite 

effective in the face of the inversion of gradients, but most of 

these methods will still go against the use of the model, and 

very few studies have offered a rational framework for the 

trade-off between privacy and performance. 

 

Although there is a good classification of FL threats by 

Xie et al. (2024), we observe a scarcity of empirical papers 
that discover identity-based and coordination-based attacks. 

Most of the defenses strategies are based on the ideal scenario 

of using a partial trust model or the static client behavior. 

However, these do not correspond to reality in cases of open 

or cross-device systems, where the attackers can easily 

increase client participation. Again, there is a noticeable gap 

in socio-technical considerations, such as client trust 

modelling, authentication, and incentive mechanisms. 

Current studies largely ignore the economic and behavioural 

dimensions of Federated Learning systems, assuming that all 

clients are either benign or malicious, with no spectrum in 

between. This binary framing overlooks real-world nuances, 
such as semi-honest participants or accidental failures that 

may resemble adversarial behaviour. The evaluation metrics 

and benchmarks used in many studies lack standardisation, 

which hinders the reproducibility and comparability of their 

proposed defences. The absence of comprehensive 

framework suites that simulate realistic attack scenarios 

across diverse data distributions, model types, and network 

conditions limits the ability to rigorously assess the resilience 

of Federated Learning systems. 

 

B. Components of Federated Learning (FL) 
 

 Central Server:   

The central server is responsible for coordinating the 

entire process of Federated Learning (FL). The central server 

initializes the global machine learning model, by selecting a 

subset of participating devices, and aggregating the updates 

received from these clients to refine the global model. The 

central server does not have direct access to raw data on the 

client’s device. This is necessary to ensure data privacy and 

regulatory compliance (McMahan et al., 2017). An example 

of a central server in Federated Learning can be found in 

Google's Gboard application. The central server deploys a 
text prediction model to millions of Android devices. Each 

device updates the model locally using the user's typing data 

and sends only the updated model parameters such as 

gradients back to the server. The server then performs 

federated averaging (FedAvg) to aggregate these updates to 

improve the global model without ever seeing individual user 

inputs (McMahan et al., 2017). 

 

 Clients:  
Clients are the participating devices that hold local 

datasets and perform computations on them. The clients 

ranges personal mobile phones and IoT devices to large 

institutions like hospitals or banks. Each client receives the 

current version of the global model from the central server, 

trains it using local data, and then sends only the updated 

model parameters back to the server (Qayyum, Janjua and 

Qadir, 2022). In healthcare for instance, multiple hospitals 

may participate as clients to collaboratively train a diagnostic 

model for detecting pneumonia from chest X-rays. Each 

hospital keeps its patient data secure and private but 

contributes to a more robust and generalised model through 
localized training (Qayyum, Janjua and Qadir, 2022). A case 

study involving such a setup demonstrated how FL could be 

used to train a COVID-19 detection model from CT scans 

across hospitals in different regions while complying with 

patient data privacy laws like GDPR (Sheller et al. 2020) 

 

 Communication Protocols:  

The communication protocol defines how model 

updates are exchanged between the central server and the 

clients. The protocols must be both secure and bandwidth-

efficient given that more clients’ device will be participating 
in the learning process. Techniques such as quantisation and 

sparsification are used to compress data to reduce the size of 

updates. Technique such as secure aggregation is deployed to 

ensure that updates cannot be reverse-engineered to reveal 

sensitive information (Bonawitz et al., 2019). Apple has 

deployed secure communication protocol to improve Siri and 

dictation services. Apple uses encrypted protocols combined 

with differential privacy to ensure that updates sent from iOS 

devices to Apple servers cannot be traced back to individual 

users. This has improved the accuracy of Apple’s voice 

recognition and text prediction models while maintaining a 

high standard of user privacy (Truong et al., 2021). 

 

 
Fig 3 Federated Learning Architecture 
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C. Workflow of Federated Learning 

The workflow begins with the central server initializing 

and distributing the model to client devices that are targeted. 

Each of the clients then trains the model utilizing their own 

local data privately and then transfers the update to the server. 

The server collects these updates via algorithms like 

Federated Averaging, thus generating an enhanced global 

model (Betul Yurdem et al., 2024). The process of iterations, 

which is depicted in Figure 4, goes on for the entire 

communication rounds until the stage of completeness and 

stability is reached. 

 

 
Fig 4 Federated Learning Workflow 

 

 Initialisation:  

At the beginning of federated learning process, the 

central server initialises a global machine learning model. 

The model's weights are either set randomly or initialised 

using pre-trained parameters. McMahan et al. (2017) 

introduced the FedAvg algorithm, where a simple neural 

network is initialised before being distributed to client 

devices. 
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 Client Selection:  

In this stage, the server selects a portion of clients from 

a larger pool of available clients. It can be a random selection, 

or a specific selection based on conditions, like the device is 

availability, the network connectivity, battery level, and the 

usefulness local data is useful. An example is selection of the 

devices in Google Gboard where a devices are chosen to 

participate in the learning process following a device 
availability protocol, thus healthy only devices meeting the 

conditions can participate in the learning (Xu et al., 2023). 

 

 Model Distribution:  

After successful selecting clients, the server sends the 

current version of the global model to the selected devices. 

The model is transmitted over the network, using 

compression techniques to reduce communication overhead. 

