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Abstract: Quantum tunnelling becomes critical in nanoelectronic devices as dimensions approach or fall below the electron 

mean free path, wherein the classical transport models are no longer sufficient to describe carrier behavior. Accordingly, 

transmission of electrons across barriers is analyzed in nanodiodes within this paper using three main approaches: the 

Schrödinger Equation Method, the Wentzel-Kramers-Brillouin (WKB) approximation, and the Transfer Matrix Method. 

These methods have been applied to various tunneling situations involving barriers of different height and width, as well as 

semiconductor material interfaces representative of state-of-the-art device architectures in capturing the wavelike nature of 

electron transport typical at nanometric scales. 

 

A comparison is carried out in regard to the accuracy, efficiency of computation, and physical insights gained through 

each approach. Strengths and weaknesses of the above-mentioned techniques will be considered in view a variety of barrier 

profiles and device structures. Calculations based on self-consistent potentials in Si and GaAs hetero-structures exhibit 

strong exponential behavior of the tunneling current and barrier parameters. Consistency between methods appears only 

under the following special conditions of barrier variation. 

 

These results are discussed in relation to the emerging importance of a new class of tunneling-based devices: MIMs, 

RTDs, and TFETs, all promising for next-generation electronic and optoelectronic systems. These findings provide a 

conceptual and practical basis for the understanding and designing of nanoscale devices where tunneling is a dominant 

transport mechanism, adding an important comprehensive perspective to quantum transport modeling in nanoelectronics. 
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I. INTRODUCTION 

 

The development of today's electronics has been led 

very strongly by the relentless scaling down of devices based 

on the expectations of Moore's Law. With the device 

transistor size scaling down to the nanometer scale, the 

physical basis of current transport has gradually moved away 
from classical drift diffusion to quantum-mechanical wave 

phenomena. Such effects as quantum tunneling, interference 

of the wave function, and quantum confinement were long 

deemed insignificant. Yet today they can profoundly 

influence the behavior and performance of devices at the 

nanoscale. 

 

Among the new phenomena that emerged based on the 

quantum world, quantum tunneling has become one of the 

most remarkable and useful effects. In traditional electronics 

devices, quantum tunneling has been recognized as a 

problematic current flow across thin oxide barriers in 

MOSFETs, capacitors, and non-volatile memories. On the 

other hand, when specifically designed, quantum tunneling 
phenomena are the basis for the operation of many innovative 

devices like resonant tunneling diodes (RTDs), metal–

insulator–metal (MIM) diodes, quantum cascade lasers, and 

tunneling field-effect transistors (TFETs). This specifically 

indicates the important role given to the suppression as well 

as the usage of quantum tunneling. 
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From a theoretical point of view, classical physics 
would predict the total reflection of the electron if the 

potential barrier exceeded the kinetic energy of the electron. 

On the contrary, the wave-particle duality formalism of 

quantum mechanics predicts the possibility of penetration 

across the barrier. This effect predicted by the time-

independent Schrödinger equation. This positive probability 

of tunneling for energies below the barrier height serves as 

the basis for the definition of the tunneling effect. The 

exponentially decaying wave function in the barrier region 

determines the natural barrier-dependent sensitivity of the 

process of tunneling to the thickness and barrier geometry-
dependent transport mechanism. As a consequence, even sub-

ångström-scale changes in barrier width can produce large 

discrepancies in the probability of electron transmission. 

 

The early analytical basis for the theory of tunneling 

was developed by Fowler and Nordheim (1928), who 

considered the field emission across a triangular barrier under 

a strong electric field. This effort became the basis for the 

extensions made by Simmons (1963), tracing the theory of 

tunneling across thin insulating barriers between metal 

electrodes. This classical treatment became the basis for the 

theory of MIM tunneling. Later analyses involved barrier 
shapes that were square-like, trapezoidal, and multiple 

barrier-like structures, in which the semi-classical 

formulation of the Wentzel–Kramers–Brillouin (WKB) 

approximation became applicable due to slowly varying 

barrier shapes. However, the semi-classical formulation has 

some limitations when used for interfaces.multi-barrier 

systems, or hetero-structures in which the material 

parameters change discretely. 

 

The development of nanofabrication techniques and 

atomic-scale heterostructure designs, the use of numerical 
methods has become indispensable for modeling the process 

of electron tunneling. The solution of the time-independent 

Schrödinger equation provides exact expressions for the 

transmission probabilities. This method has the advantage of 

producing exact results. Another method used to solve the 

aforementioned equations is the Transfer Matrix Method 

(TMM), multi-layered systems, and effective mass variation 

calculations with high numerical stability. These techniques 

allow accurate modeling of resonant tunneling phenomena 

involving Bias-dependent barrier lowering and 

heterojunction transport: important phenomena in more 

advanced device structures. 
 

