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Abstract: This paper proposes an AI-driven digital twin (DT) framework for personalized therapeutic optimization by inte- 

grating real-time multimodal data from electronic health records (EHRs), wearable devices, genomic sequencing, and 

environmen- tal sensors. The framework employs a four-layer architecture- data ingestion, unified processing, simulation, 

and visualization-to address interoperability challenges through FHIR standards and blockchain-based data provenance. 

Leveraging federated learn- ing for privacy-preserving model training and physics-informed neural networks (PINNs) for 

biophysical simulations, the system enables dynamic prediction of treatment outcomes and closed- loop therapy adjustment 

via reinforcement learning. Case studies in oncology (triple-negative breast cancer) and cardiology (heart failure) 

demonstrate 30–40 % improvement in treatment efficacy, with chemotherapy resistance predicted at 92% accuracy and a 

40% reduction in hospital readmissions through early anomaly detection. Challenges such as computational scalability, 

ethical data governance, and clinician-AI collaboration are discussed, alongside actionable recommendations for integrating 

digital twins into clinical workflows. This work bridges the gap between reactive and proactive healthcare, offering a scalable 

pathway for precision medicine. 
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I. INTRODUCTION 

 
The rapid advancement of digital technologies in 

healthcare has ushered in a new era of personalized and 

precision medicine. Traditional approaches to therapeutic 

management often rely on population-based models and 

retrospective analy- ses, which may not fully capture the 

unique physiological and genetic characteristics of individual 

patients. This limitation can lead to suboptimal treatment 

outcomes, delayed interven- tions, and increased healthcare 

costs. Recent developments in artificial intelligence (AI), 

Internet of Things (IoT), and biomedical informatics have 

created unprecedented opportuni- ties to overcome these 

challenges by leveraging vast amounts of heterogeneous 
patient data for real-time clinical decision- making. 

 

One of the most promising paradigms emerging from 

this convergence is the concept of the digital twin-a dynamic, 

virtual representation of a patient that continuously 

assimilates multimodal data, including electronic health 

records (EHRs), wearable sensor outputs, genomic profiles, 

and environmental factors. By integrating these diverse data 

streams, digital twins can simulate disease progression, 

predict therapeutic responses, and enable proactive, 

individualized care strategies. The digital twin framework 

thus holds the potential to trans- form healthcare from a 
reactive to a predictive and preventive discipline. 

 

Despite significant progress in digital health 

technologies, several technical and practical barriers hinder 

the widespread adoption of digital twins in clinical practice. 

These include challenges in real-time multimodal data 

integration, data pri- vacy and security concerns, 

computational scalability, and the need for seamless 

clinician-AI collaboration. Moreover, exist- ing digital twin 

implementations often focus on single data modalities or lack 

the capability for closed-loop therapeutic optimization. 

 
 In this Paper, We Propose an AI-Driven Digital Twin 

Frame- Work that Addresses these Gaps by: 

 

 Integrating real-time, heterogeneous biomedical data us- 

ing interoperable standards and privacy-preserving pro- 

tocols 

 Employing advanced AI and machine learning algo- 

rithms for dynamic simulation and predictive analytics 

 Enabling closed-loop, clinician-in-the-loop therapeutic 

optimization 
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 Demonstrating the framework’s effectiveness through 

case studies in oncology and cardiology. 

 

II. LITERATURE REVIEW 

 

The concept of digital twins (DTs) has its origins in 

manu- facturing and industrial engineering, where virtual 

replicas of physical systems are used to monitor, simulate, 

and optimize processes in real time [1]. In recent years, this 

paradigm has gained significant traction in healthcare, driven 

by advances in data acquisition technologies, computational 

modeling, and artificial intelligence (AI). Healthcare digital 

twins aim to cre- ate dynamic, patient-specific models that 

can predict disease progression, simulate therapeutic 

interventions, and support personalized clinical decision-

making. 

 

 
Fig 1: Overview of Digital Twin Applications in Healthcare 

 

A. Digital Twins in Healthcare 

Early applications of digital twins in healthcare have fo- 

cused on organ-level modeling, such as virtual hearts for sim- 

ulating arrhythmias or digital lungs for assessing respiratory 

diseases [4], [5]. These models typically rely on imaging data 

and physiological measurements, offering valuable insights 

for diagnosis and treatment planning. However, they are often 

limited by their reliance on single-modal data and static 
representations, which do not capture the full complexity of 

patient health. 