Model quantisation and pruning compression techniques can 

be applied to transmit smaller data, especially in 

environments with limited bandwidth like mobile networks 

(Liang et al., 2021). 
 

 Local Training:  

Selected client locally trains it model based on the the 

received model from the central server. The training usually 

involves the of uses optimisation algorithms like stochastic 

gradient descent (SGD) (Vungarala, 2023). Clients perform 

multiple local training to improve model performance using 

only their data. In a hospital’s Federated Learning system, 

models can be trained on patient imaging data without 

necessarily revealing  its sensitive data. This approach is 

useful in other  privacy-sensitive domains like IoT and 
finance (Bonawitz et al., 2019). 

 

 Update Upload:  

After completing the model training, each client sends 

back the updated model parameters to the central server. The 

updates to be forwarded to the central server  are encrypted to 

preserve user privacy. Techniques like differential privacy 

add carefully calibrated noise to updates, ensuring that 

individual data points cannot be reverse-engineered from the 

shared gradients. Secure aggregation techniques used ensure 

that the server cannot see individual updates but only the 

combined result from each participating device (Wei and 

Rao, 2024). 

 

 Aggregation:  

Updates received from multiple clients are aggregated 

to form a new version of the global model at the server. 

Federated Averaging (FedAvg) is the most common 

aggregation technique used for updates aggregation (Sun, Li 
and Wang, 2023). 

 

 Convergence Check:  

Finally, the server evaluates the performance of the 

updated global model using a validation dataset or client 

feedback. If the model’s performance has reached a 

satisfactory level or a preset number of rounds have been 

completed, training stops. Otherwise, the process loops back 

to client selection until model convergence (Nanayakkara, 

Pokhrel and Li, 2024). 

 

D. Types of Federated Learning 
Federated Learning (FL) can be categorised into distinct 

types based on how data is distributed across clients. The 

classifications Horizontal FL, Vertical FL, and Federated 

Transfer Learning (FTL) offer an insight into which FL 

approach suits a particular collaborative learning. Each type 

addresses different issues among participating devices. 

 

 Horizontal Federated Learning (HFL):  

Horizontal FL, also known as sample-partitioned 

Federated Learning, is a type of Federated learning where 

participating clients share common feature space but differ in 
sample space. The clients have similar types of data but 

different users or instances (Naik and Naik, 2024). Horizontal 

Federated Learning is applicable in cases like mobile devices, 

where for instance, each user's smartphone may log similar 

features such as app usage time, location data, or 

accelerometer readings, but this data is exclusive to 

individual users (Lutho Ntantiso et al., 2023). Federated 

Averaging (FedAvg) algorithm, is used for updates 

aggregation (Yang et al., 2019). Google’s Gboard and 

Apple’s predictive text systems are practical examples of 

HFL, where model training occurs locally on millions of 

devices, each contributing distinct user-specific data points. 
 

 
Fig 5 Horizontal Transfer Learning 
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 Vertical Federated Learning (VFL):  

Vertical Federated Learning also known as feature-

partitioned FL, is used in situations where clients hold 

different sets of features about the same set of users or 

samples. This often occurs in business collaborations where 

clients share customers but gather different types of data 

(Lutho Ntantiso et al., 2023). An of Vertical Federated 

Learning is a collaboration between a bank and an e-

commerce company. The bank holds users’ financial data, 

while the retailer holds purchase history. VFL aims to jointly 

train models that benefit from this complementary 

information, requiring sophisticated privacy-preserving 

techniques such as secure multi-party computation (SMPC) 

and homomorphic encryption to align and utilize overlapping 

samples without revealing raw features (Yang et al., 2019). 

 

 
Fig 6 Vertical Federated Learning 

 
 Federated Transfer Learning (FTL):  

Clients have both different sample spaces and feature 

spaces meaning their data distributions overlap neither in 

users nor in data types (Hu et al., 2024, Lutho Ntantiso et al., 

2023). This situation arises in international or cross-industry 

collaborations where data collection standards, features, and 

populations diverge widely. FTL leverages transfer learning 

techniques to enable knowledge sharing through shared latent 

representations or pre-trained models (Huang et al., 2021). 

Federated Transfer Learning implantation could involve a 

hospital in one country using FTL to enhance its model with 

insights from an unrelated institution’s data in a different 

region, despite differences in demographics (Liu et al., 2020). 

 

 
Fig 7 Federated Transfer Learning 

 

E. Threat Model 

The threat model encompasses a range of adversarial 

threats that seeks to exploit the system’s decentralised nature, 

heterogeneity of participating clients, and limited 

transparency into client-side computations. Adversaries in FL 
may be either internal, posing as legitimate users within the 

system or external, with the ability to intercept, infer, or 

manipulate communications. Given that clients maintain 

control over their local data and model training, malicious 

behaviour can easily go undetected unless sophisticated 

mitigation strategies are in place. 
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F. Adversary Capabilities: 

The adversary is modelled as a participant-level device 

that is legitimately part of the FL system but behaves 

maliciously. The adversary has full control over their local 

training model, allowing them to manipulate their training 

data, customise model update process, or injection of crafted 

malicious updates. The adversary may also act as a Sybil 

attacker, controlling multiple malicious clients to increase its 
influence during aggregation. The adversary is assumed to 

know the system architecture, including the aggregation 

algorithm, but does not have access to the internal training 

processes or data of other legitimate clients. 