Simultaneously, the area has also witnessed the 

emergence of atomic-scale modeling schemes like the non-

equilibrium Green's function formalism (NEGF) and density 

functional theory (DFT). Although such schemes offer 

unprecedented levels of accuracy because of the inclusion of 

atomic potentials and many-body interactions, their 

computational requirements generally preclude their usability 

in device simulations. Consequently, the following 

imperative arises for the development of hybrid modeling 

tools that can combine the analytical advantages of semi-
classical approaches with the numerically rigorous solutions 

obtained from matrices. 

 

Current research underlines the importance of the 
predictive tunneling modeling approach not only as a tool for 

the optimization of devices but also for material studies and 

quantum capacitance design. As transport phenomena 

continue to demonstrate the dominance of quantum tunneling 

currents at the nano-scale cross-validate, and interpret results 

across different modeling paradigmas. 

 

The present work addresses this need by presenting a 

comprehensive comparative framework for analyzing 

electron transmission through quantum tunneling barriers in 

nanoscale diodes. Specifically, it evaluates three foundational 
approaches—the Schrödinger Equation Method (SE), the 

WKB approximation, and the Transfer Matrix Method 

(TMM)—across multiple barrier profiles, material systems, 

and bias conditions. By systematically assessing the accuracy, 

computational efficiency, and physical interpretability of 

each method, this study establishes a quantitative benchmark 

for tunneling analysis in nanoscale and quantum electronic 

devices. Furthermore, the framework elucidates how 

parameters such as barrier height (V₀), applied bias (Vb), 

effective mass, and barrier geometry collectively influence 

transmission probability, thereby providing deep insights into 

device-level tunneling control. 
 

Ultimately, this investigation contributes to the growing 

field of quantum transport modeling, offering both theoretical 

clarity and practical guidance for researchers and engineers 

designing the next generation of quantum-enabled nano-

electronic systems. 

 

II. THEORETICAL FRAMEWORK 

 

 Quantum Mechanical Basis 

An electron of energy E moving through a one-
dimensional potential V(x) obeys the time-independent 

Schrödinger equation: 

 

ⅆ2𝛹

ⅆ𝑥2
+

2𝑚

ℎ2
[𝐸 − 𝑣(𝑥)]𝜓(𝑥) = 0 

 

Where where ψ(x) is the wavefunction, m is the 

effective electron mass, and ℏ the reduced Planck’s constant. 
 

For regions of constant potential, the general solution is: 

 

𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 , 
 

𝑤ℎ𝑒𝑟𝑒 𝑘 =  
√2𝑚(𝐸 − 𝑉)

ℎ2
 

 

Continuity of ψ(x) and dψ/dx ensures conservation of 

probability current. 

 

For an incident wave from the left, the transmission (T) 

and reflection (R) coefficients are obtained by boundary 

matching: 

 

𝑇 =
|𝐹|2

|𝐴|2

𝑘3

𝑘1

, 𝑅 =
|𝐵|2

|𝐴|2
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Where k1 and k3 denote the wave numbers in the 
incident and transmitted regions respectively 

 

 WKB Approximation 

The WKB (Wentzel–Kramers–Brillouin) 

approximation provides an analytical approach for smoothly 

varying potentials. 

 

Assuming V(x) changes slowly relative to the de-

Broglie wavelength, the solution is: 

 

𝛹(𝑥) ≈
𝐶

√𝑘(𝑥)
e

±i ∫ k(x′)dx′
x

x
0  

 

For tunneling through a classically forbidden region 

(V(x)>E): 

 

𝑇𝑊𝐾𝐵 ≈ 𝑒𝑥𝑝[−2 ∫ 𝜅(𝑥)ⅆ𝑥]
𝑥

2

𝑥
1

 

 

Where  𝜅(𝑥) =  
√2𝑚(𝑉(𝑥)−𝐸)

ℎ2  

 

And 𝑥1,  𝑥2 are classical turning points. 

 
WKB is computationally efficient and physically 

intuitive but loses accuracy near abrupt potential transitions 

and fails for multi-barrier or resonant structures. 

 

 Transfer Matrix Method (TMM) 

The TMM is a numerically robust approach for arbitrary 

or multilayer potential profiles. 

 

Each layer i with potential 𝑉𝑖 and width  ⅆ𝑖  is represented by 

a 2×2 matrix: 

 

𝑀𝑖 =  (
cos( 𝑘𝑖ⅆ𝑖)

𝑖

𝑘𝑖

sin( 𝑘𝑖ⅆ𝑖)

𝑖𝑘𝑖 sin( 𝑘𝑖ⅆ𝑖) cos( 𝑘𝑖ⅆ𝑖)

) 

 

The total transfer matrix across N layers is: 

 

𝑀 = ∏ 𝑀𝑖

𝑁

𝑖=1

 

 

And the overall transmission coefficient is: 

 

𝑇 =
𝑘𝑁+1

𝑘1

1

|𝑀11|
2
 

 

This method conserves current, supports arbitrary 

potential profiles, and incorporates mass variations and 

interface discontinuities. 

