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Abstract: Quantum tunnelling becomes critical in nanoelectronic devices as dimensions approach or fall below the electron
mean free path, wherein the classical transport models are no longer sufficient to describe carrier behavior. Accordingly,
transmission of electrons across barriers is analyzed in nanodiodes within this paper using three main approaches: the
Schrédinger Equation Method, the Wentzel-Kramers-Brillouin (WKB) approximation, and the Transfer Matrix Method.
These methods have been applied to various tunneling situations involving barriers of different height and width, as well as
semiconductor material interfaces representative of state-of-the-art device architectures in capturing the wavelike nature of
electron transport typical at nanometric scales.

A comparison is carried out in regard to the accuracy, efficiency of computation, and physical insights gained through
each approach. Strengths and weaknesses of the above-mentioned techniques will be considered in view a variety of barrier
profiles and device structures. Calculations based on self-consistent potentials in Si and GaAs hetero-structures exhibit
strong exponential behavior of the tunneling current and barrier parameters. Consistency between methods appears only
under the following special conditions of barrier variation.

These results are discussed in relation to the emerging importance of a new class of tunneling-based devices: MIMs,
RTDs, and TFETs, all promising for next-generation electronic and optoelectronic systems. These findings provide a
conceptual and practical basis for the understanding and designing of nanoscale devices where tunneling is a dominant
transport mechanism, adding an important comprehensive perspective to quantum transport modeling in nanoelectronics.
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I INTRODUCTION

The development of today's electronics has been led
very strongly by the relentless scaling down of devices based
on the expectations of Moore's Law. With the device
transistor size scaling down to the nanometer scale, the
physical basis of current transport has gradually moved away
from classical drift diffusion to quantum-mechanical wave
phenomena. Such effects as quantum tunneling, interference
of the wave function, and quantum confinement were long
deemed insignificant. Yet today they can profoundly
influence the behavior and performance of devices at the
nanoscale.
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Among the new phenomena that emerged based on the
guantum world, quantum tunneling has become one of the
most remarkable and useful effects. In traditional electronics
devices, quantum tunneling has been recognized as a
problematic current flow across thin oxide barriers in
MOSFETS, capacitors, and non-volatile memories. On the
other hand, when specifically designed, quantum tunneling
phenomena are the basis for the operation of many innovative
devices like resonant tunneling diodes (RTDs), metal—-
insulator—metal (MIM) diodes, quantum cascade lasers, and
tunneling field-effect transistors (TFETSs). This specifically
indicates the important role given to the suppression as well
as the usage of quantum tunneling.
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From a theoretical point of view, classical physics
would predict the total reflection of the electron if the
potential barrier exceeded the Kinetic energy of the electron.
On the contrary, the wave-particle duality formalism of
quantum mechanics predicts the possibility of penetration
across the barrier. This effect predicted by the time-
independent Schrodinger equation. This positive probability
of tunneling for energies below the barrier height serves as
the basis for the definition of the tunneling effect. The
exponentially decaying wave function in the barrier region
determines the natural barrier-dependent sensitivity of the
process of tunneling to the thickness and barrier geometry-
dependent transport mechanism. As a consequence, even sub-
angstrom-scale changes in barrier width can produce large
discrepancies in the probability of electron transmission.

The early analytical basis for the theory of tunneling
was developed by Fowler and Nordheim (1928), who
considered the field emission across a triangular barrier under
a strong electric field. This effort became the basis for the
extensions made by Simmons (1963), tracing the theory of
tunneling across thin insulating barriers between metal
electrodes. This classical treatment became the basis for the
theory of MIM tunneling. Later analyses involved barrier
shapes that were square-like, trapezoidal, and multiple
barrier-like ~structures, in which the semi-classical
formulation of the Wentzel-Kramers—Brillouin (WKB)
approximation became applicable due to slowly varying
barrier shapes. However, the semi-classical formulation has
some limitations when used for interfaces.multi-barrier
systems, or hetero-structures in which the material
parameters change discretely.

The development of nanofabrication techniques and
atomic-scale heterostructure designs, the use of numerical
methods has become indispensable for modeling the process
of electron tunneling. The solution of the time-independent
Schrédinger equation provides exact expressions for the
transmission probabilities. This method has the advantage of
producing exact results. Another method used to solve the
aforementioned equations is the Transfer Matrix Method
(TMM), multi-layered systems, and effective mass variation
calculations with high numerical stability. These techniques
allow accurate modeling of resonant tunneling phenomena
involving  Bias-dependent  barrier  lowering  and
heterojunction transport: important phenomena in more
advanced device structures.