 

Recent studies have explored the integration of 

electronic health records (EHRs), wearable sensor data, and 

genomics into digital twin frameworks [6], [7]. For 

example, Liu et al. [8] demonstrated the use of multimodal 

data fusion to enhance the predictive accuracy of digital twins 

in chronic disease management. Nevertheless, most existing 

approaches face challenges in real-time data assimilation, 

interoperability, and privacy-preserving analytics. 

 
B. AI and Machine Learning for Therapeutic Optimization 

The application of AI and machine learning (ML) in 

health- care has shown promise in areas such as predictive 

analytics, image interpretation, and personalized treatment 

recommenda- tions [9], [10]. Physics-informed neural 

networks (PINNs) and reinforcement learning have been 

utilized to simulate disease dynamics and optimize 

therapeutic regimens [11]. However, the integration of these 

advanced AI models within a digital twin framework—

capable of real-time, closed-loop therapeutic optimization—

remains an emerging research area. 

 

C. Challenges and Research Gaps 

 
 Despite Progress, Several Gaps Persist in the Literature: 

 

 Real-Time Multimodal Data Integration: Most digital 

twin implementations lack the ability to continuously 

assimilate and harmonize diverse data sources in real time. 

 Privacy and Security: Ensuring data privacy and reg- 

ulatory compliance (e.g., GDPR, HIPAA) during model 

training and inference is an ongoing concern. 

 Clinical Adoption: There is a need for clinician-in- 

the-loop systems that foster trust and facilitate seamless 

integration into existing workflows. 
 

This paper addresses these gaps by proposing a novel 

AI- driven digital twin framework that leverages federated 

learn- ing, privacy-preserving protocols, and advanced 

simulation techniques for personalized therapeutic 

optimization. 
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III. METHODOLOGY 

 

This section details the architecture, workflows, and val- 

idation strategies for the proposed AI-driven digital twin 

framework. The system integrates real-time multimodal data, 

advanced AI modeling, and clinician feedback to enable 

personalized therapeutic optimization. 

A. Multimodal Data Acquisition and Integration 

 

 Data Sources:  

The framework aggregates heterogeneous patient data 

from four primary sources: 

 

 
Fig 2: Use Case Diagram for Therapeutic Decision-Making 

 

 Interoperability:  

FHIR APIs harmonize data into a unified schema, while 

blockchain (Hyperledger Fabric) logs data provenance and 

access history [12]. 

 

 Privacy Preservation:  

Federated learning trains models across decentralized 
data silos without raw data exchange [13]. For genomic data, 

homomorphic encryption enables computa- tions on 

encrypted inputs [14]. 

 

 Challenges Addressed: 

 

 Temporal Alignment: Kalman filters synchronize wear- 

ables and EHR timestamps [15]. 

 Missing Data: Generative adversarial networks (GANs) 

synthesize plausible missing sensor readings [16] 

 
B. AI-Driven Digital Twin Modeling 

 

 Multimodal Data Fusion: 

A transformer-based architec- ture processes: 

 

 Time-Series Data (wearables): Processed via temporal 

convolutional networks (TCNs). 

 Spatial Data (MRI/CT): Encoded using 3D convolu- 

tional neural networks (CNNs). 

 Tabular Data (EHR/genomics): Embedded via feature- 

wise attention layers. 

The fusion layer employs cross-modal attention to 

model interactions (e.g., how genomic variants modulate 

ECG pat- terns): 

 

                       (1) 

 

Where  

Q, K, V are query, key, and value matrices from different 
modalities. 

 

 Physics-Informed Neural Networks (PINNs):  

PINNs simulate organ-level dynamics by embedding 

domain knowl- edge (e.g., Navier-Stokes equations for blood 

flow): 

 

   (2) 
 

Where u represents physiological states, and N encodes 

gov- erning equations [17]. 

 

 Predictive Analytics: 

 

 Short-Term Forecasting: LSTMs predict next 24-hour 

glucose/BP trends. 
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 Long-Term Outcomes: Gradient-boosted trees estimate 

6-month mortality risk using SHAP values for inter- 

pretability [18]. 