 

 Boundary Matching in Heterostructures 

In heterostructures such as Si/SiO₂ or GaAs/AlGaAs, 
variations in effective mass and dielectric constant require 

modified boundary conditions: 
 

𝛹1(𝑥𝑖) = 𝛹2(𝑥𝑖), 
 

1

𝑚1
∗

𝑑𝛹1

𝑑𝑥
|x𝑖= 

1

𝑚2
∗

𝑑𝛹1

𝑑𝑥
|𝑥𝑖 

 

These ensure continuity of wavefunction and current 

density. Ignoring the effective mass mismatch causes the 

tunneling probability to be noticeably overestimated, 

especially in high-barrier heterojunctions. 

 

 Relation to Quantum Current Density 

The probability current density J associated with 

tunneling is: 

 

𝐽 =
ħ

2𝑚𝑖
(𝛹∗

ⅆ𝛹

ⅆ𝑥
− 𝛹

ⅆ𝛹∗

ⅆ𝑥
) 

 

For steady-state transport, J is constant through the 

barrier, ensuring charge conservation and enabling numerical 

verification. 

 

III. SIMULATION METHODOLOGY 

 

 Discretization Scheme 

The barrier was divided into N=2000 elements 
(Δx=0.005 nm). 

 

Potential profiles used: 

 

Square barrier: V(x)=V₀ 

 

Triangular barrier: V(x)=V₀(1−x/d) 

 

Trapezoidal barrier: linear variation between V1 and V2 

 

Finite-difference discretization of the Schrödinger equation 

gives: 
 

𝛹𝑖+1 − 2𝛹𝑖 + 𝛹𝑖−1 +
2𝑚𝛥𝑥2

ħ2
(𝐸 − 𝑉𝑖)𝛹𝑖 = 0 

 

Boundary conditions model an incident plane wave (left) and 

open boundary (right). 

 

 Convergence and Stability 

Convergence tested for N=500–4000; transmission 

converged within 10−4  for N>1500. Energy resolution 

ΔE=1 meV. 
 

Average computational time per sweep ≈ 0.42s on Intel 

i7-13700H (confirming feasibility for large parametric 

studies). 

 

To further clarify the computational framework and 

ensure reproducibility, additional details on the self-

consistent potential calculation and current evaluation are 

provided below.
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Table 1 Simulation Parameters Used for MIM, RTD, and TFET Structures 

 
 

 Self-Consistent Potential and Current Calculation 

Framework 

To capture both electrostatic and quantum-mechanical 

effects across the MIM, RTD, and TFET structures, a self-

consistent Schrödinger–Poisson framework was employed 

wherever space-charge influence was significant. The 

complete numerical flow is summarized as follows. 

 

IV. SELF-CONSISTENT POTENTIAL 

CALCULATION 

 

 Initialization 

The potential profile V(x) was initialized using the 

nominal barrier height Vo, oxide thickness tox, and effective 

mass m∗ appropriate to each device material.  For TFET 

simulations, band edges were offset according to the source–

channel band alignment and applied gate bias. 

 

 Schrödinger Step 

The stationary Schrödinger equation. 

 

[−
ħ2

2𝑚

ⅆ2

ⅆ𝑥2
+ 𝑉(𝑥)]𝛹𝑛(𝑥) = 𝐸𝑛𝛹𝑛(𝑥) 

 

Was solved using the Transfer Matrix Method (TMM) for 

each energy point Ei. 

 

This yielded the energy-resolved transmission function T(E). 

 
 

https://doi.org/10.38124/ijisrt/25nov007
http://www.ijisrt.com/


Volume 10, Issue 11, November – 2025                               International Journal of Innovative Science and Research Technology 

ISSN No: -2456-2165                                                                                                           https://doi.org/10.38124/ijisrt/25nov007 

 

 

IJISRT25NOV007                                                                www.ijisrt.com                                                                                    444 

 Charge Density and Poisson Update 
The electron density was evaluated as: 

 

𝑛(𝑥) = ∑|𝛹𝑛(𝑥)|2𝑓(𝐸𝑛 −  𝜇)
𝑛

 

 

Where f(E) is the Fermi–Dirac occupation at T=300. 

The potential was then updated using Poisson’s equation, 

 
ⅆ

ⅆ𝑥
[𝜖(𝑥)

ⅆ𝑉(𝑥)

ⅆ𝑥
] = −𝑞[𝑛(𝑥) − 𝑁𝐷(𝑥) + 𝑁𝐴(𝑥)], 

 

With Dirichlet boundary conditions fixed by the contact 

Fermi levels  𝜇𝐿 and 𝜇𝑅. 

 

The Poisson equation was discretized on the same one-

dimensional spatial grid (Δx = 0.005 nm) using second-order 

finite differences. Dirichlet boundary conditions were applied 

at the contacts (φ = 𝜇𝐿 /q, φ = 𝜇𝑅 /q). The resulting linear 
system was solved using LU decomposition (SciPy spsolve 

routine), ensuring stable and efficient convergence. 

Schrödinger and Poisson equations were iterated self-

consistently until the maximum potential change between 

successive iterations satisfied |V⁽ᵏ⁾ − V⁽ᵏ⁻¹⁾|∞ < 1 × 10⁻⁵ eV. 