 

G. Attack Goals: 

The objectives of the attacker in this model can be 

categorised into four main goals: 

 

 Integrity Violation:  

The attacker aims to degrade the accuracy, reliability, or 

fairness of the global model. This includes data and model 
poisoning attacks where the goal is to mislead the model into 

incorrect predictions, either in a general sense or for specific 

targeted classes. An attacker might cause systematic 

misclassification by injecting poisoned data samples with 

flipped labels or crafted gradients (Xie et al., 2021). 

 

 Privacy Breach:  

A primary motive of most passive attack scenarios is to 

exfoliate sensitive information from other participating 

devices detected. This can includes attacks such as gradient 

inversion, where attackers reconstruct private training data 
from shared model updates (Du et al., 2023), and membership 

inference attacks, which determine if a specific data sample 

was used in a client’s training set (Xie et al., 2024). 

 

 Availability Disruption:  

The adversary seeks to disrupts the overall learning 

process by preventing the model from converging. This is be 

achieved by submitting noisy, irrelevant, or contradictory 

updates over several rounds, thus introducing instability into 

the optimisation process. 

 

 Evasion and Stealth:  
Advanced adversaries prioritise stealth to remain 

undetected while pursuing their objectives. Clean-label 

poisoning attacks exemplify this goal by using legitimate 

labels with subtly crafted features to evade detection while 

still influencing the global model (Zhou et al., 2024). 

Backdoor attacks embed specific triggers in the model that 

activate only under rare input patterns, allowing the adversary 

to maintain the model’s performance on clean data while 

acting on attacker-defined inputs (Kasyap & Tripathy, 2024). 

 

H. Federated Learning Attacks 
The decentralised nature of the Federated Learning 

exposes the system to various types of attacks that inherently 

compromise the privacy, security, and performance of the 

model. Attacks can be carried out by an adversary who seeks 

to exploit vulnerabilities within the federated learning system. 

Discussed below are various attack types that an adversary 

can perpetuate against a federated learning systems, each with 

unique objectives and methods of execution. 

 

 Poisoning Attack 

Poisoning attack is a deliberate attempt by a malicious 

adversary to change training data or model updates to 

compromise the integrity and reliability of the global model. 

Due to the decentralised nature of the  Federated Learning 
system, poisoning attacks can be executed covertly, making 

them particularly difficult to detect and mitigate (Sagar et al., 

2023). Poisoning attacks can be classified into two types: 

DPA (Data Poisoning Attack) and MPA (Model Poisoning 

Attack) (Sagar et al., 2023). 

 

 Data Poisoning Attacks:  

Data poisoning attack involves an attacker gaining 

access to the training data of one client and manipulating or 

corrupting the data that is used to train a Federated learning 

model (Aljanabi et al., 2023). The primary motive of data 

poisoning is to infiltrate the system with malicious data to 
influence the model's performance and behaviour, resulting 

in incorrect or biased prediction (Verde, Marulli and 

Marrone, 2021). Data poisoning attacks can further be 

classified into targeted attacks and untargeted attacks (Huang 

et al., 2011). Targeted attacks occur when an adversary tries 

to influence a model's behaviour with a specific objective. 

Targeted attacks are difficult to control as the attacker has set 

a specific goal to achieve with the attack, but can have major 

and far-reaching adversarial impact on the model. Untargeted 

or random data poisoning attacks aims to alter the model’s 

dataset in order to other to reduce the model's accuracy and 
overall performance (Lyu, Yu and Yang, 2020). Data 

poisoning attacks include following attack types. 

 

 Label-Flipping:  

Label-flipping is a dirty-label attack where adversaries 

change a portion of the training data after gaining access to 

the system, but reserve the remaining portion with the intent 

to manipulate the Federated learning model (Sagar et al., 

2023). Instead of altering the actual input features, attackers 

flip or modify the labels of certain samples, causing the model 

to learn incorrect associations (Moharram et al., 2022). For 

example, in an image classification learning system, the 
adversary might change the label of a "dog" image to "cat." If 

the attacker is able to introduce more mislabelled samples, the 

model will begin misclassifying legitimate inputs, thereby 

reducing accuracy and reliability of the model. 

 

 Backdoor Poisoning:  

The motive of a backdoor attacker is to modifies a small 

portion of the original training model to embeds a trigger of a 

specific pattern to create a backdoor in other to influence the 

model to behave to the whims of the attacker. When the 

model is deployed, the trigger in the model will make a 
predetermined incorrect decision hence compromising the 

Federated learning architecture (Lyu, Yu and Yang, 2020). 

 

 Model Poisoning:  

An adversary performing model poisoning attack aims 

is to poison the local model before forwarding the model 

update to the central server for aggregation. The attacker 
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injects enough corrupted data to the model that will cause the 

model to misclassify set of predetermined input with certainty 

(Bagdasaryan et al., 2019). 

 

 Inference Attacks:  

Inference attacks are threat vector used by adversaries 

to exfiltrate sensitive information from a learning model, by 

exploiting the model’s behaviour and outputs. Inference 
attacks does not require access to the underlying training data 

but instead rely on querying the model and analysing its 

responses or updates to make inference about the data used 

for training (Chen et al., 2020). 

 

 Membership Inference Attack:  

Bad actors use membership inference attacks vectors 

determine whether a particular data sample was part of the 

training dataset. Even if the attacker cannot directly access 

the training data, they can query the model with various 

inputs and analyse the model's responses to make inferences 

about whether a specific data sample was used during training 
(Chen et al., 2020). 