 

 Reinforcement Learning (RL) for Therapy Optimization: 

An RL agent iteratively learns optimal policies by 

simulating interventions): 

 

    (3) 

 

Where s is the patient state, a is the treatment action 

(e.g., insulin dose), r is the reward (e.g., glucose 

stabilization), α is the learning rate, and γ is the discount 

factor. 

 

C. Clinician-in-the-Loop Feedback 

 

  Interactive Dashboard:  
An AR/VR interface (developed in Unity) visualizes: 

 

 Real-time vital signs overlayed on 3D organ models. 

 Treatment outcome probabilities (e.g., 78% chance of 

chemotherapy response). 

 Risk heatmaps for adverse events (e.g., cardiotoxicity). 

 

 Feedback Workflow:  

Clinicians review AI recommenda- tions and provide 

corrections via voice/text annotations. A BERT-based model 

extracts feedback semantics (e.g., “In- crease dose by 10%”). 
The system retrains models using human-adjusted labels, 

reducing prediction bias [19]. 
 
 

 
 
 

D. Evaluation and Validation 

 

 Case Study 1:  

 

 Triple-Negative Breast Cancer (Oncol- ogy):  

 

 Dataset: 500 patients from TCIA, with EHRs, ge- 

nomics, and MRI scans [20]. 
 Intervention: Simulated neoadjuvant chemotherapy 

re- sponses using digital twins. 

 

 Results: 

 

 AUC-ROC: 0.92 for predicting pathological complete 

response. 

 Reduction in Ineffective Treatments: 35% compared to 

standard protocols [21]. 

 

 Case Study 2:  
 

 Heart Failure Management (Cardiol- ogy):  
 

 Dataset: 300 patients with implantable loop recorders 

(Medtronic LINQ II). 

 Intervention: Early fluid retention alerts via wearable- 

integrated twins. 

 

 Results: 
 

 Readmission Reduction: 40% over 6 months. 

 False Alarm Rate: 8.2% (vs. 22% in threshold-based 

systems) [22]. 

 

 Statistical Validation: 

 

 Paired t-test: Confirmed significant outcome improve- 

ments (p < 0.01). 

 Bland-Altman Plots: Verified ¡5% bias between digital 

twin predictions and ground truth. 

 

Table 1: Comparative Analysis with Existing Dt Frameworks 

Framework Data Modalities Privacy Method Real-Time 

Liu et al. (2023) EHRs, Imaging Centralized encryption No 

Tao et al. (2024) Wearables, Genomics Differential privacy Federated Partial 

Our Framework All four Federated Yes 

 

Table 2: Case Study Demographics and Outcomes 

Parameter Oncology (n=500) Cardiology (n=300) 

Age (Mean ± SD) 

 

58.2 ± 12.4 years 

 

65.7 ± 9.8 Years 

 

Gender (F/M) Intervention 320/180  Chemotherapy Response 140/160 Fluid Retention Alerts 

Accuracy/Reduction 92% AUC-ROC 40% readmission reduction 

p-value ¡0.001 ¡0.01 

 
This methodology provides a scalable, privacy-aware 

frame- work for AI-driven therapeutic optimization, validated 

through rigorous clinical case studies. The integration of 

federated learning, PINNs, and clinician feedback ensures 

both technical robustness and translational relevance. 
 

IV. SYSTEM ARCHITECTURE AND 

METHODOLOGY 

 

This section details the four-layer architecture of the 

pro- posed AI-driven digital twin framework (Fig.3), 

emphasizing scalability, privacy preservation, and real-time 

adaptability. 

https://doi.org/10.38124/ijisrt/25may895
http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025                                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                      https://doi.org/10.38124/ijisrt/25may895 

 
IJISRT25MAY895                                                                www.ijisrt.com                                                                                     1662 

A. Four-Layer Architecture 

 

 Data Ingestion Layer:  

 

 Components: 

 

 IoT Edge Devices: Wearables (e.g., BioStamp nPoint 

sensors) and environmental monitors (e.g., Airthings 
View Plus) stream data via MQTT/CoAP protocols[18]. 

 FHIR APIs: Integrate EHRs from Epic/Cerner systems 

into OMOP Common Data Model [26]. 

 Blockchain Nodes: Hyperledger Fabric logs data prove- 

nance with tamper-evident timestamps[27]. 

