Volume 10, Issue 11, November — 2025
ISSN No: -2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/25nov074

LLM-Powered Legacy Code Modernization

Sahil Sanas!; Arya Naik?; Aditya Veerkar?; Pooja T. Kohok*

123 Student, Pune Institute of Computer Technology
4 Assistant Professor, Pune Institute of Computer Technology

Publication Date: 2025/11/10

Abstract: Legacy COBOL and C systems are still widely used in industries, yet they are increasingly costly, insecure, and
incompatible with modern platforms. Traditional modernization methods, although effective, often require significant time
and resources and carry high risks of disruption.

This paper proposes a scalable alternative that leverages Large Language Models (LLMs) within a structured multi-
agent framework, guided by the “7Rs of Modernization.” The frame- work comprises three agents: an Analysis Agent that
interprets and maps legacy code, a Coder Agent that generates modern equivalents, and a Review Agent that validates
correctness, security, and compliance through iterative feedback.

By automating much of the migration process, the proposed approach enables faster, more transparent, and less risky
mod- ernization. It helps enterprises transition from outdated systems to modular, secure, and cloud-ready solutions,
offering a cost- effective and future-proof pathway to digital transformation.

Keywords:- LLM, Legacy Code, Modernization, 7Rs of Mod- Ernization, Multi-Agent Framework, Software Migration, Reliabil-
Ity, Performance.

How to Cite: Sahil Sanas; Arya Naik; Aditya Veerkar; Pooja T. Kohok (2025). LLM-Powered Legacy Code Modernization.

International Journal of Innovative Science and Research Technology, 10(11), 118-121.

https://doi.org/10.38124/ijisrt/25nov074
. INTRODUCTION

Legacy systems, though still powering critical
industries such as banking, insurance, and government, have
become increasingly difficult to sustain in today’s technology
land- scape. Most of these systems were written decades ago
in aging languages like COBOL or C, designed for hardware
and business needs that no longer exist. Over time, this has
created several pressing challenges.

. High Costs

Maintaining these massive and tightly coupled
codebases requires enormous financial investment. In fact,
studies show that maintenance alone can consume up to 60%
of an en- terprise’s IT budget. The sheer size and complexity
of these systems make even minor updates both time-
consuming and expensive [3].

. Security and Performance Risks

Built on outdated paradigms, legacy software lacks the
modern safeguards needed to withstand cyber threats today.
Their rigid procedural structure also hampers performance,
making them more vulnerable to inefficiencies and system
failures [5].

IJISRT25NOV074

C. Incompatibility with Modern Technology

Legacy applications are rarely compatible with cloud
com- puting, APIs, or modular, object-oriented designs. This
incom- patibility prevents organizations from integrating their
systems with modern platforms, limiting innovation and
scalability [3].

» Workforce Decline

A critical concern is the steadily declining number of
developers proficient in legacy languages such as COBOL.
Recent estimates indicate that only around 5% of current
programmers have experience in these systems, leaving many
organizations without the necessary skills to maintain and
modernize them effectively [3].

Together, these challenges create a vicious cycle of in-
creased costs, increased risks, and architectural decay.
Without modernization, enterprises risk being locked into
fragile sys- tems that cannot keep pace with today’s evolving
business and technology demands [3], [5].

www.ijisrt.com 118

https://doi.org/10.38124/ijisrt/25nov074
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov074

Volume 10, Issue 11, November — 2025
ISSN No: -2456-2165

1. LITERATURE SURVEY

Despite their long-standing presence, COBOL systems
con- tinue to serve as the foundational infrastructure for the
ma- jority of financial institutions worldwide [3]. However,
these legacy systems are inherently complex, costly to
maintain, and prone to operational inefficiencies and errors.
To address these challenges, recent research has focused on
artificial intelligence (Al)-driven approaches for the
automated mod- ernization of COBOL applications into
contemporary object- oriented languages such as Java [5].
Among these, a prominent method utilizes long short-term
memory (LSTM) networks to parse COBOL code into
Abstract Syntax Trees (ASTs) and subsequently translate
them into optimized and maintainable Java code [1], [2]. This
approach has demonstrated notable effectiveness, achieving
up to 93% translation accuracy and a 35% improvement in
maintainability, while ensuring the preservation of core
business logic [3].

A. Statistical Analysis
Studies highlight the scale and urgency of the
modernization challenge:

> Prevalence & Impact:

Approximately 70% of financial institutions still
operate in COBOL systems, handling an estimated $3
trillion in daily transactions. Globally, more than 200 billion
lines of COBOL code remain in active use. Maintaining these
systems consumes up to 60% of IT budgets, while the
COBOL workforce has decreased to just 5% of developers

[3].

» Technical Debt & Complexity:

On average, COBOL modules have 18 decision paths
(compared to the modern ideal of 10) and 8 dependencies per
module, leading to a 30% higher defect rate compared to
modern languages such as Java [5].

» Challenges of Existing Solutions:

Manual modernization achieves only 75% accuracy, re-
quires six months for every 10,000 lines of code, and risks
losing 40% of business logic. Rule-based tools (e.g., Micro
Focus) improve accuracy to about 82%, but still miss
contextual nuances in 20% of cases [3], [5].

