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Abstract: Legacy COBOL and C systems are still widely used in industries, yet they are increasingly costly, insecure, and 

incompatible with modern platforms. Traditional modernization methods, although effective, often require significant time 

and resources and carry high risks of disruption. 

 

This paper proposes a scalable alternative that leverages Large Language Models (LLMs) within a structured multi-

agent framework, guided by the “7Rs of Modernization.” The frame- work comprises three agents: an Analysis Agent that 

interprets and maps legacy code, a Coder Agent that generates modern equivalents, and a Review Agent that validates 

correctness, security, and compliance through iterative feedback. 

 

By automating much of the migration process, the proposed approach enables faster, more transparent, and less risky 

mod- ernization. It helps enterprises transition from outdated systems to modular, secure, and cloud-ready solutions, 

offering a cost- effective and future-proof pathway to digital transformation. 
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I. INTRODUCTION 

 

Legacy systems, though still powering critical 

industries such as banking, insurance, and government, have 

become increasingly difficult to sustain in today’s technology 

land- scape. Most of these systems were written decades ago 

in aging languages like COBOL or C, designed for hardware 

and business needs that no longer exist. Over time, this has 

created several pressing challenges. 

 

A. High Costs 

Maintaining these massive and tightly coupled 

codebases requires enormous financial investment. In fact, 

studies show that maintenance alone can consume up to 60% 

of an en- terprise’s IT budget. The sheer size and complexity 

of these systems make even minor updates both time-

consuming and expensive [3]. 

 

B. Security and Performance Risks 

Built on outdated paradigms, legacy software lacks the 

modern safeguards needed to withstand cyber threats today. 

Their rigid procedural structure also hampers performance, 

making them more vulnerable to inefficiencies and system 

failures [5]. 

 

 

 

C. Incompatibility with Modern Technology 

Legacy applications are rarely compatible with cloud 

com- puting, APIs, or modular, object-oriented designs. This 

incom- patibility prevents organizations from integrating their 

systems with modern platforms, limiting innovation and 

scalability [3]. 

 

 Workforce Decline 

A critical concern is the steadily declining number of 

developers proficient in legacy languages such as COBOL. 

Recent estimates indicate that only around 5% of current 

programmers have experience in these systems, leaving many 

organizations without the necessary skills to maintain and 

modernize them effectively [3]. 

 

Together, these challenges create a vicious cycle of in- 

creased costs, increased risks, and architectural decay. 

Without modernization, enterprises risk being locked into 

fragile sys- tems that cannot keep pace with today’s evolving 

business and technology demands [3], [5]. 
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II. LITERATURE SURVEY 

 

Despite their long-standing presence, COBOL systems 

con- tinue to serve as the foundational infrastructure for the 

ma- jority of financial institutions worldwide [3]. However, 

these legacy systems are inherently complex, costly to 

maintain, and prone to operational inefficiencies and errors. 

To address these challenges, recent research has focused on 

artificial intelligence (AI)-driven approaches for the 

automated mod- ernization of COBOL applications into 

contemporary object- oriented languages such as Java [5]. 

Among these, a prominent method utilizes long short-term 

memory (LSTM) networks to parse COBOL code into 

Abstract Syntax Trees (ASTs) and subsequently translate 

them into optimized and maintainable Java code [1], [2]. This 

approach has demonstrated notable effectiveness, achieving 

up to 93% translation accuracy and a 35% improvement in 

maintainability, while ensuring the preservation of core 

business logic [3]. 

 

A. Statistical Analysis 

Studies highlight the scale and urgency of the 

modernization challenge: 

 

 Prevalence & Impact: 

Approximately 70% of financial institutions still 

operate in COBOL systems, handling an estimated $3 

trillion in daily transactions. Globally, more than 200 billion 

lines of COBOL code remain in active use. Maintaining these 

systems consumes up to 60% of IT budgets, while the 

COBOL workforce has decreased to just 5% of developers 

[3]. 

 

 Technical Debt & Complexity: 

On average, COBOL modules have 18 decision paths 

(compared to the modern ideal of 10) and 8 dependencies per 

module, leading to a 30% higher defect rate compared to 

modern languages such as Java [5]. 

 

 Challenges of Existing Solutions: 

Manual modernization achieves only 75% accuracy, re- 

quires six months for every 10,000 lines of code, and risks 

losing 40% of business logic. Rule-based tools (e.g., Micro 

Focus) improve accuracy to about 82%, but still miss 

contextual nuances in 20% of cases [3], [5]. 

 

 AI-Based Results: 

In comparison, AI-driven approaches achieve 93% 

accu- racy, improve maintainability by 35%, reduce 

complexity from 18 to 9, lower coupling from 8 to 4, and 

retain 93% of the original logic [3]. 

 

 Market & Context: 

Legacy modernization is expected to reach a $500 

billion market, with 62% of developers seeking AI tools for 

support. Since 80% of enterprise applications run on Java, it is 

the primary focus for migration [3]. 

 

 

 

 

 Scale of AI-Driven Migrations: 

Solovyeva et al. demonstrate migration of a 2.5M-line 

PL/SQL system into Java using domain-model guided 

prompting. Their results show high syntactic correctness and 

promising functional accuracy [6]. 

 

 Benchmark Performance: 

In the CODEMENV dataset, comprising 922 migration 

examples across 19 Python/Java packages, the average 

pass@1 rate across LLMs was just 26.50%, with the strongest 

model (GPT-4O) reaching 43.84%. This gap shows that while 

LLMs are useful, their outputs remain unreliable without 

human validation [7]. 