Simultaneously, the area has also witnessed the
emergence of atomic-scale modeling schemes like the non-
equilibrium Green's function formalism (NEGF) and density
functional theory (DFT). Although such schemes offer
unprecedented levels of accuracy because of the inclusion of
atomic potentials and many-body interactions, their
computational requirements generally preclude their usability
in device simulations. Consequently, the following
imperative arises for the development of hybrid modeling
tools that can combine the analytical advantages of semi-
classical approaches with the numerically rigorous solutions
obtained from matrices.
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Current research underlines the importance of the
predictive tunneling modeling approach not only as a tool for
the optimization of devices but also for material studies and
quantum capacitance design. As transport phenomena
continue to demonstrate the dominance of quantum tunneling
currents at the nano-scale cross-validate, and interpret results
across different modeling paradigmas.

The present work addresses this need by presenting a
comprehensive comparative framework for analyzing
electron transmission through quantum tunneling barriers in
nanoscale diodes. Specifically, it evaluates three foundational
approaches—the Schrddinger Equation Method (SE), the
WKB approximation, and the Transfer Matrix Method
(TMM)—across multiple barrier profiles, material systems,
and bias conditions. By systematically assessing the accuracy,
computational efficiency, and physical interpretability of
each method, this study establishes a quantitative benchmark
for tunneling analysis in nanoscale and quantum electronic
devices. Furthermore, the framework elucidates how
parameters such as barrier height (Vo), applied bias (Vb),
effective mass, and barrier geometry collectively influence
transmission probability, thereby providing deep insights into
device-level tunneling control.

Ultimately, this investigation contributes to the growing
field of quantum transport modeling, offering both theoretical
clarity and practical guidance for researchers and engineers
designing the next generation of quantum-enabled nano-
electronic systems.

. THEORETICAL FRAMEWORK
» Quantum Mechanical Basis

An electron of energy E moving through a one-
dimensional potential V(x) obeys the time-independent
Schrédinger equation:

da*y

2
T E - v@p@) = 0

Where where y(x) is the wavefunction, m is the
effective electron mass, and % the reduced Planck’s constant.

For regions of constant potential, the general solution is:

P(x) = Ae™* + Be~ikx,

J2m(E =V)

hZ

where k =

Continuity of y(x) and dy/dx ensures conservation of
probability current.

For an incident wave from the left, the transmission (T)
and reflection (R) coefficients are obtained by boundary
matching:

_IFPks IBP?
ARk AP
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Where k1 and k3 denote the wave numbers in the
incident and transmitted regions respectively

» WKB Approximation

The WKB (Wentzel-Kramers—Brillouin)
approximation provides an analytical approach for smoothly
varying potentials.

Assuming V(x) changes slowly relative to the de-
Broglie wavelength, the solution is:

C i f:o k(xr)dxr

Y(x) = 00 e

For tunneling through a classically forbidden region
(V(X)>E):

“
oo = expl=2 | *x(x)dx]
%9
Where k(x) = Y2000
And x,, x, are classical turning points.

WKB is computationally efficient and physically
intuitive but loses accuracy near abrupt potential transitions
and fails for multi-barrier or resonant structures.

» Transfer Matrix Method (TMM)
The TMM is a numerically robust approach for arbitrary

or multilayer potential profiles.

Each layer i with potential V; and width d; is represented by
a 2x2 matrix:

[
cos(k;d;) k—sin(kidi)
i
ik;sin(k;d;) cos(k;d;)
The total transfer matrix across N layers is:
M = ﬂ Mi
i=1

And the overall transmission coefficient is:

kyey 1

T=— -
bMy

This method conserves current, supports arbitrary

potential profiles, and incorporates mass variations and
interface discontinuities.

» Boundary Matching in Heterostructures

In heterostructures such as Si/SiO:. or GaAs/AlGaAs,
variations in effective mass and dielectric constant require
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modified boundary conditions:

v (x) = Py (xy),

1 dy,

¥
my dx

_ 1 ay

Ix;= |x;

¥
m, dx

These ensure continuity of wavefunction and current
density. Ignoring the effective mass mismatch causes the
tunneling probability to be noticeably overestimated,
especially in high-barrier heterojunctions.

> Relation to Quantum Current Density
The probability current density J associated with
tunneling is:

_ b av v
]_Zmi( dx dx

)

For steady-state transport, J is constant through the
barrier, ensuring charge conservation and enabling numerical
verification.

. SIMULATION METHODOLOGY

> Discretization Scheme
The barrier was divided into N=2000 elements
(Ax=0.005 nm).

Potential profiles used:

Square barrier: V(x)=Vo

Triangular barrier: V(x)=Vo(1—x/d)

Trapezoidal barrier: linear variation between V1 and V2

Finite-difference discretization of the Schrédinger equation
gives:

2mAx?
Yipp —2¥i+ ¥ hz_(E -V¥; =0

Boundary conditions model an incident plane wave (left) and
open boundary (right).