 

 Attribute Inference Attack:  

An attribute inference attack involves exfiltrating 

sensitive attributes such as medical conditions, age, gender, 

etc. from the model's output, which might occur when models 

inadvertently reveal too much information about the 

underlying data (Struppek et al., 2023). The adversary queries 

the model to infer specific attributes that might be of interest 

about a client, based on the model's predictions (Zi et al., 

2021). For example, if a model is trained to predict medical 
conditions, an attacker might use the model’s output to infer 

whether a person has a particular condition. 

 

 Sybil Attacks:  

Proposed by Douceur (2002), is an attack where the 

attacker intends to controls multiple fake or duplicate clients 

with intention of gaining disproportionate influence over the 

global model aggregation process. Its originates from the 

notion of an entity masquerading as many, a concept rooted 

in distributed computing and peer-to-peer networks. Xie et al. 

(2021) and Xie et al. (2024) discuss Sybil attacks as a 
particularly destructive variant of poisoning or backdoor 

attacks, uses multiple fake identities to ehance the impact of 

malicious updates. Since FL lacks strong identity verification 

mechanisms, most especially in a cross-device architecture, 

attackers exploit this vulnerability to control a larger share of 

influence (Feng et al., 2025). 

 

 Data Reconstruction Attack:  

Data reconstruction attack exploits the inherent 

correlation between the gradients and the underlying data 

used for aggregation. By observing these gradients, a 

malicious client or external attacker can employ optimisation 
techniques to approximate the data samples that most likely 

produced the samples (Huang, Huo and Fan, 2024). Gradient 

inversion attacks such as Deep Leakage from Gradients 

(DLG) use iteration to generate inputs that, when passed 

through the model, yield gradients similar to those received. 

This approach has been shown to successfully reconstruct 

sensitive data such as medical images or text, even when the 

original data remains local to the client (Ding et al., 2024). 

 

 Free Rider Attack:   

This is where client without any relevant contribution 

towards the model training benefits from quality model 

update (Chen et al., 2024). The free rider enjoys benefits such 

as computation, energy, or bandwidth without offering any 
contribution but in return submit arbitrary updates to the 

server. Despite providing no valid input, the attacker 

continues to receive improved global model versions 

aggregated from the honest clients' updates (Chen et al., 

2024). This behaviour not only exploits the resources of 

network but may also degrade model performance and skew 

fairness metrics. Free-rider attacks are difficult to detect 

because the FL server cannot directly verify the origin or 

authenticity of local updates.  (Araki et al., 2016). 

 

 Byzantine Attacks:  

Byzantine attack occurs when one or more malicious 
clients intentionally deviate from the protocol to disrupt, 

corrupt model training or degrade system performance. 

Originally belonging to the Byzantine Generals’ 

Problem (Lamport et al., 1982). In federated learning (FL) 

Byzantine nodes may submit poisoned gradients, sign-

flipping attacks to skew model updates. Collude to create 

sybil nodes to dominate aggregation (Baruch et al., 2019) (Li 

et al., 2022). 

 

I. Taxonomy of Attacks: 

To effectively defend against Federated Learning 
threats, it is essential to categorise and analyse the different 

types of attacks that can compromise privacy, security, and 

model performance. This section discusses a taxonomy of 

attacks in federated learning systems. 

 

 Data-to-Model (D2M) Attacks:  

The D2M attacks are carried out by modifying the local 

data of all the devices that actively take part in the learning 

processes of the system. The main motive behind a D2M 

attack is that the attacker can aim at the models which are 

being learnt without the requirement of weights, or updates of 

the model ( Xie et al., 2024). Common techniques used 
includes removing or altering data labels or adding noise that 

makes the global model not to cluster. As a result, the model 

might perform very poorly and be untrustworthy. Data 

poisoning falls under this taxonomy of attack (Radford et al., 

2019). 

 

 Model-to-Model (M2M) Attacks:  

Model-to-model attacks refer to local model updates or 

weights that are intentionally misused to have an effect on the 

global model. So, these attacks can disrupt the learning 

process by causing the main server to receive incorrect 
updates. An example is the use of model poisoning and Sybil 

attacks  (Radford et al., 2019). 

 

 Model-to-Data (M2D) Attacks:  

The main goal of the M2D attack is to expose certain 

properties or fragments of the data on which the model is 

trained and perform the attacks. The interaction between 
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models and data is the main source of this kind of attack, in 

which the sensitive information is being exploited (Radford 

et al., 2018). 

 

 Composite Attacks:  

Composite attacks are quite advanced and posed by the 

attackers to target the multiple components of the FL process. 

Generally, different attack vectors would be joined together 
under composite attacks, e.g., Data-to-Model (D2M) and 

Model-to-Model (M2M) might be combined to lunch the 

attacks to achieve their goals (Radford et al., 2018). Its 

involves adding triggers of specific patterns to the local 

training data poisoning the models update which results in 

backdoors attack thus the global model learns to respond to 

certain triggers while at the same time it appears normal with 

clean data (Radford et al., 2018). 

 

 System-Level Attacks:  

These attacks are geared towards rendering the overall 

functioning of the FL system inefficient, rather than simply 
aiming at the data or the model. This group of threats consists 

of attacks such as free-rider attacks (when the adversaries 

involved just take advantage of the system without 

contributing worthfully to the training process). Direct 

changes in the model’s logic may not be performed but the 

reliability and collaborative efficiency of the model may be 

made invalid (Liu, Xu, and Wang, 2022). 