 

B. Modernization Tools and Approaches 

 

 IBM Watsonx Code Assistant for Z (WCA4Z):  

IBM’s WCA4Z is designed for COBOL-to-Java 

migra- tion. Instead of simple line-by-line conversion, 

which often produces unmaintainable “JOBOL” (Java code 

that mimics COBOL logic), it follows a two-phase process: 

first, a Class Designer generates the Java class structure; then 

method-level transformations are applied with hu- man 

oversight to ensure accuracy and maintainability [5]. 

 

 Evaluation of Translation: 

The quality of translated code is assessed through: 

 

 Syntactic Checking –  

Ensures generated Java code compiles without common 

LLM errors such as re- peated loops [5]. 

 

 Semantic Checking –  

Verifies correct handling of variables, procedures, and 

middleware (e.g., CICS or SQL) [5]. 

 

 LLMs as Judges (LaaJs) –  

Other LLMs evaluate the translation, focusing on logic 

preservation and idiomatic correctness [5]. 

 

 LSTM Networks: 

Long Short-Term Memory (LSTM) networks are 

effective for code translation as they capture long-term depen- 

dencies in sequential data, addressing the limitations of 

traditional RNNs. Their three gates—Forget, Input, and 

Output—allow selective retention, updating, and passing of 

information, making them well-suited for handling legacy 

code [1], [2]. 

 

 Multi-agent upgrades 

Ala-Salmi et al. proposed an autonomous multi-agent 

pipeline for upgrading legacy web applications. By dis- 

tributing roles such as file updater and view upgrader across 

agents, their method reduced translation errors and improved 

precision compared to single-agent promptings [10]. 
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 Domain-specific improvements: 

In the COBOL/mainframe domain, Dau et al. 

introduced XMainframe, a model designed for modernization 

tasks. On MainframeBench, it achieved 30% higher accuracy 

on multiple-choice QA than DeepSeek-Coder, doubled the 

BLEU score of Mixtral-Instruct 8x7B on QA tasks, and 

scored six times higher than GPT-3.5 for COBOL 

summarization [8]. 

 Industrial-scale adoption: 

At Google, Ziftci et al. reported on 39 migrations con- 

ducted over 12 months by three developers. These migra- 

tions involved 595 code changes and 93,574 total edits. Of 

these, 74.45% of the code changes and 69.46% of edits were 

generated by an LLM, resulting in an estimated 50% reduction 

in migration time compared to prior manual efforts [9]. 

 

III. PROPOSED SOLUTION 

 

To address the challenges of legacy system modernization, 

we propose a novel approach that leverages Large Language 

Models (LLMs) within a structured multi-agent framework. 

The solution is guided by the well-established concept of the 

“7Rs of Modernization” and employs advanced custom fine- 

tuned models. 

 

The framework is built around three specialized agents, 

each with a distinct role: 

 

A. Analysis Agent: 

Acts as the architect of the project. Using static analysis 

tools, it maps out the dependency tree, interfile relation- 

ships, and logical flow of the legacy codebase. Its main re- 

sponsibility is to generate a clear modernization roadmap, 

breaking down the migration process into smaller, well- 

structured tasks arranged in the correct order. 

 

B. Coder Agent: 

Once tasks are defined, the Coder Agent translates 

them into modern code. It uses fine-tuned LLMs to ensure 

high-fidelity code generation, producing secure, optimized, 

and functionally accurate implementations. If required, it can 

also handle additional subtasks defined during the process. 

 

C. Review Agent: 

After code is generated, the Review Agent evaluates 

its quality, accuracy, and security. It checks for vulnerabili- 

ties, ensures that the new implementation is in accordance 

with modern standards, and verifies that the intended 

functionality is preserved. 

 

A key strength of this framework is the feedback loop. 

If the Review Agent identifies issues, it sends structured feed- 

back to the Analysis Agent, which then creates a refined task 

for the Coder Agent. This iterative process ensures 

continuous improvement, reduces the need for heavy human 

supervision, and allows external inputs when needed. 

 

 

 

 

 

By distributing responsibilities among specialized 

agents and embedding feedback into the workflow, the 

modernization process becomes more transparent, 

manageable, and reliable. This approach minimizes risks 

while ensuring that the final migrated system is both modern 

and robust. 

 

 
Fig 1 System Architecture 
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IV. CONCLUSION 

 

Legacy systems have long supported critical industries, 

but their growing maintenance costs, security vulnerabilities, 

and incompatibility with modern platforms make their 

continued reliance unsustainable. Traditional modernization 

approaches are often too slow, risky, and resource-intensive 

to meet present-day demands. The emergence of Large 

Language Models offers new opportunities, but the evidence 

highlights both potential and limitations. Large-scale 

deployments at Google show that over two-thirds of edits can 

be automated, with an estimated 50% reduction in migration 

time [9]. At the same time, benchmarks like CODEMENV 

reveal that LLMs still solve fewer than half of migration tasks 

correctly [7]. Domain-specific models such as XMainframe 

demonstrate that targeted training can deliver dramatic 

improvements in special- ized contexts like COBOL [8].This 

paper presented a novel multi-agent framework powered by 

Large Language Mod- els to address these challenges. By 

dividing responsibilities among Analysis, Coder, and Review 

agents and incorporating a feedback loop, the approach 

ensures structured, accurate, and efficient code migration. 

The result is a practical pathway for enterprises to transform 

outdated software into secure, modular, and cloud-ready 

systems while preserving essential functionality. 
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