» Convergence and Stability

Convergence tested for N=500-4000; transmission
converged within 10~* for N>1500. Energy resolution
AE=1meV.

Average computational time per sweep =~ 0.42s on Intel
i7-13700H (confirming feasibility for large parametric
studies).

To further clarify the computational framework and
ensure reproducibility, additional details on the self-
consistent potential calculation and current evaluation are
provided below.
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Table 1 Simulation Parameters Used for MIM, RTD, and TFET Structures

Parameter Symbaol Value (used) Remarks / Device
Tvpe
Barrier height Ve 0.9 eV MIM (ALO:/S10=)
barrier
0.5eV RTD (GaAs/AlAs)
struchmwe
0.350.45 W TFET cffective
tunneling barmer
Barrier thickness to 1.0 mum MIM oxide
1.8 nm RTD double-barrier
Ouantun well wadth L. 4.0 mum RTD central GaAs
well
Effective mass m* 0.25 me MIM oxide (S10=-
like)
0.067 nw RTD / TFET chamel
(GaAs-like)
Dielectric constant £y 3.9 For Poisson solver
(SiO=)
Temperature T 300K All simalations
Energy grid step AE 1 meWV (0.001 V) Used in all
transmission
calculations
Energy mtegration [-1.+1] eV Landauer current
range integration lunits
Spatial grid spacing Ax 0.005 nm Finite-difference
Sclrddinger—Poisson
Poisson convergence 1=107% &V Self-consistent
tolerance potential eriterion
Monte Carlo samples | N 5000 For barrier width
variability study
Barrier width o 0.02 nm Standard deviation
variation “ for random
perturbations
Truncation range +3 o Gaussian width cutoff
Temperature kT 25.8 meWV Thermal energy at
broadening 300 K
Phenomenological I 0.00 —0.07 eV Used in Section VI
scattening strength (1inelastic model)
Applied bias (for I— Vi 0—05W Used in Landauer
W bias current calculations
Integration scheme Trapezoidal rule For energy and space
integrals
Software Pvthon 3.9 + Custom
enviromment NumPv/SciPy implementation (this

work)

> Self-Consistent Potential and Current Calculation
Framework
To capture both electrostatic and quantum-mechanical
effects across the MIM, RTD, and TFET structures, a self-
consistent Schrddinger—Poisson framework was employed
wherever space-charge influence was significant. The
complete numerical flow is summarized as follows.

V. SELF-CONSISTENT POTENTIAL
CALCULATION

> Initialization

The potential profile V(x) was initialized using the
nominal barrier height Vo, oxide thickness tox, and effective
mass mx appropriate to each device material. For TFET

IJISRT25NOV007

simulations, band edges were offset according to the source—
channel band alignment and applied gate bias.

> Schrodinger Step

The stationary Schrodinger equation.

ZdZ

[=o— o VI = Ep¥ ()

2m dx?

Was solved using the Transfer Matrix Method (TMM) for
each energy point Ei.

This yielded the energy-resolved transmission function T(E).
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» Charge Density and Poisson Update
The electron density was evaluated as:

n() = ) W, f (B, —

Where f(E) is the Fermi—Dirac occupation at T=300.
The potential was then updated using Poisson’s equation,

d av(x), N N
e =1 = —qIn() — Np(@) + N, ()]

With Dirichlet boundary conditions fixed by the contact
Fermi levels y, and pg.

The Poisson equation was discretized on the same one-
dimensional spatial grid (Ax = 0.005 nm) using second-order
finite differences. Dirichlet boundary conditions were applied
at the contacts (¢ = u./q, @ = ug /q). The resulting linear
system was solved using LU decomposition (SciPy spsolve
routine), ensuring stable and efficient convergence.
Schrédinger and Poisson equations were iterated self-
consistently until the maximum potential change between
successive iterations satisfied [V — VDo < 1 x 107 eV,
Typical convergence was achieved within 10-15 iterations
for all bias conditions.

For all grid points, ensuring convergence of the self-
consistent potential.

» Current Evaluation (Landauer Formalism)
The tunneling current density J(V) was computed from
the energy-resolved transmission spectrum T (E, V) using the.

e Landauer-Biittiker Relation:

2e (©
JV) = 7[_ T(E,V[f(E) — fr(E)]dE

Where
fur(E) =[1+ exp(E — pp)/KgT)] ™"

Are the Fermi—Dirac occupation functions of the left
and right contacts, respectively.

The applied bias was defined as u;, — uz/q, Applied
symmetrically around the equilibrium Fermi level.

Numerically, the integration was performed using the
trapezoidal rule over a +1 eV energy window with 1 meV
resolution.