 

J. Impact of Adversarial Attack on Federated Learning 

Adversarial attacks pose significant and multifaceted 

threats to the reliability, privacy, and trustworthiness of 
federated learning (FL) systems. The decentralised nature of 

the federated learning system creates a fertile ground for 

attackers to exploit its vulnerabilities. From the review of 

related literature, the impact of these attacks spans across 

model accuracy, privacy concern, system availability, and 

system robustness. 

 

 Degradation of Model Accuracy and Utility:  

One of the most noticeable and immediate consequences 

of an attack is degradation of model accuracy and utility, 

often caused by poisoning attacks. For example, Xie et al. 

(2021) reveal that both data and model poisoning attacks can 
lead to the global model mistaking the inputs or incorporating 

certain biases. Moreover, the attackers operating the training 

data or the gradients can not only impair their model 

performance on cleanly set samples but also create inputs and 

outputs to produce what they desire (e.g., backdoors) (Yang 

et al., 2019). Besides, this makes FL systems less trustworthy 

in safety-critical areas such as healthcare, where wrong 

predictions can lead to lethal consequences. 

 

 Compromise the Core Privacy Promises:  

In addition to degrading the model’s accuracy and 
utility, adversarial attacks compromise the core privacy 

promises of FL. Ge et al. (2023) show through their work that 

the privacy of data is endangered even if data is not shared 

during model training. Attackers can reverse-engineer 

training inputs through gradient inversion or extract 

membership information from model updates. The breach of 

privacy clearly not only undermines user trust but also leads 

to the non-compliance of data protection regulations such as 

GDPR (Truong et al., 2021). 

 

 System-Level Disruptions:  

Adversarial influence exposes the system to other types 

of disruptions as well. An example of such attacks is the so-

called Sybil attack dealt with by Xie et al. (2024). It is a type 

of attack that enables a single malicious attacker to change 
the global learning update by creating various fake clients. 

This has the effect of changing the aggregation process and 

of the underlying defences that are based on the idea of 

honest-majority participation (Zhang et al., 2024). 

 

 Persistent and Undetected Corruption of the Global 

Model:   

Perhaps the most challenging of adversary attack is that 

the use of clean-label poisoning by stealthy attacker to 

circumvent the existing defences mechanism, which result in 

a long-term and unnoticed corruption of the golbal model 

(Kasyap & Tripathy, 2024).  These attacks have a long-term 
impact by embedding malicious behaviours that only 

manifest under specific conditions, making them difficult to 

detect and reverse once deployed (Benmalek, Benrekia and 

Challal, 2022). 

 

III. MITIGATION STRATEGIES 

 

Although Federated Learning (FL) offers significant 

advantage in terms of data privacy and decentralized model 

training, it can be attacked and cause the efficacy and security 

of the system to be compromised. Thus, to prevent FL 
systems from being compromised, it is crucial to employ 

suitable defence strategies that not only neutralize but also 

eliminate these threats. The identified strategies are intended 

for the identification of attacks, the preservation of data 

privacy and the assurance of the continuous operation of the 

global model. The focus of these mitigation strategy is to 

introduce a number of approaches to protect the FL 

infrastructures from a variety of possible attacks. 

 

 Data Poisoning Attacks:  

Data poisoning attacks can be mitigated by deploying 

robust aggregation algorithms, such as Krum, Trimmed 
Mean, and Median. These algorithms are commonly 

employed to resist poisoned updates by minimising the 

impact of adversaries during model aggregation (Xie et al., 

2021). These algorithms ensure that malicious updates with 

extreme values do not take control over the global model. 

Again, client behaviour auditing strategies, which monitor the 

consistency and statistical properties of local updates over 

multiple rounds, can help identify clients that frequently 

submit suspicious or harmful updates (Kasyap & Tripathy, 

2024). Data sanitisation techniques at the local level, such as 

adversary detection or label consistency checks. 
 

 Model Poisoning Attacks:   

Anomaly detection systems are crucial to detect and 

mitigate adversary actors that inject model updates malicious 

data. Anomaly detection systems calculate the similarity of 

each client's data to other participating devices and signal that 

which are quite different (Du et al., 2023). By enforcing the 
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use of differential privacy (DP) at the time of local training 

updates are regulated so no single client can change the global 

model (Zhou et al., 2024). Gradient clipping and 

normalisation methods are some more tools that can help as 

they restrict the maximum possible update and also prevent 

poisoned updates from highly contaminating aggregation. 

 

 Backdoor Attacks:  
Backdoor attacks can be mitigated by the deployment of 

server-side validation techniques that test models using 

supporting datasets containing potential triggers. By 

introducing synthetic trigger patterns during validation, 

servers can detect unusual misclassification behaviour (Xie et 

al., 2024). Injecting Gaussian noise into the model 

aggregation process diminishes the precision necessary for 

backdoor triggers to operate effectively (Kasyap and 

Tripathy, 2024). Adversarial training is another promising 

method where the model is intentionally exposed to 

intentionally crafted backdoor inputs during training to build 

robustness against such triggers (Li et al., 2023). 
 

