
Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25nov074

IJISRT25NOV074 www.ijisrt.com 118

LLM-Powered Legacy Code Modernization

Sahil Sanas1; Arya Naik2; Aditya Veerkar3; Pooja T. Kohok4

1,2,3 Student, Pune Institute of Computer Technology
4 Assistant Professor, Pune Institute of Computer Technology

Publication Date: 2025/11/10

Abstract: Legacy COBOL and C systems are still widely used in industries, yet they are increasingly costly, insecure, and

incompatible with modern platforms. Traditional modernization methods, although effective, often require significant time

and resources and carry high risks of disruption.

This paper proposes a scalable alternative that leverages Large Language Models (LLMs) within a structured multi-

agent framework, guided by the “7Rs of Modernization.” The frame- work comprises three agents: an Analysis Agent that

interprets and maps legacy code, a Coder Agent that generates modern equivalents, and a Review Agent that validates

correctness, security, and compliance through iterative feedback.

By automating much of the migration process, the proposed approach enables faster, more transparent, and less risky

mod- ernization. It helps enterprises transition from outdated systems to modular, secure, and cloud-ready solutions,

offering a cost- effective and future-proof pathway to digital transformation.

Keywords:- LLM, Legacy Code, Modernization, 7Rs of Mod- Ernization, Multi-Agent Framework, Software Migration, Reliabil-

Ity, Performance.

How to Cite: Sahil Sanas; Arya Naik; Aditya Veerkar; Pooja T. Kohok (2025). LLM-Powered Legacy Code Modernization.

International Journal of Innovative Science and Research Technology, 10(11), 118-121.

https://doi.org/10.38124/ijisrt/25nov074

I. INTRODUCTION

Legacy systems, though still powering critical

industries such as banking, insurance, and government, have

become increasingly difficult to sustain in today’s technology

land- scape. Most of these systems were written decades ago

in aging languages like COBOL or C, designed for hardware

and business needs that no longer exist. Over time, this has

created several pressing challenges.

A. High Costs

Maintaining these massive and tightly coupled

codebases requires enormous financial investment. In fact,

studies show that maintenance alone can consume up to 60%

of an en- terprise’s IT budget. The sheer size and complexity

of these systems make even minor updates both time-

consuming and expensive [3].

B. Security and Performance Risks

Built on outdated paradigms, legacy software lacks the

modern safeguards needed to withstand cyber threats today.

Their rigid procedural structure also hampers performance,

making them more vulnerable to inefficiencies and system

failures [5].

C. Incompatibility with Modern Technology

Legacy applications are rarely compatible with cloud

com- puting, APIs, or modular, object-oriented designs. This

incom- patibility prevents organizations from integrating their

systems with modern platforms, limiting innovation and

scalability [3].

 Workforce Decline

A critical concern is the steadily declining number of

developers proficient in legacy languages such as COBOL.

Recent estimates indicate that only around 5% of current

programmers have experience in these systems, leaving many

organizations without the necessary skills to maintain and

modernize them effectively [3].

Together, these challenges create a vicious cycle of in-

creased costs, increased risks, and architectural decay.

Without modernization, enterprises risk being locked into

fragile sys- tems that cannot keep pace with today’s evolving

business and technology demands [3], [5].

https://doi.org/10.38124/ijisrt/25nov074
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov074

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25nov074

IJISRT25NOV074 www.ijisrt.com 119

II. LITERATURE SURVEY

Despite their long-standing presence, COBOL systems

con- tinue to serve as the foundational infrastructure for the

ma- jority of financial institutions worldwide [3]. However,

these legacy systems are inherently complex, costly to

maintain, and prone to operational inefficiencies and errors.

To address these challenges, recent research has focused on

artificial intelligence (AI)-driven approaches for the

automated mod- ernization of COBOL applications into

contemporary object- oriented languages such as Java [5].

Among these, a prominent method utilizes long short-term

memory (LSTM) networks to parse COBOL code into

Abstract Syntax Trees (ASTs) and subsequently translate

them into optimized and maintainable Java code [1], [2]. This

approach has demonstrated notable effectiveness, achieving

up to 93% translation accuracy and a 35% improvement in

maintainability, while ensuring the preservation of core

business logic [3].

A. Statistical Analysis

Studies highlight the scale and urgency of the

modernization challenge:

 Prevalence & Impact:

Approximately 70% of financial institutions still

operate in COBOL systems, handling an estimated $3

trillion in daily transactions. Globally, more than 200 billion

lines of COBOL code remain in active use. Maintaining these

systems consumes up to 60% of IT budgets, while the

COBOL workforce has decreased to just 5% of developers

[3].

 Technical Debt & Complexity:

On average, COBOL modules have 18 decision paths

(compared to the modern ideal of 10) and 8 dependencies per

module, leading to a 30% higher defect rate compared to

modern languages such as Java [5].