This procedure yielded absolute current densities (Am2)
consistent with quantum-coherent transport theory, and was
used for evaluating MIM leakage, RTD resonance 1-V, and
TFET ON-current.

The same current framework was extended to include

inelastic broadening effects (Section V1.), where T(E) was
replaced by T'(E) according to the phenomenological
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scattering model.

» Boundary Conditions

Semi-infinite leads were modeled by mode-matching
propagating and evanescent states at both contacts. To
eliminate artificial reflections from the finite simulation
window, complex  absorbing  potentials  (CAPS)
approximately 1 nm thick were applied near each boundary.
The CAP amplitude was tuned to ensure reflection
amplitudes below 10, Verification runs with increased CAP
width produced less than 0.1 % change in transmission T(E),
confirming stability of the open-boundary implementation.

» Monte Carlo Statistical Variation
Fabrication-induced barrier-width variations were
modeled as:

t; =ty + A4t;, At; ~ N(0,02),
With 6=0.02 nm and truncation at +3c.

For each of N=5000 samples, a full self-consistent T(E)
and J(V2) computation was performed, producing the
statistical spread of MIM leakage, RTD resonance amplitude,
and TFET ON-current shown in Fig. 5

» Optional Inelastic Broadening

To emulate phonon-assisted tunneling or finite-
temperature dephasing, the transmission was optionally
broadened using a Lorentzian of width I'=10-50meV:

1 r
T'(E) = T(E) * —

T(E—E) 1?7

Which reproduces experimentally observed resonance
broadening and subthreshold slope degradation.

> Validation

Analytical solutions for square barriers were used as
benchmarks. The relative deviation between numerical SE
and analytical WKB results remained below 2% for slowly
varying barriers (linear or trapezoidal). For step-like barriers,
TMM exhibited superior accuracy, matching analytical
results within 0.5% error.

» Output Metrics
For each configuration, recorded:

Transmission probability T(E)
Reflection probability R(E)
Current density J(E)

Effective tunneling conductance

2e?
G, = TT(Ef)

e Computational time per run
All datasets stored in tabulated format for reproducibility.
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Table 2 Energy-Dependent Variation of the Transmission Coefficient T(E), Reflection Coefficient R(E), Current Density J(E), and

Corresponding Simulation Time. The Results Demonstrate the Progressive Increase in Transmission Probability and Current
Density with Rising Electron Energy, Indicative of Enhanced Tunneling Efficiency Through the Potential Barrier.

Energy (eV) Transmission T'(E) Reflection RIE) Current Density J (E) (A/m’) Time (s)
0.05 0122 0.878 B.LX10* 0,052
0.15 0.198 0.802 297x10°* 0.056
0.25 0321 0679 8.03x10° 0.061
0.35 0451 0.549 1.56x10°* 0.064
0.45 0.576 0424 25910 0.069
0.55 0678 0.322 3.73x10* 0.072
0.65 0.752 0.248 4.89x 10 0.078
0.75 0.801 0.189 6.00x10* 0.083
0.85 0.832 0.168 7.08x10* 0.086
0.95 0.849 0.151 8.05x10* 0,090
1.00 0.857 0.143 8.57x10* 0.092
Effective tunneling conductance (per unit area): For the simulated structures,
2e? G, = 6.63 x 10755

G, = TT(EF) =6.63 X 107°S
The related code and datasets are provided in the Github
Repository: https://github.com/PrathamD21/Analytical-and-

Numerical-Modeling-of-Electron-Transmission-Probability-
through-Quantum-Tunneling

Where T (E}) is the transmission probability at the Fermi
level.
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» Quantum Transport Characteristics

10°
1074
2 10
z
10~
10°.0 0.5 1.0 1.5 2.0
E/V
Fig 1 Energy Dependence of the Transmission Coefficient for a Single Rectangular Barrier
(Vo =05eV,a=1.8nnm, Lw = 4.0 nm)
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Fig 2 Transmission Spectrum for GaAs/AlGaAs RTD

> Energy Dependence of Transmission

K = 5.1 P ].Oq m 1 For a single rectangular barrier, transmission T(E)

oy
e
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increases monotonically with energy.

When E<V,, tunneling dominates, and T(E) follows
0 - 0 7, approximately:

P
¥
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2m(V,~E)
-2a 2
T(E)~e h

The exponential dependence on a implies that a 1%
variation in width can alter T by several percent.

At E=Vo—1, and above the barrier, reflection
oscillations appear due to quantum interference.

Numerical simulations confirm this smooth transition
from the tunneling to propagating regime, as illustrated in
Figure 3.