 Membership Inference Attacks:  

Regularisation techniques such as dropout, weight 

decay, and label smoothing during model training can reduce 

overfitting, thereby minimising the model’s ability to 

remember individual data points (Liman et al., 2024). Output 

interference strategies, like confidence masking or adding 

noise to model predictions, further obscure whether a sample 

was part of the training set (Wu et al., 2024). Limiting the 

number of client updates or participation frequency can also 

decrease the amount of information exposed about client 
datasets (Ribero, Vikalo and de Veciana, 2025). 

 

 Sybil Attacks:  

Preventing Sybil attacks requires robust client 

authentication protocols, such as using federated identities or 

cryptographic certificates to verify the legitimacy of 

participating clients (Xie et al., 2024). Another approach is 

weighting client updates based on their historical 

trustworthiness, giving lower influence to newly joined or 

unknown clients until their reliability is established (Douceur, 

2002). Participation auditing, such as analysing device 

metadata, submission patterns, and consistency, can also 
detect if multiple identities originate from a single attacker 

(Zhang et al., 2024). 

 

 Free-Rider Attacks:  

To mitigates free-rider attacks, proof-of-contribution 

mechanisms can be implemented which requiring 

participating devices to demonstrate meaningful local 

training work, such as solving computational puzzles or 

achieving acceptable model improvements, before receiving 

global updates (Wang et al., 2024). Randomised client 

sampling and periodic validation against trusted additional 
datasets can detect clients whose updates are stale or 

randomly generated (Xie et al., 2021). 

 

 Clean-Label Poisoning Attacks:  

Clean-label attacks can be identified by anomaly 

detection systems, which identifies samples that, while 

correctly labelled, behave unusually in the latent feature 

space compared to clean data (Yin et al. 2024).  The next step 

is to apply transfer of robust training to check if local updates 

do not jeopardize the performance of downstream tasks and 

thus detect poisoned representations well in advance. Another 

way to secure the models is to use models with soft labels that 

are generated by models whose performance has been 

checked and trained using this data before. Defence through 

distillation can result in the model being less sensitive to 
slight adversarial perturbations and hence making the system 

better protected (Gong et al. 2020). 

 

 Applications of Federated Learning 

The decentralized nature of federated system has made 

it possible for its applications sectors such as healthcare, 

finance and IoT systems where privacy and security are 

critical. FL has empowered corporations to generate powerful 

machine learning models that are incapable of breaching user 

privacy or any regulation. 

 

 Healthcare: Federated Learning enable healthcare 
institutions train a machine learning model without 

sharing patient-related data thus, achieving the goal of 

securing the privacy of and not transferring user data. It is 

possible for hospitals to work together and use AI to 

identify diseases like cancer, diabetes, and heart 

conditions through analysing medical pictures or patient 

data without any personal data transfer (Brisimi et al., 

2018). 

 

 Finance: By using Federated Learning systems, banks 

and financial institutions can find and stop illegal 
activities in the financial system through the detection of 

fraud such as suspicious transaction behaviors, and 

without the necessity to keep all personal financial 

information in one place. Each bank can teach its models 

with transaction data and at the end only distribute the 

updates that were learned instead of the whole data (Yang 

et al. 2019). 

 

 IoT (Internet of Things):Federated Learning (FL) can 

empower IoT devices in their training of local models by 

utilizing the decentralized data from the sensors, and also 
by customizing user interactions without the need to 

exchange sensitive data with the central server. This can 

be validated with an opportunity in which a device at 

home, such as a thermostat or voice assistant, can use FL 

to enable the user to have better experiences by feeding 

on the data from individual usages directly without 

disposing the personal information to the cloud. A smart 

thermostat is one of the cases where it can record the 

constant indoor temperature, hence, control itself by 

setting the most preferred temperature without forwarding 

any user's data to the cloud which is sensitive (Aggarwal, 

2024). 
 

IV. METHODOLOGY 

 

A. Study Design 

The study utilized a qualitative and exploratory 

methodology to explore attack vectors and mitigation 

strategies existing in Federated Learning (FL) systems. We 
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kicked off the studies by reviewing related literature, we 

extracted knowledge from peer-reviewed journals, 

conference, and benchmark technical reports to be able to 

know and also group the different types of adversarial threats 

in Federated Learning. After the classification, we designed 

an attack model framework which is built on standardized 

threat modeling practices and includes threat assumptions, 

attack goals, and attacker capabilities. A threat matrix is 
established to examine the impact and probability of each 

attack type in a systematic way, thus the vulnerabilities are 

identified most effectively. 

 

The methodology also includes a comparative analysis 

of existing defence mechanisms such as secure aggregation, 

anomaly detection, robust aggregation functions (e.g., Krum, 

Trimmed Mean), and Trusted Execution Environments 

(TEEs). To evaluate these mechanisms, we analyse their 

theoretical security guarantees, computational efficiency, and 

effectiveness under different attack scenarios as reported in 

empirical studies. Visual models, including workflow 
diagrams and attack taxonomies, are generated using tools 

like Mermaid.js and LaTeX to illustrate the Federated 

Learning process and threat surfaces. 

 

Furthermore, we conduct a simplified mathematical 

analysis using federated averaging to simulate local model 

updates and aggregation, demonstrating the potential 

manipulation by malicious clients and how weighted or 

simple averaging affects the global model. The findings are 

synthesized to highlight existing research gaps and to 

formulate recommendations. 
 