> Al-Based Results:

In comparison, Al-driven approaches achieve 93%
accu- racy, improve maintainability by 35%, reduce
complexity from 18 to 9, lower coupling from 8 to 4, and
retain 93% of the original logic [3].

» Market & Context:

Legacy modernization is expected to reach a $500
billion market, with 62% of developers seeking Al tools for
support. Since 80% of enterprise applications run on Java, it is
the primary focus for migration [3].

IJISRT25NOV074

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25nov074

» Scale of Al-Driven Migrations:

Solovyeva et al. demonstrate migration of a 2.5M-line
PL/SQL system into Java using domain-model guided
prompting. Their results show high syntactic correctness and
promising functional accuracy [6].

» Benchmark Performance:

In the CODEMENYV dataset, comprising 922 migration
examples across 19 Python/Java packages, the average
pass@1 rate across LLMs was just 26.50%, with the strongest
model (GPT-40) reaching 43.84%. This gap shows that while
LLMs are useful, their outputs remain unreliable without
human validation [7].

B. Modernization Tools and Approaches

» IBM Watsonx Code Assistant for Z (WCA4Z2):

IBM’s WCA4Z is designed for COBOL-to-Java
migra- tion. Instead of simple line-by-line conversion,
which often produces unmaintainable “JOBOL” (Java code
that mimics COBOL logic), it follows a two-phase process:
first, a Class Designer generates the Java class structure; then
method-level transformations are applied with hu- man
oversight to ensure accuracy and maintainability [5].

» Evaluation of Translation:
The quality of translated code is assessed through:

e Syntactic Checking —
Ensures generated Java code compiles without common
LLM errors such as re- peated loops [5].

e Semantic Checking —
Verifies correct handling of variables, procedures, and
middleware (e.g., CICS or SQL) [5].

o LLMs as Judges (LaaJs) —
Other LLMs evaluate the translation, focusing on logic
preservation and idiomatic correctness [5].

» LSTM Networks:

Long Short-Term Memory (LSTM) networks are
effective for code translation as they capture long-term depen-
dencies in sequential data, addressing the limitations of
traditional RNNs. Their three gates—Forget, Input, and
Output—allow selective retention, updating, and passing of
information, making them well-suited for handling legacy
code [1], [2].

» Multi-agent upgrades

Ala-Salmi et al. proposed an autonomous multi-agent
pipeline for upgrading legacy web applications. By dis-
tributing roles such as file updater and view upgrader across
agents, their method reduced translation errors and improved
precision compared to single-agent promptings [10].

www.ijisrt.com 119

https://doi.org/10.38124/ijisrt/25nov074
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No: -2456-2165

» Domain-specific improvements:

In the COBOL/mainframe domain, Dau et al.
introduced XMainframe, a model designed for modernization
tasks. On MainframeBench, it achieved 30% higher accuracy
on multiple-choice QA than DeepSeek-Coder, doubled the
BLEU score of Mixtral-Instruct 8x7B on QA tasks, and
scored six times higher than GPT-3.5 for COBOL
summarization [8].

» Industrial-scale adoption:

At Google, Ziftci et al. reported on 39 migrations con-
ducted over 12 months by three developers. These migra-
tions involved 595 code changes and 93,574 total edits. Of
these, 74.45% of the code changes and 69.46% of edits were
generated by an LLM, resulting in an estimated 50% reduction
in migration time compared to prior manual efforts [9].

1. PROPOSED SOLUTION

To address the challenges of legacy system modernization,
we propose a novel approach that leverages Large Language
Models (LLMs) within a structured multi-agent framework.
The solution is guided by the well-established concept of the
“7Rs of Modernization” and employs advanced custom fine-
tuned models.

The framework is built around three specialized agents,
each with a distinct role:

A. Analysis Agent:

Acts as the architect of the project. Using static analysis
tools, it maps out the dependency tree, interfile relation-
ships, and logical flow of the legacy codebase. Its main re-
sponsibility is to generate a clear modernization roadmap,
breaking down the migration process into smaller, well-
structured tasks arranged in the correct order.

B. Coder Agent:

Once tasks are defined, the Coder Agent translates
them into modern code. It uses fine-tuned LLMs to ensure
high-fidelity code generation, producing secure, optimized,
and functionally accurate implementations. If required, it can
also handle additional subtasks defined during the process.

C. Review Agent:

After code is generated, the Review Agent evaluates
its quality, accuracy, and security. It checks for vulnerabili-
ties, ensures that the new implementation is in accordance
with modern standards, and verifies that the intended
functionality is preserved.

A key strength of this framework is the feedback loop.
If the Review Agent identifies issues, it sends structured feed-
back to the Analysis Agent, which then creates a refined task
for the Coder Agent. This iterative process ensures
continuous improvement, reduces the need for heavy human
supervision, and allows external inputs when needed.

IJISRT25NOV074

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25nov074

By distributing responsibilities among specialized
agents and embedding feedback into the workflow, the
modernization process becomes more transparent,
manageable, and reliable. This approach minimizes risks
while ensuring that the final migrated system is both modern
and robust.