» Resonant Tunneling in Double Barriers

For double-barrier structures, transmission exhibits
sharp resonances whenever the intermediate quantum well
supports a standing wave condition:

kL =nm, n= 1,23,...
At resonance, complete transmission (T=1) occurs even

for E<Vo. These resonances correspond to quasi-bound states
within the well region.

Figure 4 shows the simulated transmission spectra for a
GaAs/AlGaAs double barrier (Vo=0.5¢V, a=1.8nm,
L=4nm.)

The peak positions align with analytical predictions,
confirming the accuracy of TMM for multilayer systems.

» Effective Mass Dependence

Tunneling is inversely related to the electron’s effective
mass (Mx).

Replacing Si (M*=0.26Mo) with GaAs (M*=0.067Mo0)
enhances T by nearly an order of magnitude for identical
barrier parameters.

The dependence follows approximately:

-a /m*(V -E)
T x e 0

This highlights material choice as a tunable factor for

controlling tunneling currents in nanoscale diodes and TFETS.

» Bias-Dependent Barrier Lowering
When an external bias V, is applied, the potential
becomes trapezoidal:

eV,
V(X) = VO —TX
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This modifies the tunneling exponent in the WKB integral:

—4 IZm 3

T(V,) =~ exp| V, — E)?]

3heV,

Simulation results agree with this dependence: a 0.5 V
bias reduces the effective barrier by ~30%, doubling T.

Such field-induced barrier lowering is the principle
underlying Fowler—Nordheim tunneling in thin oxides.

V. MONTE CARLO VARIABILITY ANALYSIS

> Motivation

In practical fabrication, barrier thickness can fluctuate
because of atomic-level imperfections, interface roughness,
and deposition inconsistencies.

Since the transmission coefficient T changes
exponentially with barrier width a, even tiny deviations of
£0.01 nm can cause significant variations in the tunneling
current.

Monte Carlo analysis quantifies this stochastic behavior.
» Procedure

e Generate N=5000 random barrier widths

a; from IV (2o, 6.2), where ay, =1.0 nm and o, = 0.02nm.

e Compute transmission T; for each a; .

e Calculate mean, standard deviation, and skewness of the
distribution.

This approach simulates process-induced variability in real
nanoscale barriers.

» Analytical Estimate of Sensitivity
Linearizing around

« 48T
@o: = & —2rdacoth(kag)

Substituting V, =1.0eV, E=0.3¢V, and a, =1.0nm
givesk~5.1 x 10°m™, and hence "T—T ~ 0.07, consistent with
Monte Carlo output.
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Fig 3 Histogram Depicting a Statistical Visualization of the Monte Carlo Simulation Results

» Output Metrics
Figure A2. Monte Carlo histogram of T variability for a
perturbed barrier width (6, =0.02 nm).

The distribution exhibits a slight positive skew,
indicating higher likelihood of increased tunneling for thinner
effective barriers due to quantum fluctuations.

e Statistics (Monte Carlo, Sample Size = 5000):

v' Mean T: 0.72

v’ Standard deviation: 0.05
v Skewness: +0.43

v Sample size: 5000

The results confirm that small variations in barrier
width (< 0.02 nm) can lead to significant deviations in
tunneling probability, especially in the low-energy regime,
reinforcing the importance of fabrication precision in
nanoscale device engineering.

» Inelastic and Scattering Effects (Phenomenological
Model)

To qualitatively assess the influence of inelastic and
dephasing  scattering on  coherent tunneling, a
phenomenological imaginary potential iT/2was added to the
barrier height in the double-barrier quantum well. This
approach, often referred to as the optical-potential or
Biittiker-probe approximation [Datta 2005], provides a

INISRT25NOV007

computationally efficient way to emulate phonon-induced
dephasing and energy-loss processes without performing a
full NEGF calculation.

Transmission spectra T€ were computed using the
Transfer Matrix Method (TMM) while systematically
varying the scattering strength I between 0 and 0.07 eV. The
structure parameters matched those used in the resonant-
tunneling-diode (RTD) study: V,, =0.5 eV, barrier thickness
= 1.8 nm, and well width = 4.0 nm.

Figure 7 illustrates the resulting T€ curves. Increasing
I' suppresses the resonance amplitude and broadens the
linewidth, reproducing the qualitative behavior observed
experimentally in phonon-assisted and incoherent tunneling
regimes. The quantitative variation of peak energy, peak
transmission, and full width at half-maximum (FWHM) is
summarized in figure 6.

These results confirm that even modest scattering (I" =
10-30 meV) can reduce peak transmission by = 35% and
increase the resonance width by = 20%. At higher values (I'>
70 meV), the resonance feature merges with the background,
indicating complete loss of phase coherence.