 Challenges of Existing Solutions:

Manual modernization achieves only 75% accuracy, re-

quires six months for every 10,000 lines of code, and risks

losing 40% of business logic. Rule-based tools (e.g., Micro

Focus) improve accuracy to about 82%, but still miss

contextual nuances in 20% of cases [3], [5].

 AI-Based Results:

In comparison, AI-driven approaches achieve 93%

accu- racy, improve maintainability by 35%, reduce

complexity from 18 to 9, lower coupling from 8 to 4, and

retain 93% of the original logic [3].

 Market & Context:

Legacy modernization is expected to reach a $500

billion market, with 62% of developers seeking AI tools for

support. Since 80% of enterprise applications run on Java, it is

the primary focus for migration [3].

 Scale of AI-Driven Migrations:

Solovyeva et al. demonstrate migration of a 2.5M-line

PL/SQL system into Java using domain-model guided

prompting. Their results show high syntactic correctness and

promising functional accuracy [6].

 Benchmark Performance:

In the CODEMENV dataset, comprising 922 migration

examples across 19 Python/Java packages, the average

pass@1 rate across LLMs was just 26.50%, with the strongest

model (GPT-4O) reaching 43.84%. This gap shows that while

LLMs are useful, their outputs remain unreliable without

human validation [7].

B. Modernization Tools and Approaches

 IBM Watsonx Code Assistant for Z (WCA4Z):

IBM’s WCA4Z is designed for COBOL-to-Java

migra- tion. Instead of simple line-by-line conversion,

which often produces unmaintainable “JOBOL” (Java code

that mimics COBOL logic), it follows a two-phase process:

first, a Class Designer generates the Java class structure; then

method-level transformations are applied with hu- man

oversight to ensure accuracy and maintainability [5].

 Evaluation of Translation:

The quality of translated code is assessed through:

 Syntactic Checking –

Ensures generated Java code compiles without common

LLM errors such as re- peated loops [5].

 Semantic Checking –

Verifies correct handling of variables, procedures, and

middleware (e.g., CICS or SQL) [5].

 LLMs as Judges (LaaJs) –

Other LLMs evaluate the translation, focusing on logic

preservation and idiomatic correctness [5].

 LSTM Networks:

Long Short-Term Memory (LSTM) networks are

effective for code translation as they capture long-term depen-

dencies in sequential data, addressing the limitations of

traditional RNNs. Their three gates—Forget, Input, and

Output—allow selective retention, updating, and passing of

information, making them well-suited for handling legacy

code [1], [2].

 Multi-agent upgrades

Ala-Salmi et al. proposed an autonomous multi-agent

pipeline for upgrading legacy web applications. By dis-

tributing roles such as file updater and view upgrader across

agents, their method reduced translation errors and improved

precision compared to single-agent promptings [10].

https://doi.org/10.38124/ijisrt/25nov074
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25nov074

IJISRT25NOV074 www.ijisrt.com 120

 Domain-specific improvements:

In the COBOL/mainframe domain, Dau et al.

introduced XMainframe, a model designed for modernization

tasks. On MainframeBench, it achieved 30% higher accuracy

on multiple-choice QA than DeepSeek-Coder, doubled the

BLEU score of Mixtral-Instruct 8x7B on QA tasks, and

scored six times higher than GPT-3.5 for COBOL

summarization [8].

 Industrial-scale adoption:

At Google, Ziftci et al. reported on 39 migrations con-

ducted over 12 months by three developers. These migra-

tions involved 595 code changes and 93,574 total edits. Of

these, 74.45% of the code changes and 69.46% of edits were

generated by an LLM, resulting in an estimated 50% reduction

in migration time compared to prior manual efforts [9].

III. PROPOSED SOLUTION

To address the challenges of legacy system modernization,

we propose a novel approach that leverages Large Language

Models (LLMs) within a structured multi-agent framework.

The solution is guided by the well-established concept of the

“7Rs of Modernization” and employs advanced custom fine-

tuned models.

The framework is built around three specialized agents,

each with a distinct role:

A. Analysis Agent:

Acts as the architect of the project. Using static analysis

tools, it maps out the dependency tree, interfile relation-

ships, and logical flow of the legacy codebase. Its main re-

sponsibility is to generate a clear modernization roadmap,

breaking down the migration process into smaller, well-

structured tasks arranged in the correct order.

B. Coder Agent:

Once tasks are defined, the Coder Agent translates

them into modern code. It uses fine-tuned LLMs to ensure

high-fidelity code generation, producing secure, optimized,

and functionally accurate implementations. If required, it can

also handle additional subtasks defined during the process.

C. Review Agent:

After code is generated, the Review Agent evaluates

its quality, accuracy, and security. It checks for vulnerabili-

ties, ensures that the new implementation is in accordance

with modern standards, and verifies that the intended

functionality is preserved.

A key strength of this framework is the feedback loop.

If the Review Agent identifies issues, it sends structured feed-

back to the Analysis Agent, which then creates a refined task

for the Coder Agent. This iterative process ensures

continuous improvement, reduces the need for heavy human

supervision, and allows external inputs when needed.