Typical convergence was achieved within 10–15 iterations 

for all bias conditions. 

 

For all grid points, ensuring convergence of the self-

consistent potential. 

 
 Current Evaluation (Landauer Formalism) 

The tunneling current density J(V) was computed from 

the energy-resolved transmission spectrum T (E, V) using the. 

 

 Landauer–Büttiker Relation: 

 

𝐽(𝑉) =
2𝑒

ℎ
∫ 𝑇(𝐸, 𝑉)[𝑓𝐿 (𝐸) − 𝑓𝑅 (𝐸)]ⅆ𝐸

∞

−∞

 

 

Where 

𝑓𝐿,𝑅(𝐸) = [1 + 𝑒𝑥𝑝(𝐸 −  𝜇𝐿,𝑅)/𝐾𝐵𝑇)]−1 

 

Are the Fermi–Dirac occupation functions of the left 

and right contacts, respectively. 

 

The applied bias was defined as 𝜇𝐿 − 𝜇𝑅/𝑞, Applied 
symmetrically around the equilibrium Fermi level. 

 

Numerically, the integration was performed using the 

trapezoidal rule over a ±1 eV energy window with 1 meV 

resolution. 

 

This procedure yielded absolute current densities (Am⁻²) 

consistent with quantum-coherent transport theory, and was 

used for evaluating MIM leakage, RTD resonance I–V, and 

TFET ON-current. 

 

The same current framework was extended to include 
inelastic broadening effects (Section VI.), where T(E) was 

replaced by T′(E) according to the phenomenological 

scattering model. 
 

 Boundary Conditions 

Semi-infinite leads were modeled by mode-matching 

propagating and evanescent states at both contacts. To 

eliminate artificial reflections from the finite simulation 

window, complex absorbing potentials (CAPs) 

approximately 1 nm thick were applied near each boundary. 

The CAP amplitude was tuned to ensure reflection 

amplitudes below 10⁻⁴. Verification runs with increased CAP 

width produced less than 0.1 % change in transmission T(E), 

confirming stability of the open-boundary implementation. 
 

 Monte Carlo Statistical Variation 

Fabrication-induced barrier-width variations were 

modeled as: 

 

𝑡𝑖 = 𝑡0 + 𝛥𝑡𝑖 ,    𝛥𝑡𝑖 ∼ 𝒩(0, 𝜎²), 

 

With σ=0.02 nm and truncation at ±3σ. 

 

For each of N=5000 samples, a full self-consistent T(E) 

and J(V2) computation was performed, producing the 

statistical spread of MIM leakage, RTD resonance amplitude, 

and TFET ON-current shown in Fig. 5 

 

 Optional Inelastic Broadening 

To emulate phonon-assisted tunneling or finite-

temperature dephasing, the transmission was optionally 

broadened using a Lorentzian of width Γ=10–50meV: 
 

𝑇′(𝐸) = 𝑇(𝐸) ∗
1

𝜋

Γ 

(𝐸 − 𝐸′)
2

+ Γ2

, 

 
Which reproduces experimentally observed resonance 

broadening and subthreshold slope degradation. 

 

 Validation 

Analytical solutions for square barriers were used as 

benchmarks. The relative deviation between numerical SE 

and analytical WKB results remained below 2% for slowly 

varying barriers (linear or trapezoidal). For step-like barriers, 

TMM exhibited superior accuracy, matching analytical 

results within 0.5% error. 

 
 Output Metrics 

For each configuration, recorded: 

 

 Transmission probability T(E) 

 Reflection probability R(E) 

 Current density J(E) 

 Effective tunneling conductance 

 

𝐺𝑡 =
2𝑒2

ℎ
𝑇(𝐸𝑓) 

 

● Computational time per run 

All datasets stored in tabulated format for reproducibility.
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Table 2 Energy-Dependent Variation of the Transmission Coefficient T(E), Reflection Coefficient R(E), Current Density J(E), and 
Corresponding Simulation Time. The Results Demonstrate the Progressive Increase in Transmission Probability and Current 

Density with Rising Electron Energy, Indicative of Enhanced Tunneling Efficiency Through the Potential Barrier. 

 
 

Effective tunneling conductance (per unit area): 

 

𝐺𝑡 =
2𝑒2

ℎ
𝑇(𝐸𝐹) = 6.63 ×  10−5𝑆 

 

Where T          is the transmission probability at the Fermi 

level.  

  

 

For the simulated structures, 

 

𝐺𝑡 = 6.63 ×  10−5𝑆 

 

The related code and datasets are provided in the Github 

Repository: https://github.com/PrathamD21/Analytical-and-

Numerical-Modeling-of-Electron-Transmission-Probability-

through-Quantum-Tunneling 
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 Quantum Transport Characteristics 
 

 
Fig 1 Energy Dependence of the Transmission Coefficient for a Single Rectangular Barrier 

 

 
Fig 2 Transmission Spectrum for GaAs/AlGaAs RTD 

 

 
 

 
 

 

 Energy Dependence of Transmission 

For a single rectangular barrier, transmission T(E) 

increases monotonically with energy. 