In summary, this simplified scattering model
complements the coherent-transport simulations presented
earlier by highlighting the sensitivity of resonant tunneling to
inelastic broadening, thereby providing a bridge toward
future self-consistent NEGF implementations.
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Table 3 That Displays that as I Increases, the Main Resonance Peak Broadens and its Amplitude Decreases, Consistent with
Scattering-Induced Dephasing

I (eV) Peak Energy E,ea: (V) Peak Transmission Approx. FWHM (eV)
0.000 0.140 0.999 0.017
0.010 0.140 0.861 0.019
0.030 0.141 0.657 0.021
0.070 0.499 0.473 —

1.0

anl \ // I
%oa» ,' N

o /

Fig 4 Transmission Spectra Under Varying Phenomenological Scattering Strengths (I')

Simulated transmission probability T(E)] for a double-
barrier structure with varying scattering strengths " = 0—
0.07 eV. Increasing I” broadens and suppresses the resonant
peaks, emulating phonon-induced dephasing and energy-loss
effects. The coherent (I” = 0) curve represents the ideal

quantum-limit response, while larger I" values illustrate
gradual loss of coherence.

» Comparative Method Evaluation

Table 4 Showing Comparison Between Different Methods of Evaluation

Method

Schroédinger
Equation

WKB
Approximation

Transfer Matrix
Method

Accuracy Computational Handles Physical Use Case
Speed Arbitrary Insight
Profiles
e e e e K ¥ % ¥r ¥ ¥t Limited High Benchmark /
Education
o e fr ¥y s sk e e e Moderate Medium Quick
estimation
% % v e % % Je e vr Excellent High Device
simulation
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e Schrédinger Equation: Best for exact benchmarking but Under bias IV, =1.0V, barrier lowering increases
computationally heavy.
o WKB Approximation:  Excellent for smooth, wide T106.4 x 107>, consistent with Fowler—Nordheim prediction.
barriers.
o Transfer Matrix Method: Balance between precision and ¢ Resonant Tunneling Diode (RTD)
performance; ideal for heterostructures and double For a GaAs/AlAs/GaAs structure:
barriers.
v Vo=0.5¢V,
» Device-Level Case Studies v Barrier width = 1.8 nm,

v" Well width = 4.0 nm
o Metal-Insulator-Metal (MIM) Diode

For a symmetric MIM diode (Al-ALOs-Al), Simulation yields resonant peaks at E: =0.128 eV, E2=0.379
parameters: ev.
Vo=2.2 eV, a=2.0nm. These correspond to quasi-bound states.
TMM predicts T=2.1xat 10~° at E=0.5 eV. The computed 1-V curve exhibits negative differential
resistance (NDR), a hallmark of RTD behavior.
I-V Characteristic of GaAs/AlIGaAs RTD(a=1.8nm, Lw =4.0 nm)
300
. 250}
<<
5 200+ Peak
e 0.261 V, 300.0 yA
42 NDR Region
@ 150+
© 100}
S0t
1 A A A m——
%.0 0.1 0.2 0.3 0.4 0.
Bias Voltage, V (V)
Valley
0.500 V, 8.6 yA
Fig 5 Qualitative 1-V that Demonstrates NDR
e Tunneling Field-Effect Transistor (TFET) This aligns with experimental variability observed in
Modeled using a triangular barrier under gate bias. ultra-thin high-k stacks.
Transmission computed via WKB integral. VI. RESULT AND DISCUSSION
At V; = 0.6V, tunneling current density J=1.1x 107* The numerical simulations conducted across the three
A/m2, Subthreshold slope improves to 45 mV/dec, beating quantum tunneling models—Schrddinger Equation Method,
the classical MOSFET limit. WKB Approximation, and Transfer Matrix Method
(TMM)—offer a comprehensive understanding of electron
e Nanoscale Variability in TFETs transmission across potential barriers of varying profiles and
Monte Carlo modeling reveals +20% spread in ON- material systems. The results, analyzed under controlled
current due to +0.02 nm gate-oxide variation. variations of barrier width, height, and applied bias, reveal

fundamental trends that distinguish the physical accuracy,
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computational efficiency, and device-level applicability of
each approach.

» Transmission Probability and Barrier Dependence

For the rectangular potential barrier, all three models
predict the expected exponential decay of transmission with
barrier width a and height Vo. Quantitatively, the
transmission probability T follows T « exp(—2«a), where k=

\2m(V, — E)/h? . The Schrédinger Equation Method (SE),
regarded as the numerical benchmark, yielded highly
accurate transmission values across all tested energies.

In comparison, the WKB Approximation slightly
underestimates transmission in the vicinity of abrupt potential
transitions—particularly for thin barriers (<1.2 nm)—where
the assumption of a slowly varying potential breaks down.
However, for smoother or thicker barriers, the WKB method
achieved excellent agreement with SE results (mean
deviation <2%). The Transfer Matrix Method (TMM),
capable of discretizing arbitrary potential shapes, matched SE
with sub-0.5% deviation, confirming its numerical robustness
and high precision for hetero-structured profiles.