Legacy Source Code
+ Dependencies

¥
Analysis Agent

+ Static Code Analysis
+ Dependency Mapping
+ Modernization Roadmap

Y

Review Agent

+ Security & Accuracy Check Feedback
+ LLM-as-Judge Evaluation Loop
+ Feedback Generation

l

Coder Agent

Fy

+ LLM-based translation
+ Modern Code Generation
+ Logic Preservation

L
Modern Code

Modular & Cloud-Ready
Enhanced Maintainability

-

-

Fig 1 System Architecture

www.ijisrt.com 120

https://doi.org/10.38124/ijisrt/25nov074
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No: -2456-2165

V. CONCLUSION

Legacy systems have long supported critical industries,
but their growing maintenance costs, security vulnerabilities,
and incompatibility with modern platforms make their
continued reliance unsustainable. Traditional modernization
approaches are often too slow, risky, and resource-intensive
to meet present-day demands. The emergence of Large
Language Models offers new opportunities, but the evidence
highlights both potential and limitations. Large-scale
deployments at Google show that over two-thirds of edits can
be automated, with an estimated 50% reduction in migration
time [9]. At the same time, benchmarks like CODEMENV
reveal that LLMs still solve fewer than half of migration tasks
correctly [7]. Domain-specific models such as XMainframe
demonstrate that targeted training can deliver dramatic
improvements in special- ized contexts like COBOL [8].This
paper presented a novel multi-agent framework powered by
Large Language Mod- els to address these challenges. By
dividing responsibilities among Analysis, Coder, and Review
agents and incorporating a feedback loop, the approach
ensures structured, accurate, and efficient code migration.
The result is a practical pathway for enterprises to transform
outdated software into secure, modular, and cloud-ready
systems while preserving essential functionality.

REFERENCES

[1]. K. Greff, R. K. Srivastava, J. Koutn'tk, B. R.
Steunebrink, and J. Schmidhuber, “LSTM: A search
space odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp.
2222-2232, Oct. 2016.

[2]. S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp.
1735-1780, Nov. 1997.

[3]. G. Bandarupalli, “Code Reborn: AI-Driven Legacy
Systems Modern- ization from COBOL to Java,”
arXiv preprint arXiv:2504.11335, Apr. 2025.
Available: https://arxiv.org/abs/2504.11335

[4]. J. Fitzpatrick, “Case Study: Converting C Programs to
C++,” C++ Report, vol. 8, no. 2, p. 40, 1996.

[5]. S. Froimovich, R. Gal, W. lbraheem, and A. Ziv,
“Quality Eval- uation of COBOL to Java Code
Transformation,” arXiv preprint arXiv:2507.23356,
Jul. 2025. Available: https://arxiv.org/abs/2507.23356

[6]. L. Solovyeva, et al, “Leveraging LLMs for
Automated Translation of Legacy Code: A Case
Study on PL/SQL to Java Transformation”
arXiv:2508.19663v1 [cs.SE] 27 Aug 2025. Available:
https://arxiv.org/ html/2508.19663

[7]1. K. Cheng, X. Shen, Y. Yang, T. Wang, Y. Cao, M. A.
Ali, H. Wang, L. Hu, D. Wang, “CODEMENV:
Benchmarking Large Language Models on Code
Migration,” arXiv preprint arXiv:2506.00894, 2025.
Available: https://arxiv.org/abs/2506.00894

[8]. A. T. V. Dau, H. T. Dao, A. T. Nguyen, et al.,

“XMainframe: A Large Language Model for
Mainframe Modernization,” arXiv preprint
arXiv:2408.04660, 2024, Available:

https://arxiv.org/abs/2408.04660

IJISRT25NOV074

[9].

[10].

[11].

www.ijisrt.com

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25nov074

C. Ziftci, S. Nikolov, A. Sjo'vall, B. Kim, D.
Codecasa, M. Kim, et al., “Migrating Code At Scale
With LLMs At Google,” arXiv preprint
arXiv:2504.09691, 2025. Available:
https://arxiv.org/pdf/2504.09691

J. Ala-Salmi, et al., “Autonomous Multi-Agent
Modernization of Legacy Web Applications,” arXiv
preprint arXiv:2501.19204, 2025. Available:
https://arxiv.org/abs/2501.19204

C. Diggs, M. Doyle, A. Madan, S. Scott, E. Escamilla
et al, “Leveraging LLMs for Legacy Code
Modernization: Challenges and Opportunities for
LLM-Generated Documentation” arXiv preprint
arXiv:2411.14971, 2024, Auvailable:
https://arxiv.org/abs/2411.14971

121

https://doi.org/10.38124/ijisrt/25nov074
http://www.ijisrt.com/
https://arxiv.org/abs/2504.11335
https://arxiv.org/abs/2507.23356
https://arxiv.org/html/2508.19663
https://arxiv.org/html/2508.19663
https://arxiv.org/abs/2506.00894
https://arxiv.org/abs/2408.04660
https://arxiv.org/pdf/2504.09691
https://arxiv.org/abs/2501.19204
https://arxiv.org/abs/2411.14971