B. Literature Search and Selection Procedures 

In order to carry out a thorough study of the present 

issues concerning the security in Federated Learning (FL), a 

structured literature search strategy was deployed. The main 

objective was to locate academic papers that cover the topic 

of attacks and defense methods in the frameworks of FL, but 

with a preference for empirical, theoretical, and 

implementation-based investigations. We accessed 

prominent academic databases like IEEE Xplore, 

SpringerLink, ScienceDirect, ACM Digital Library, and 

arXiv. In addition, Google Scholar was also used as an 
augmented search tool for collecting unpublished information 

sources (grey literature) and the very newest papers. It all 

started with running a search through the databases using a 

list of keywords and logical operators: "Federated Learning," 

"FL attacks," "model poisoning," "Byzantine attacks," 

"gradient inversion," "Sybil attacks," "FL security," "secure 

aggregation," and "trusted execution environments." Were 

the document types limited to include only journal articles, 

conference proceedings, and preprints between 2018 and 

2025. Only the documents that passed the checks for 

acceptance were considered valid for the search. 

 
As shown in the PRISMA-style flowchart, we found an 

initial pool of 250 records. After the removal of 40 repeated 

articles, 210 unique articles were left. Via a screening process 

which comprised of the titles and abstracts to assess 

relevance, 100 records were eliminated as either irrelevant or 

redundant. The remaining 110 full-text articles were 

examined for eligibility based on, for example, the study 

focus, clear methodology, and relevance to federated learning 

security. Right from these, 40 articles were found to be not 

suitable for the inclusion criteria and thus, 65 articles were the 

ones to be included in the final synthesis. 

 
 Inclusion and Exclusion Criteria 

 

 Inclusion Criteria were: 

 

 Peer-reviewed journal and conference papers. 

 Publications between 2018–2025. 

 Studies focusing on attacks and countermeasures in FL 

systems. 

 

 Exclusion Criteria were: 

 
 Non-English publications. 

 Articles lacking technical or empirical evidence. 

 Duplicate records and irrelevant studies based on 

title/abstract review. 

 

In addition, a snowballing method was used to review 

the bibliographies of the key articles to locate additional 

studies that are relevant to the review. The studies that were 

chosen were then categorized to the four main themes of 

attacks, defenses, theories, and practical applications. 

Consequently, this systematic search of the literature 

imparted a comprehensive understanding of the security of 
Federated Learning and paved the way for research gaps, 

attack taxonomies, and defense evaluations which are 

benefits of this study. 

https://doi.org/10.38124/ijisrt/25may617
http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025                                 International Journal of Innovative Science and Research Technology                                          

ISSN No:-2456-2165                                                                                                             https://doi.org/10.38124/ijisrt/25may617 

 

IJISRT25MAY617                                                              www.ijisrt.com                                3288 

 
Fig 8 Literature Search and Selection Procedures 

 

V. FINDINGS 
 

The analysis of recent literature on federated learning 

(FL) reveals that while FL offers substantial benefits in 

preserving data privacy and enabling distributed model 

training, it is significantly vulnerable to a diverse range of 

adversarial attacks. The key findings of this study are centred 

on the types of attacks, their operational mechanisms, and the 

corresponding gaps in existing defence strategies. 

 

 We observed that poisoning attacks both data and model-

based represent the most pervasive threats in FL 
environments. These attacks exploit the lack of direct 

oversight in local training by allowing malicious 
participating clients to inject corrupted data or manipulate 

gradient updates. Model poisoning, in particular, can be 

subtle yet highly disastrous, leading to backdoor models 

that maintain overall performance while misclassifying 

inputs containing specific triggers. 

 The study finds that privacy-centric attacks, such as 

gradient inversion and membership inference, present a 

serious challenge to FL’s core privacy promise. Even 

when raw data is never shared, gradient updates and 

intermediate feature maps can leak sensitive information 

about the training data. Du et al. (2023) demonstrated that 
attackers could reconstruct private inputs from shared 
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gradients, especially in the absence of privacy-preserving 

mechanisms like differential privacy. 

 The stealth-based attacks such as clean-label poisoning 

and free-rider behaviours emerge as particularly difficult 

to detect due to their ability to blend seamlessly with 

normal client operations. These attacks often circumvent 

standard anomaly detection measures by maintaining 

consistency in labels and statistical properties while still 
compromising the integrity or fairness of the global 

model. Moreover, the study highlights the systemic 

vulnerability to Sybil attacks, where a single adversary 

controls multiple clients. This amplifies malicious 

influence in model aggregation, especially in open FL 

systems where client authentication is minimal or absent. 

 The review finds that existing defence mechanisms, while 

effective in isolation, are often insufficient when facing 

composite or multi-phase attacks. There is a clear need for 

integrated defence frameworks that combine robust 

aggregation, privacy-preserving updates, behavioural 

monitoring, and adaptive security protocols to protect 
against a broad array of adversarial strategies. 

 

These findings highlight the importance of rethinking 

federated learning architecture and trust models, moving 

toward a more secure-by-design approach that anticipates 

both active and passive adversarial behaviours. 

 

VI. DISCUSSION 

 

The findings of this study emphasis a critical issue in 

federated learning (FL): while FL is designed to enhance 
privacy and decentralization, these very features also broaden 

its vulnerability landscape. This duality has significant 

implications for how FL systems are conceptualized, 

deployed, and secured, particularly in sensitive areas such as 

healthcare, finance, and IoT systems. 