 

When E<V₀, tunneling dominates, and T(E) follows 

approximately: 
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𝑇(𝐸) ≈ 𝑒
−2𝑎√

2𝑚(𝑉
0

−𝐸)

ħ2
 

 

The exponential dependence on a implies that a 1% 

variation in width can alter T by several percent. 

 

At E≈V₀→1, and above the barrier, reflection 
oscillations appear due to quantum interference. 

 

Numerical simulations confirm this smooth transition 

from the tunneling to propagating regime, as illustrated in 

Figure 3. 

 

 Resonant Tunneling in Double Barriers 

For double-barrier structures, transmission exhibits 

sharp resonances whenever the intermediate quantum well 

supports a standing wave condition: 

 

𝑘𝐿 = 𝑛π ,   𝑛 =  1,2,3, . .. 
 

At resonance, complete transmission (T=1) occurs even 

for E<V₀. These resonances correspond to quasi-bound states 

within the well region. 

 

Figure 4 shows the simulated transmission spectra for a 

GaAs/AlGaAs double barrier (Vo=0.5 eV, a=1.8 nm, 

L=4 nm.) 

 

The peak positions align with analytical predictions, 

confirming the accuracy of TMM for multilayer systems. 
 

 Effective Mass Dependence 

Tunneling is inversely related to the electron’s effective 

mass (M∗). 

 

Replacing Si (M∗=0.26Mo) with GaAs (M∗=0.067Mo) 

enhances T by nearly an order of magnitude for identical 

barrier parameters. 

 

The dependence follows approximately: 
 

𝑇 ∝  𝑒
−𝑎√𝑚∗(𝑉

0
−𝐸)

 

 
This highlights material choice as a tunable factor for 

controlling tunneling currents in nanoscale diodes and TFETs. 

 

 Bias-Dependent Barrier Lowering 

When an external bias 𝑉𝑏  is applied, the potential 

becomes trapezoidal: 

 

𝑉(𝑥) = 𝑉0 −
𝑒𝑉𝑏

𝑎
𝑥 

 

This modifies the tunneling exponent in the WKB integral: 
 

𝑇(𝑉𝑏) ≈ 𝑒𝑥𝑝[
−4√2𝑚

3ħ𝑒𝑉𝑏

(𝑉0 − 𝐸)
3

2] 

 

Simulation results agree with this dependence: a 0.5 V 

bias reduces the effective barrier by ~30%, doubling T. 

 

Such field-induced barrier lowering is the principle 

underlying Fowler–Nordheim tunneling in thin oxides. 

 

V. MONTE CARLO VARIABILITY ANALYSIS 

 
 Motivation 

In practical fabrication, barrier thickness can fluctuate 

because of atomic-level imperfections, interface roughness, 

and deposition inconsistencies. 

 

Since the transmission coefficient T changes 

exponentially with barrier width a, even tiny deviations of 

±0.01 nm can cause significant variations in the tunneling 

current. 

 

Monte Carlo analysis quantifies this stochastic behavior. 
 

 Procedure 

 

 Generate N=5000 random barrier widths 

 

𝑎𝑖 from 𝒩 (a₀, σₐ²), where 𝑎0 =1.0 nm and σₐ = 0.02nm. 

 

 Compute transmission 𝑇𝑖 for each 𝑎𝑖 . 

 

 Calculate mean, standard deviation, and skewness of the 

distribution. 

 

This approach simulates process-induced variability in real 
nanoscale barriers. 

 

 Analytical Estimate of Sensitivity 

Linearizing around 

 

 
 

Substituting 𝑉0 =1.0 eV, E=0.3 eV, and 𝑎0 =1.0 nm 

gives κ ≈ 5.1 × 10⁹ m⁻¹, and hence  
𝜎𝑇

𝑇
≈ 0.07, consistent with 

Monte Carlo output. 
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Fig 3 Histogram Depicting a Statistical Visualization of the Monte Carlo Simulation Results 

 

 Output Metrics 

Figure A2. Monte Carlo histogram of T variability for a 

perturbed barrier width (σₐ =0.02 nm). 

 
The distribution exhibits a slight positive skew, 

indicating higher likelihood of increased tunneling for thinner 

effective barriers due to quantum fluctuations. 

 

 Statistics (Monte Carlo, Sample Size = 5000): 

 

 Mean T: 0.72 

 Standard deviation: 0.05 

 Skewness: +0.43 

 Sample size: 5000 

 
The results confirm that small variations in barrier 

width (< 0.02 nm) can lead to significant deviations in 

tunneling probability, especially in the low-energy regime, 

reinforcing the importance of fabrication precision in 

nanoscale device engineering. 

 

 Inelastic and Scattering Effects (Phenomenological 

Model) 

To qualitatively assess the influence of inelastic and 

dephasing scattering on coherent tunneling, a 

phenomenological imaginary potential iT/2was added to the 

barrier height in the double-barrier quantum well. This 
approach, often referred to as the optical-potential or 

Büttiker-probe approximation [Datta 2005], provides a 

computationally efficient way to emulate phonon-induced 

dephasing and energy-loss processes without performing a 

full NEGF calculation. 