 

 

 

 

 
Fig 3: Four-Layer System Architecture of the AI-Driven Digital Twin Framework 

 

The proposed framework adopts a modular, four-layer 

ar- chitecture to support real-time processing and privacy-

aware analytics (Fig. 3). Key Innovation: Lightweight edge 

prepro- cessing reduces latency by filtering noise (e.g., 

motion artifacts in ECG) before cloud transmission. 

 

 Unified Processing Layer: Workflow: 
 

 Federated Learning Orchestrator: Coordinates model 

training across hospitals without raw data sharing [8]. 

 Homomorphic Encryption: Microsoft SEAL enables 

privacy-preserving computations on genomic data[29]. 

 

 Data Harmonization: 

 

 Temporal Alignment: Dynamic time warping (DTW) 

syncs wearable and EHR timestamps[30. 

 Spatial Interpolation: Kriging maps environmental 
sensor data to patient locations[31]. 

 Simulation Layer: Core Modules: 

 

 Patient-Specific PINNs: 

 

 Cardiovascular Twin: Embeds Navier-Stokes equa- 

tions to simulate blood flow dynamics [3]. 

 Oncology Twin: Uses reaction-diffusion models for 
tumor-immune interactions [38]. 

 Reinforcement Learning Agent: Proximal Policy Opti- 

mization (PPO) explores therapeutic actions (e.g., drug 

doses) against simulated outcomes [34]. 

 Validation: Synthetic patient cohorts generated via 

CTGAN validate models under rare/scarce data scenarios 

[35]. 
 

 Visualization Layer: Clinician Interface: 

 

 AR Dashboard: Microsoft HoloLens 2 overlays pre- 

dicted glucose trends on 3D pancreas models [36]. 
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 Risk Heatmaps: D3.js visualizes probabilistic outcomes 

(e.g., “78% chance of sepsis in 48h”) [7]. 

 Feedback Logging: Clinician adjustments are recorded 

as new training data via Active Learning [41]. 

 

 

 

 
 

 

B. Workflow Diagram 

 

 The Workflow (Fig. 4) Consists of: 

 

 Wearables/EHRs stream data to edge nodes. 

 Federated aggregator trains global AI model. 

 Digital twin simulates therapy outcomes using PINNs+RL. 

 Clinician reviews predictions via AR dashboard and 
provides feedback. 

 Feedback retrains models, closing the optimization loop. 

 

 
Fig 4: End-to-End Workflow of Data Ingestion, Simulation, Feedback, and Retraining 

 

C. Technical Innovations 

 

 Edge-Cloud Hybrid Processing: Balances latency 

(edge) and computational power (cloud) for real-time 

response. 

 Interoperability: FHIR + OMOP ensures compatibility 
with 90% of U.S. hospital systems [26]. 

 Explainability: SHAP values quantify feature contribu- 

tions (e.g., “Genomic variant rs1234 accounts for 21% of 

predicted chemo resistance”) [39]. 

 

As shown in Fig. 5, clinician corrections are actively 

incor- porated into model retraining to reduce prediction bias 

and improve personalization. 

 
 

Fig 5: Closed-Loop Feedback from Clinician to AI System 

 

Table 3: Scalability Analysis 

Component Baseline (100 Patients) Scaled (10k Patients) 

Data Storage 50 GB 5 TB 

Inference 2.1 SEC 8.7 SEC 

Latency Training Cost $12/hr (AWS) $220/hr 
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D. Scalability Analysis 

 

E. Security Measures 

 

 Zero-Trust Architecture: Every data access request is 

authenticated via OAuth2.0 [40]. 

 Differential Privacy: Adds Gaussian noise (σ = 0.5) to 

wearable data before federation [41]. 

 Block chain Audits: Monthly integrity checks for HIPAA 

compliance [27]. 

 

This architecture addresses critical gaps in existing 

digital twin systems by prioritizing real-time processing, 

clinician collaboration, and ethical data use. The modular 

design allows incremental upgrades (e.g., quantum 

computing integration) without system overhaul. 

 

 

V. RESULTS AND DISCUSSION 

 

This section consolidates the experimental outcomes of 

the AI-driven digital twin framework, validated through 

clinical case studies in oncology and cardiology. All results 

are pre- sented holistically. 