By distributing responsibilities among specialized

agents and embedding feedback into the workflow, the

modernization process becomes more transparent,

manageable, and reliable. This approach minimizes risks

while ensuring that the final migrated system is both modern

and robust.

Fig 1 System Architecture

https://doi.org/10.38124/ijisrt/25nov074
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No: -2456-2165 https://doi.org/10.38124/ijisrt/25nov074

IJISRT25NOV074 www.ijisrt.com 121

IV. CONCLUSION

Legacy systems have long supported critical industries,

but their growing maintenance costs, security vulnerabilities,

and incompatibility with modern platforms make their

continued reliance unsustainable. Traditional modernization

approaches are often too slow, risky, and resource-intensive

to meet present-day demands. The emergence of Large

Language Models offers new opportunities, but the evidence

highlights both potential and limitations. Large-scale

deployments at Google show that over two-thirds of edits can

be automated, with an estimated 50% reduction in migration

time [9]. At the same time, benchmarks like CODEMENV

reveal that LLMs still solve fewer than half of migration tasks

correctly [7]. Domain-specific models such as XMainframe

demonstrate that targeted training can deliver dramatic

improvements in special- ized contexts like COBOL [8].This

paper presented a novel multi-agent framework powered by

Large Language Mod- els to address these challenges. By

dividing responsibilities among Analysis, Coder, and Review

agents and incorporating a feedback loop, the approach

ensures structured, accurate, and efficient code migration.

The result is a practical pathway for enterprises to transform

outdated software into secure, modular, and cloud-ready

systems while preserving essential functionality.

REFERENCES

[1]. K. Greff, R. K. Srivastava, J. Koutn´ık, B. R.

Steunebrink, and J. Schmidhuber, “LSTM: A search

space odyssey,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 28, no. 10, pp.

2222–2232, Oct. 2016.

[2]. S. Hochreiter and J. Schmidhuber, “Long short-term

memory,” Neural Computation, vol. 9, no. 8, pp.

1735–1780, Nov. 1997.

[3]. G. Bandarupalli, “Code Reborn: AI-Driven Legacy

Systems Modern- ization from COBOL to Java,”

arXiv preprint arXiv:2504.11335, Apr. 2025.

Available: https://arxiv.org/abs/2504.11335

[4]. J. Fitzpatrick, “Case Study: Converting C Programs to

C++,” C++ Report, vol. 8, no. 2, p. 40, 1996.

[5]. S. Froimovich, R. Gal, W. Ibraheem, and A. Ziv,

“Quality Eval- uation of COBOL to Java Code

Transformation,” arXiv preprint arXiv:2507.23356,

Jul. 2025. Available: https://arxiv.org/abs/2507.23356

[6]. L. Solovyeva, et al., “Leveraging LLMs for

Automated Translation of Legacy Code: A Case

Study on PL/SQL to Java Transformation”

arXiv:2508.19663v1 [cs.SE] 27 Aug 2025. Available:

https://arxiv.org/ html/2508.19663

[7]. K. Cheng, X. Shen, Y. Yang, T. Wang, Y. Cao, M. A.

Ali, H. Wang, L. Hu, D. Wang, “CODEMENV:

Benchmarking Large Language Models on Code

Migration,” arXiv preprint arXiv:2506.00894, 2025.

Available: https://arxiv.org/abs/2506.00894

[8]. A. T. V. Dau, H. T. Dao, A. T. Nguyen, et al.,

“XMainframe: A Large Language Model for

Mainframe Modernization,” arXiv preprint

arXiv:2408.04660, 2024. Available:

https://arxiv.org/abs/2408.04660

[9]. C. Ziftci, S. Nikolov, A. Sjo¨vall, B. Kim, D.

Codecasa, M. Kim, et al., “Migrating Code At Scale

With LLMs At Google,” arXiv preprint

arXiv:2504.09691, 2025. Available:

https://arxiv.org/pdf/2504.09691

[10]. J. Ala-Salmi, et al., “Autonomous Multi-Agent

Modernization of Legacy Web Applications,” arXiv

preprint arXiv:2501.19204, 2025. Available:

https://arxiv.org/abs/2501.19204

[11]. C. Diggs, M. Doyle, A. Madan, S. Scott, E. Escamilla

et al., “Leveraging LLMs for Legacy Code

Modernization: Challenges and Opportunities for

LLM-Generated Documentation” arXiv preprint

arXiv:2411.14971, 2024. Available:

https://arxiv.org/abs/2411.14971

https://doi.org/10.38124/ijisrt/25nov074
http://www.ijisrt.com/
https://arxiv.org/abs/2504.11335
https://arxiv.org/abs/2507.23356
https://arxiv.org/html/2508.19663
https://arxiv.org/html/2508.19663
https://arxiv.org/abs/2506.00894
https://arxiv.org/abs/2408.04660
https://arxiv.org/pdf/2504.09691
https://arxiv.org/abs/2501.19204
https://arxiv.org/abs/2411.14971