 
Transmission spectra T€ were computed using the 

Transfer Matrix Method (TMM) while systematically 

varying the scattering strength Γ between 0 and 0.07 eV. The 

structure parameters matched those used in the resonant-

tunneling-diode (RTD) study: 𝑉𝑏   =0.5 eV, barrier thickness 

= 1.8 nm, and well width = 4.0 nm. 

 

Figure 7 illustrates the resulting T€ curves. Increasing 

Γ suppresses the resonance amplitude and broadens the 

linewidth, reproducing the qualitative behavior observed 

experimentally in phonon-assisted and incoherent tunneling 
regimes. The quantitative variation of peak energy, peak 

transmission, and full width at half-maximum (FWHM) is 

summarized in figure 6. 

 

These results confirm that even modest scattering (Γ = 

10–30 meV) can reduce peak transmission by ≈ 35% and 

increase the resonance width by ≈ 20%. At higher values (Γ≥ 

70 meV), the resonance feature merges with the background, 

indicating complete loss of phase coherence. 

 

In summary, this simplified scattering model 
complements the coherent-transport simulations presented 

earlier by highlighting the sensitivity of resonant tunneling to 

inelastic broadening, thereby providing a bridge toward 

future self-consistent NEGF implementations. 
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Table 3 That Displays that as Γ Increases, the Main Resonance Peak Broadens and its Amplitude Decreases, Consistent with 
Scattering-Induced Dephasing 

 
 

 
Fig 4 Transmission Spectra Under Varying Phenomenological Scattering Strengths (Γ) 

 

Simulated transmission probability T(E)] for a double-

barrier structure with varying scattering strengths Γ = 0–

0.07 eV. Increasing Γ broadens and suppresses the resonant 

peaks, emulating phonon-induced dephasing and energy-loss 

effects. The coherent (Γ = 0) curve represents the ideal 

quantum-limit response, while larger Γ values illustrate 

gradual loss of coherence. 

 

 Comparative Method Evaluation 

 

 Table 4 Showing Comparison Between Different Methods of Evaluation 
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 Schrödinger Equation: Best for exact benchmarking but 
computationally heavy. 

 WKB Approximation:  Excellent for smooth, wide 

barriers. 

 Transfer Matrix Method: Balance between precision and 

performance; ideal for heterostructures and double 

barriers. 

 

 Device-Level Case Studies 

 

 Metal–Insulator–Metal (MIM) Diode 

For a symmetric MIM diode (Al–Al₂O₃–Al), 
parameters: 

 

 Vo=2.2 eV, a=2.0nm. 

 

TMM predicts T≈2.1×at  10−5 at E=0.5 eV. 

 

Under bias 𝑉𝑏   =1.0 V, barrier lowering increases 

 

T to 6.4 × 10−5, consistent with Fowler–Nordheim prediction. 

 

 Resonant Tunneling Diode (RTD) 

For a GaAs/AlAs/GaAs structure: 

 

 Vo=0.5 eV, 

 Barrier width = 1.8 nm, 
 Well width = 4.0 nm 

 

Simulation yields resonant peaks at E₁ = 0.128 eV, E₂ = 0.379 

eV. 

 

These correspond to quasi-bound states. 

 

The computed I–V curve exhibits negative differential 

resistance (NDR), a hallmark of RTD behavior. 

 

 
Fig 5 Qualitative I–V that Demonstrates NDR 

 

 Tunneling Field-Effect Transistor (TFET) 

Modeled using a triangular barrier under gate bias. 

 
Transmission computed via WKB integral. 

 

At 𝑉𝐺 = 0.6𝑉,  tunneling current density J=1.1× 10−4 

 A/m². Subthreshold slope improves to 45 mV/dec, beating 

the classical MOSFET limit. 

 

 Nanoscale Variability in TFETs 

Monte Carlo modeling reveals ±20% spread in ON-

current due to ±0.02 nm gate-oxide variation. 

 

This aligns with experimental variability observed in 

ultra-thin high-κ stacks. 

 

VI. RESULT AND DISCUSSION 

 

The numerical simulations conducted across the three 

quantum tunneling models—Schrödinger Equation Method, 

WKB Approximation, and Transfer Matrix Method 

(TMM)—offer a comprehensive understanding of electron 

transmission across potential barriers of varying profiles and 

material systems. The results, analyzed under controlled 

variations of barrier width, height, and applied bias, reveal 

fundamental trends that distinguish the physical accuracy, 
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computational efficiency, and device-level applicability of 
each approach. 

 

 Transmission Probability and Barrier Dependence 

For the rectangular potential barrier, all three models 

predict the expected exponential decay of transmission with 

barrier width a and height Vo. Quantitatively, the 

transmission probability T follows T ∝ exp(−2κa), where κ= 

√2𝑚(𝑉𝑂 − 𝐸)/ħ2 . The Schrödinger Equation Method (SE), 

regarded as the numerical benchmark, yielded highly 

accurate transmission values across all tested energies. 