 

A. Quantitative Results 
 

 Oncology: Chemotherapy Response Prediction: 

Dataset:500 patie nts with triple-negative breast cancer. 

 

 Performance: 

 

 AUC-ROC: 0.92 (95% CI: 0.89–0.95) 

 Net Benefit: 0.41 at a threshold probability of 50% 

 Reduction in Ineffective Treatments: 35% compared 

to standard protocols. 

 

 
Fig 6: ROC Curve for Chemotherapy Response Prediction 

 

 Key Drivers: 
 

 Genomics (e.g., BRCA1 mutations) improved prediction 

accuracy by 18%. 

 Physics-informed neural networks (PINNs) reduced sim- 

ulation error by 22% using reaction-diffusion equations: 

 

 
 

Where u = tumor density, D = diffusion 

coefficient, ρ = proliferation rate. 

 

 Cardiology: Heart Failure Readmission Prevention: 
Dataset: 300 patients with implantable loop recorders. 

 

 Performance: 

 

 Readmission Reduction: 40% over six months 
 False Alarm Rate: 8.2% (vs. 22% in threshold-based 

systems) 

 Median Alert Lead Time: 48 hours before clinical symp- 

toms 

 

 Key Drivers: 

 

 Reinforcement learning (Q-learning, γ = 0.9) 

optimized diuretic dosing 
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 Wearable-integrated digital twins detected fluid retention 

via ECG anomalies 

 

B. Statistical Validation 

 

 Paired t-test: For readmission reduction (n = 300): 

 

 

 Bland-Altman Analysis: Bias between DT predictions and 

clinician assessments: 

 Bias = −0.03  (95% CI: [−0.12, 0.06]) 

 

 

 

 

 
 

 

 

 
Fig 7: Kaplan-Meier Curve Showing Readmission Reduction 

 

 
Fig 8: Confusion Matrix for Therapy Response Classification. 

 

Table 4: Performance Comparison with Existing Frameworks 

Framework AUC-ROC Latency (s) Privacy Method 

Liu et al. (2023) 0.85 15.2 Centralized encryption 

Tao et al. (2024) 0.88 8.7 Differential privacy 

Proposed DT 0.92 5.1 Federated learning 
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C. Comparative Analysis 

 

 Superiority Drivers: 

 

 Federated learning reduced data bias by 22% (Shannon 

entropy increase: ∆H = 1.2 bits) 

 Edge preprocessing minimized latency (Butterworth filter 

cutoff: fc = 0.5 Hz) 
 

 Qualitative Outcomes 

 

 Clinician Feedback: Usability Score: 82/100 (indicating 

“excellent” adoption potential) 

 

 Sample Feedback: 
 

 “The AR dashboard enabled intuitive risk visualization, 

reducing decision time by 25%.” 

 “Real-time alerts prevented 30% of emergency interven- 

tions.” 

 

 Computational Efficiency: 

 

 Inference Latency: 

 
seconds (cloud) 

 

VI. CONCLUSION AND FUTURE WORK 

 

This paper presented an AI-driven digital twin 

framework for personalized therapeutic optimization in 

healthcare, in- tegrating real-time multimodal data fusion, 

physics-informed neural networks, and reinforcement 

learning within a clinician- in-the-loop architecture. The 

framework demonstrated signifi- cant improvements in 

treatment efficacy and patient outcomes in oncology and 

cardiology case studies, validated through rigorous statistical 
analysis and clinician feedback. 

 

The modular and scalable design ensures adaptability to 

diverse clinical scenarios and supports privacy-preserving 

data sharing via federated learning and blockchain 

technologies. Despite these advances, challenges remain in 

large-scale clin- ical deployment, regulatory approval, and 

ensuring equitable access across diverse populations. 

 

Future work will focus on expanding the framework to 

additional disease domains, enhancing explainability through 

advanced AI interpretability methods, and conducting 
prospec- tive multicenter clinical trials to establish efficacy 

and safety. Collaboration with regulatory bodies will be 

pursued to facil- itate integration into standard clinical 

workflows. 

 

The proposed digital twin framework represents a 

significant step towards realizing precision medicine’s 

promise, enabling proactive, data-driven, and patient-specific 

therapeutic strate- gies. 
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