These trends demonstrate that while SE offers the most
rigorous physical fidelity, TMM achieves a superior balance
between accuracy and computational economy, especially in
complex multilayer configurations where WKB assumptions
no longer hold.

» Computational Efficiency and Convergence

Computational analysis revealed significant differences
in runtime performance among the three methods. On average,
SE simulations for a single energy sweep required ~0.42 s due
to iterative matrix inversion, whereas TMM achieved
comparable accuracy in ~0.11 s. The WKB approximation
completed in under 0.05 s per sweep, highlighting its value
for fast estimation and analytical scaling studies.

Convergence tests further confirmed stability beyond
1500 spatial discretization points, with less than 0.1%
variation in transmission coefficients. Thus, while SE
remains indispensable for validation, TMM presents the
optimal trade-off between numerical precision and
computational throughput for large-scale or parametric
tunneling analyses.

» Energy-Dependent Transmission Characteristics

The computed transmission spectra exhibit the
canonical behavior predicted by quantum theory. For E < Vo,
transmission decays exponentially with decreasing energy,
while near the threshold E = Vo, a smooth transition to partial
reflection is observed. Above the barrier (E > Vo), oscillatory
transmission emerges due to interference between incident
and reflected waves within the barrier region.

This oscillatory structure is captured with high fidelity
in the TMM and SE methods but not in WKB, which
inherently neglects reflection phase interference.

» Resonant Tunneling and Quantum Well Effects
In double-barrier structures, the TMM simulations reveal
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pronounced resonance peaks corresponding to quasi-bound
states in the intermediate well. These resonances occur at
discrete energy levels satisfying the constructive interference
condition 2k, L = nm, where L is the well width. As shown
in the GaAs/AlGaAs system, complete transmission (T=1) is
achieved even for sub-barrier energies (E < Vo), consistent
with experimental observations of resonant tunneling diodes
(RTDs).

The accuracy of resonance energy prediction by TMM
(within 1 meV of analytical estimates) validates its suitability
for modeling multi-layered quantum systems, where phase
continuity and interface matching are critical. WKB fails to
resolve such resonance effects due to its single-pass nature
and lack of boundary phase handling.

» Material and Effective Mass Influence

A direct comparison between silicon (M = 0.26M,) *
and gallium arsenide (M = 0.067M,) * barriers underscore
the material dependence of tunneling phenomena. For
identical barrier parameters (Vo = 1 eV, a = 1 nm),
transmission in GaAs was nearly an order of magnitude
higher, reflecting the inverse relationship between effective
mass and tunneling probability. The simulations confirmed

the approximate scaling T o exp[—amx* (V, —E)],
emphasizing that lower effective masses promote higher
transmission and reduced resistance in nanoscale diode
applications.

> Bias-Dependent Barrier Lowering

Application of an external bias transforms the potential
from rectangular to trapezoidal, effectively reducing the
tunneling barrier height. Simulations indicate that a bias of
0.5 V lowers the effective barrier by ~30%, resulting in
approximately a twofold increase in transmission probability.
This observation aligns with Fowler—Nordheim tunneling
theory, which explains field-enhanced electron emission
through narrow oxide layers in metal—-insulator-metal (MIM)
diodes.

The model’s results thus reinforce that even moderate
biasing dramatically alters tunneling conductance, directly
linking device performance to applied field intensity.

» Monte Carlo Variability and Fabrication Sensitivity

Monte Carlo simulations, introducing random
perturbations in barrier width (o, = 0.02 nm), yielded a
positively skewed transmission distribution (mean T = 0.72,
o = 0.05, skewness = +0.43). These results quantitatively
demonstrate that sub-angstrom fabrication variability can
cause transmission deviations exceeding +10%, particularly
at low energies where exponential sensitivity is most
pronounced.

This finding highlights a critical engineering insight:
atomic-scale precision in layer deposition is essential to
ensure reproducible tunneling behavior in quantum diodes
and TFETs. Such stochastic analysis parallels process
variation studies in advanced CMOS and nano-FET
technologies.
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» Comparative Method Evaluation

Collectively, the results indicate that TMM provides the
most practical solution for nanoscale tunneling studies—
offering accuracy comparable to SE but with significantly

International Journal of Innovative Science and Research Technology
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reduced computational load. WKB retains relevance for
analytical modeling and rapid estimation, particularly when
qualitative trends rather than exact transmission magnitudes
are required.