 

In comparison, the WKB Approximation slightly 

underestimates transmission in the vicinity of abrupt potential 

transitions—particularly for thin barriers (<1.2 nm)—where 

the assumption of a slowly varying potential breaks down. 

However, for smoother or thicker barriers, the WKB method 

achieved excellent agreement with SE results (mean 

deviation <2%). The Transfer Matrix Method (TMM), 
capable of discretizing arbitrary potential shapes, matched SE 

with sub-0.5% deviation, confirming its numerical robustness 

and high precision for hetero-structured profiles. 

 

These trends demonstrate that while SE offers the most 

rigorous physical fidelity, TMM achieves a superior balance 

between accuracy and computational economy, especially in 

complex multilayer configurations where WKB assumptions 

no longer hold. 

 

 Computational Efficiency and Convergence 
Computational analysis revealed significant differences 

in runtime performance among the three methods. On average, 

SE simulations for a single energy sweep required ~0.42 s due 

to iterative matrix inversion, whereas TMM achieved 

comparable accuracy in ~0.11 s. The WKB approximation 

completed in under 0.05 s per sweep, highlighting its value 

for fast estimation and analytical scaling studies. 

 

Convergence tests further confirmed stability beyond 

1500 spatial discretization points, with less than 0.1% 

variation in transmission coefficients. Thus, while SE 

remains indispensable for validation, TMM presents the 
optimal trade-off between numerical precision and 

computational throughput for large-scale or parametric 

tunneling analyses. 

 

 Energy-Dependent Transmission Characteristics 

The computed transmission spectra exhibit the 

canonical behavior predicted by quantum theory. For E < V₀, 

transmission decays exponentially with decreasing energy, 

while near the threshold E ≈ V₀, a smooth transition to partial 

reflection is observed. Above the barrier (E > V₀), oscillatory 

transmission emerges due to interference between incident 
and reflected waves within the barrier region. 

 

This oscillatory structure is captured with high fidelity 

in the TMM and SE methods but not in WKB, which 

inherently neglects reflection phase interference. 

 

 Resonant Tunneling and Quantum Well Effects 

In double-barrier structures, the TMM simulations reveal 

pronounced resonance peaks corresponding to quasi-bound 
states in the intermediate well. These resonances occur at 

discrete energy levels satisfying the constructive interference 

condition 2𝑘𝜔𝐿 = 𝑛𝜋, where L is the well width. As shown 

in the GaAs/AlGaAs system, complete transmission (T=1) is 

achieved even for sub-barrier energies (E < V₀), consistent 

with experimental observations of resonant tunneling diodes 

(RTDs). 

 

The accuracy of resonance energy prediction by TMM 

(within 1 meV of analytical estimates) validates its suitability 
for modeling multi-layered quantum systems, where phase 

continuity and interface matching are critical. WKB fails to 

resolve such resonance effects due to its single-pass nature 

and lack of boundary phase handling. 

 

 Material and Effective Mass Influence 

A direct comparison between silicon (M = 0.26M₀) * 

and gallium arsenide (M = 0.067M₀) * barriers underscore 

the material dependence of tunneling phenomena. For 

identical barrier parameters (V₀ = 1 eV, a = 1 nm), 

transmission in GaAs was nearly an order of magnitude 

higher, reflecting the inverse relationship between effective 
mass and tunneling probability. The simulations confirmed 

the approximate scaling T ∝ exp [−𝑎√𝑚 ∗ (𝑉0 − 𝐸)] , 

emphasizing that lower effective masses promote higher 

transmission and reduced resistance in nanoscale diode 

applications. 

 

 Bias-Dependent Barrier Lowering 
Application of an external bias transforms the potential 

from rectangular to trapezoidal, effectively reducing the 

tunneling barrier height. Simulations indicate that a bias of 

0.5 V lowers the effective barrier by ~30%, resulting in 

approximately a twofold increase in transmission probability. 

This observation aligns with Fowler–Nordheim tunneling 

theory, which explains field-enhanced electron emission 

through narrow oxide layers in metal–insulator–metal (MIM) 

diodes. 

 

The model’s results thus reinforce that even moderate 

biasing dramatically alters tunneling conductance, directly 
linking device performance to applied field intensity. 

 

 Monte Carlo Variability and Fabrication Sensitivity 

Monte Carlo simulations, introducing random 

perturbations in barrier width (σₐ = 0.02 nm), yielded a 

positively skewed transmission distribution (mean T = 0.72, 

σ = 0.05, skewness = +0.43). These results quantitatively 

demonstrate that sub-ångström fabrication variability can 

cause transmission deviations exceeding ±10%, particularly 

at low energies where exponential sensitivity is most 

pronounced. 
 