 

The prevalence of poisoning attacks, as documented in 

the literature study, suggests that FL's dependence on 

unverified local computations is still a serious security 

vulnerability. FL assigns trust to distributed clients, many of 

whom may be malicious or compromised, in contrast to 

centralised solutions where data pipelines can be managed 
and observed. The insufficiency of traditional validation or 

aggregation approaches, which commonly overlook 

deviously written updates, is further exposed by the stealth 

and sophistication of model poisoning and backdoor attacks. 

This requires incorporating more sophisticated anomaly 

detection systems that take into account the contextual 

behaviour of updates over time as well as their statistical 

distribution. 

 

The results further refute the generally accepted but 

inaccurate view that FL automatically ensures data privacy.  
Attacks that use model transparency to extract sensitive data, 

such as gradient inversion and membership inference, 

demonstrate that issues with privacy exist even in cases where 

raw data is never transmitted.  This emphasises the necessity 

of implementing more robust formal privacy guarantees, like 

secure aggregation or differential privacy, as essential parts 

of FL systems rather than as add-ons. 

The report also highlights the challenge to defend 

against composite or multifaceted attacks.  For example, 

Sybil attacks and clean-label poisoning combine to create a 

powerful threat that threatens model availability, fairness, and 

integrity concurrently.  The way these threats are now 

addressed in the defence system frequently results in brittle 

systems that are simple for adaptive adversaries to get around.  

This indicates that comprehensive, layered security systems 
that incorporate behavioural, statistical, and cryptographic 

protections are essential. 

 

Equally important is the socio-technical consideration 

of FL deployment. The assumption of honest clients and an 

honest-but-curious server may not hold in real-world 

implementations, particularly in open or large-scale 

federations. Therefore, revisiting FL's trust model potentially 

by introducing reputation systems, authenticated 

participation, and trust score adjustments could play a crucial 

role in mitigating long-term systemic risks. 

 

VII. RECOMMENDATIONS 

 

Based on the comprehensive analysis of  existing 

literature on federated learning (FL) attacks and the 

evaluation of current defence mechanisms, we make the 

following recommendations to enhance the security and 

resilience of future FL systems: 

 

 Integration of Multi-layered Defence Mechanisms: 

Single-point defence system such as robust aggregation or 

differential privacy are insufficient against sophisticated 
attacks. It is recommended that federated learning 

frameworks incorporate multi-layered security 

mechanisms that combine cryptographic protections, 

anomaly detection, behavioural auditing, and adaptive 

trust management. Integrating these layers can better 

defend against composite threats like model poisoning 

combined with Sybil attacks. 

 Mandatory Privacy-Preserving Techniques: Privacy-

preserving systems like differential privacy, secure 

aggregation, and homomorphic encryption need to be not 

only considered as optional but rather deeply integrated 

into FL system architectures for guarantees against 
gradient inversion and membership inference threats, as 

illustrated by Du et al. (2023). 

 Dynamic Client Trust and Reputation Systems: To 

mitigate Sybil attacks and free-rider behaviours, it is 

recommended to implement client reputation scoring and 

trust evaluation mechanisms. Clients should earn 

influence in model aggregation based on consistent, 

verified, and honest participation rather than through 

static system parameters. 

 Development of Standardized Testing and Validation 

Protocols:Standard adversarial testing protocols that are 
uniform should be formed to periodically assess the 

durability of federated models that are secured against 

recognized attack types, such as the poisoning, backdoor, 

and clean-label attacks. This proactive approach can 

identify vulnerabilities before real-world exploitation. 

 Promotion of Explainability and Transparency in FL: 

Enhancing the interpretability of client contributions and 
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model behaviour through explainable AI (XAI) 

techniques can improve anomaly detection and foster 

greater trust in federated systems. 

 Investment in Lightweight Security Solutions: Given 

the resource constraints of many federated clients (e.g., 

mobile devices, IoT), future research should prioritize the 

development of computationally efficient security 

mechanisms that do not compromise model performance 
or training scalability. 

 Re-examination of FL Deployment Models: 

Practitioners must revisit and strengthen assumptions 

about trust, client authentication, and participation 

policies before deploying FL systems, especially in open 

or heterogeneous environments where adversarial 

participation is likely. 

 

VIII. CONCLUSION 

 

This study critically examined the diverse spectrum of 

attacks in federated learning (FL) and its corresponding 
defence mechanisms, drawing insights from recent scholarly 

works. The review of related literature revealed that FL, while 

promoting privacy and decentralisation, introduces many 

different vulnerabilities to poisoning, inference, and stealth-

based attacks. These threats exploit the lack of centralised 

oversight and the openness of communication protocols, 

which compromise both the integrity and confidentiality of 

model training. Key findings emphasised the limitations of 

existing defence mechanisms, which are often effective in 

isolation but insufficient against composite or adaptive 

attacks. The study further highlighted the need for integrated, 
multi-layered defence frameworks that combine privacy-

preserving techniques, robust aggregation, and behavioural 

validation to secure FL deployments. Moreover, the 

discussion emphasis the necessity of revising FL’s trust 

assumptions and incorporating dynamic reputation systems to 

strengthen its resilience. To conclude, securing federated 

learning is not a matter of isolated technical patches but 

requires a holistic, secure-by-design approach that anticipates 

adversarial innovation and prioritises long-term 

trustworthiness. 
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