Table 5 Performing a Comparative Analysis

Transfer Matrix Near-exact

Moderate—Fast

Method Accuracy Computational Applicability Physical Insight
Speed
Schrodinger Benchmark Slowest Ideal for validation, Full wavefunction
Equation (Exact) single barriers analysis
wKB High for Fastest Approximation for Analytical
Approximation smooth wide or slowly intuition
barriers varying potentials

Arbitrary, multilayer Excellent

Method (£0.5%) barriers balance of
precision and
generality

» Implications for Device-Level Modeling VIIL. CONCLUSION

The observed trends can be directly applied to MIM
diodes, RTDs, and TFETs. In MIM devices, applied bias
lowers the barrier, causing the current to rise exponentially.

In RTDs, resonance effects produce sharp current peaks
that lead to negative differential resistance (NDR). In TFETS,
tunneling-driven subthreshold conduction achieves slopes
below 60 mV/dec, surpassing traditional MOSFET
performance.

Overall, these results confirm that the tunneling models used
here are broadly applicable across modern quantum device
architectures.

» Statistical and Physical Interpretation

Repeated simulations across multiple material and
geometric configurations (N = 5000 trials) confirmed
statistically significant differences in mean transmission
probabilities (ANOVA, p < 0.01). The low standard deviation
in SE and TMM outcomes underscores numerical consistency,
while higher variability in WKB results reflects sensitivity to
abrupt potential gradients. These statistical validations
reinforce the reliability of the comparative framework.

VII. FUTURE WORK
» Future Extensions May Include:

o Incorporation of temperature-dependent effects using
Fermi-Dirac carrier distributions.

e Coupling to Poisson solvers for self-consistent potential
profiles.

o Integration with NEGF formalism to capture scattering
and coherence loss.

e Application to 2D materials (e.g., MoS:, graphene) for
ultra-thin tunneling junctions.

e Such developments would enable predictive quantum
transport simulations for emerging nanoelectronic devices.

INISRT25NOV007

This comparative analysis regarding the Schrodinger
Equation Method, WKB Approximation, and Transfer Matrix
Method gives a unified quantitative view of the physics,
accuracy, and computational efficiency that controls quantum
tunneling in nanoscale diodes. The results establish a clear
hierarchy among these models, each suited to distinct design
priorities within nanoelectronic applications.

The Schrodinger Equation method is the ultimate
standard, yielding exact results, including subtle quantum
interference effects and exact tunneling probabilities through
arbitrary potential profiles. In practice, however, its
computational cost limits scalability when extended to multi-
layer geometries or statistically varied ones. On the other
hand, the WKB approximation provides great analytical
insight and speedy estimations for slowly varying barriers but
loses much of its precision near sudden potential jumps and
cannot provide information on resonant phenomena. The
Transfer Matrix Method, by contrast, validated against both
here, appears to be the most balanced and pragmatic tool,
numerically robust, highly adaptable to hetero-structures, and
accurate within sub-percent deviation from the exact results.

The conducted simulations demonstrate that the
tunneling probability exhibits an exponential dependence on
the geometric and material parameters of the barrier,
including its width, height, applied bias, and effective mass.
Even minimal sub-angstrém variations were found to cause
measurable changes in transmission, emphasizing the need
for atomic-level precision in nanodevice fabrication.
Furthermore, Monte Carlo analyses indicate that stochastic
fluctuations introduced by manufacturing imperfections
significantly influence tunneling behavior, thereby bridging
the gap between theoretical predictions and practical
engineering considerations.

At the device level, these results show a clear
connection between the theoretical models and the practical
behavior of quantum electronic components. In Metal-
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Insulator—Metal (MIM) diodes, the applied bias causes a
noticeable reduction in the potential barrier, consistent with
Fowler—Nordheim tunneling, which leads to an exponential
increase in current flow. In Resonant Tunneling Diodes
(RTDs), phase-coherent resonance peaks give rise to negative
differential resistance, while in Tunneling Field-Effect
Transistors (TFETSs), controlled band-to-band tunneling
enables subthreshold slopes beyond the thermionic limit.
Together, these effects confirm that accurate modeling of
tunneling probabilities is not just a theoretical exercise but a
key factor in improving the performance, reliability, and
reproducibility of next-generation quantum devices.

Ultimately, the study highlights that the choice of
modeling technique should be dictated by the specific design
objective: the Schrodinger Equation for exact benchmarking,
WKB for fast analytical evaluation, and TMM for realistic
multi-layer and material-dependent analysis.Looking ahead,
this work can be extended by including time-dependent
tunneling simulations, self-consistent electrostatics, or
machine learning-based surrogate models to accelerate large-
scale device optimization.In essence, this study bridges
quantum mechanical theory and computational practicality,
offering a valuable framework for understanding and
designing electron transport in nanoscale devices—where
classical and quantum behaviors come together to define the
future of modern electronics.
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