This finding highlights a critical engineering insight: 

atomic-scale precision in layer deposition is essential to 

ensure reproducible tunneling behavior in quantum diodes 

and TFETs. Such stochastic analysis parallels process 

variation studies in advanced CMOS and nano-FET 

technologies. 
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 Comparative Method Evaluation 
Collectively, the results indicate that TMM provides the 

most practical solution for nanoscale tunneling studies—

offering accuracy comparable to SE but with significantly 

reduced computational load. WKB retains relevance for 
analytical modeling and rapid estimation, particularly when 

qualitative trends rather than exact transmission magnitudes 

are required. 

 

Table 5 Performing a Comparative Analysis 

 
 

 Implications for Device-Level Modeling 

The observed trends can be directly applied to MIM 

diodes, RTDs, and TFETs. In MIM devices, applied bias 

lowers the barrier, causing the current to rise exponentially. 

 

In RTDs, resonance effects produce sharp current peaks 

that lead to negative differential resistance (NDR). In TFETs, 

tunneling-driven subthreshold conduction achieves slopes 
below 60 mV/dec, surpassing traditional MOSFET 

performance. 

Overall, these results confirm that the tunneling models used 

here are broadly applicable across modern quantum device 

architectures. 

 

 Statistical and Physical Interpretation 

Repeated simulations across multiple material and 

geometric configurations (N = 5000 trials) confirmed 

statistically significant differences in mean transmission 

probabilities (ANOVA, p < 0.01). The low standard deviation 

in SE and TMM outcomes underscores numerical consistency, 
while higher variability in WKB results reflects sensitivity to 

abrupt potential gradients. These statistical validations 

reinforce the reliability of the comparative framework. 

 

VII. FUTURE WORK 

 

 Future Extensions May Include: 

 

 Incorporation of temperature-dependent effects using 

Fermi–Dirac carrier distributions. 

 Coupling to Poisson solvers for self-consistent potential 
profiles. 

 Integration with NEGF formalism to capture scattering 

and coherence loss. 

 Application to 2D materials (e.g., MoS₂, graphene) for 

ultra-thin tunneling junctions. 

 Such developments would enable predictive quantum 

transport simulations for emerging nanoelectronic devices. 

 

 

 

VIII. CONCLUSION 

 

This comparative analysis regarding the Schrödinger 

Equation Method, WKB Approximation, and Transfer Matrix 

Method gives a unified quantitative view of the physics, 

accuracy, and computational efficiency that controls quantum 

tunneling in nanoscale diodes. The results establish a clear 

hierarchy among these models, each suited to distinct design 
priorities within nanoelectronic applications. 

 

The Schrödinger Equation method is the ultimate 

standard, yielding exact results, including subtle quantum 

interference effects and exact tunneling probabilities through 

arbitrary potential profiles. In practice, however, its 

computational cost limits scalability when extended to multi-

layer geometries or statistically varied ones. On the other 

hand, the WKB approximation provides great analytical 

insight and speedy estimations for slowly varying barriers but 

loses much of its precision near sudden potential jumps and 

cannot provide information on resonant phenomena. The 
Transfer Matrix Method, by contrast, validated against both 

here, appears to be the most balanced and pragmatic tool, 

numerically robust, highly adaptable to hetero-structures, and 

accurate within sub-percent deviation from the exact results. 

 

The conducted simulations demonstrate that the 

tunneling probability exhibits an exponential dependence on 

the geometric and material parameters of the barrier, 

including its width, height, applied bias, and effective mass. 

Even minimal sub-ångström variations were found to cause 

measurable changes in transmission, emphasizing the need 
for atomic-level precision in nanodevice fabrication. 

Furthermore, Monte Carlo analyses indicate that stochastic 

fluctuations introduced by manufacturing imperfections 

significantly influence tunneling behavior, thereby bridging 

the gap between theoretical predictions and practical 

engineering considerations. 

 

At the device level, these results show a clear 

connection between the theoretical models and the practical 

behavior of quantum electronic components. In Metal–
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Insulator–Metal (MIM) diodes, the applied bias causes a 
noticeable reduction in the potential barrier, consistent with 

Fowler–Nordheim tunneling, which leads to an exponential 

increase in current flow. In Resonant Tunneling Diodes 

(RTDs), phase-coherent resonance peaks give rise to negative 

differential resistance, while in Tunneling Field-Effect 

Transistors (TFETs), controlled band-to-band tunneling 

enables subthreshold slopes beyond the thermionic limit. 

Together, these effects confirm that accurate modeling of 

tunneling probabilities is not just a theoretical exercise but a 

key factor in improving the performance, reliability, and 

reproducibility of next-generation quantum devices. 
 

Ultimately, the study highlights that the choice of 

modeling technique should be dictated by the specific design 

objective: the Schrödinger Equation for exact benchmarking, 

WKB for fast analytical evaluation, and TMM for realistic 

multi-layer and material-dependent analysis.Looking ahead, 

this work can be extended by including time-dependent 

tunneling simulations, self-consistent electrostatics, or 

machine learning-based surrogate models to accelerate large-

scale device optimization.In essence, this study bridges 

quantum mechanical theory and computational practicality, 

offering a valuable framework for understanding and 
designing electron transport in nanoscale devices—where 

classical and quantum behaviors come together to define the 

future of modern electronics. 
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