Design and Development of a Smart Air-Cooled Safety Helmet with Solar-Powered Object Detection System

A Dual-Purpose Helmet for Thermal Regulation and Accident Avoidance

Pritam Kailas Badhe¹; Jay Yuvraj Gadekar²; Krushna Shirish Lamgunde³; Om Dilip Gade⁴; Mrunali Mohan Sawant⁵; Anuradha Balaji Lekurwale⁶; Chaitrali Mohan Sawant⁷; Snehal Sanjay Chavan⁸; Rutuja Dnyaneshwar Sule⁹; Shreya Pandurang Pawar¹⁰

Department of Mechanical engineering, SVERI's College of Engineering, Pandharpur, India.

Publication Date: 2025/11/12

Abstract: Motorcycle riders often face excessive sweating inside helmets during long rides or in high-temperature conditions, leading to discomfort, bacterial growth, and a reduced lifespan of the helmet. To overcome these challenges, this project introduces a Smart Air-Cooled Safety Helmet integrated with a micro air-cooling system, object detection sensor, and solar-powered energy source for enhanced safety and comfort. The inner layers of the helmet are equipped with a car seat-like micro air circulation mechanism, which promotes constant airflow and moisture absorption to keep the rider's head dry and cool. The cooling system is automatically activated when the internal temperature or humidity exceeds a predefined threshold. For safety enhancement, an ultrasonic object detection sensor is installed at the rear side of the helmet to detect approaching vehicles. When any object or vehicle comes within a predetermined range, a red LED indicator placed near the front glass (visor area) begins to blink, ensuring it remains visible to the rider for instant awareness. Both the cooling and alert systems are powered by renewable solar energy harvested through a flexible solar panel mounted on the top surface or windshield area of the helmet. The energy is stored in a compact rechargeable battery, assisted by a power booster circuit and capacitors to ensure stable current flow and efficient operation. Additionally, an external charging port is provided, allowing the system to be recharged manually when solar power is insufficient. This innovative helmet design significantly improves rider comfort, hygiene, and safety, while encouraging sustainable energy utilization. The combination of smart automation, renewable energy harvesting, and efficient power management makes it a modern, eco-friendly, and intelligent solution for next-generation transportation.

Keywords: Smart Helmet, Solar Energy Harvesting, Object Detection, Air-Cooling Mechanism, Rider Safety, Sustainable Design.

How to Cite: Pritam Kailas Badhe; Jay Yuvraj Gadekar; Krushna Shirish Lamgunde; Om Dilip Gade; Mrunali Mohan Sawant; Anuradha Balaji Lekurwale; Chaitrali Mohan Sawant; Snehal Sanjay Chavan; Rutuja Dnyaneshwar Sule; Shreya Pandurang Pawar (2025) Design and Development of a Smart Air-Cooled Safety Helmet with Solar-Powered Object Detection System. *International Journal of Innovative Science and Research Technology*, 10(11), 188-191. https://doi.org/10.38124/ijisrt/25nov171

I. INTRODUCTION

In recent years, road safety has become a critical concern due to the increasing number of motorcycle-related accidents. Helmets play a vital role in minimizing head injuries and ensuring rider safety. However, traditional helmets often lack features that provide comfort during long rides, especially in regions with hot and humid climates.

Riders frequently experience excessive sweating and discomfort due to poor ventilation inside the helmet, which can lead to fatigue, bacterial growth, and reduced concentration during driving. To address these challenges, the concept of a Smart Air-Cooled Safety Helmet is introduced. This system integrates an automatic micro air-cooling mechanism, a rear object detection alert system, and solar-powered energy harvesting to enhance both comfort

https://doi.org/10.38124/ijisrt/25nov171

and safety. The cooling mechanism ensures consistent airflow within the helmet's inner layer, inspired by the ventilation design used in modern car seat cooling systems.

This helps to maintain optimal temperature and humidity levels inside the helmet, even during extended use. The safety aspect is reinforced by an ultrasonic sensor placed at the back of the helmet. This sensor detects vehicles or obstacles approaching from behind and triggers a red LED indicator located near the front visor. The alert system notifies the rider of nearby traffic without the need to look back, thereby preventing possible accidents and enhancing situational awareness.

Powering both systems through renewable solar energy ensures sustainability and independence from external charging sources. A flexible solar panel mounted on the top of the helmet captures sunlight, which is stored in a rechargeable battery supported by a power booster circuit and capacitors for efficient energy management. Additionally, an external charging port is included to provide backup charging capability during low sunlight conditions. This innovative helmet design represents a step forward in intelligent transportation and wearable safety technology, combining energy efficiency, comfort, and real-time hazard detection. By promoting green energy utilization and rider well-being, the proposed system aims to redefine modern motorcycle safety standards.

II. RESEARCH GAP

Despite the rapid advancement in smart helmet technologies, several limitations persist in the current systems available in research and commercial markets. Most existing helmets primarily focus on accident detection, Bluetooth communication, or navigation assistance, neglecting rider comfort and environmental adaptability, which are crucial for long-duration rides, especially in tropical climates. Although, some studies have attempted to integrate ventilation or fan-based cooling systems, these mechanisms are often manually operated and dependent on external power sources. They fail to provide automatic thermal regulation based on real-time humidity or temperature levels inside the helmet. Moreover, such systems increase bulkiness and reduce battery efficiency.

In the domain of object detection and rider awareness, most models rely on rear-view cameras or mirrors, which can distract the rider and consume high power. Few designs have incorporated ultrasonic sensors, but their positioning and power supply have not been optimized for continuous, reliable use. Furthermore, most prototypes lack real-time visual indication mechanisms that alert riders about nearby vehicles effectively. On the energy side, although solar-powered smart devices are gaining attention, their integration into helmets remains minimal.

Existing designs either utilize rigid solar panels, which affect aerodynamics and aesthetics, or do not include an efficient power management circuit such as a booster or capacitor-based stabilizer to ensure steady voltage output during varying sunlight conditions. Additionally, no existing solution combines solar harvesting, cooling, and object detection into a single compact and automated helmet design.

III. PROBLEM STATEMENT

Motorcycle helmets are essential for rider safety, yet most conventional helmets are designed only to provide physical protection. During long rides or in hot and humid conditions, riders often experience excessive sweating, heat accumulation, and discomfort inside the helmet. The trapped moisture and poor ventilation create an unhygienic environment that can lead to bacterial growth, foul odor, and reduced focus while riding. Moreover, current helmet designs lack rear object detection mechanisms, leaving riders unaware of vehicles approaching from behind. This limited situational awareness increases the risk of rear-end collisions and accidents, especially in dense traffic or at night.

Although a few smart helmets have been introduced with communication or tracking features, most of them require external power sources, offer manual operation, and do not address the dual need for comfort and safety simultaneously. Additionally, the use of non-renewable power sources contradicts the growing demand for sustainable and eco-friendly technologies.

IV. OBJECTIVES

- To design a smart helmet integrated with an automatic micro air-cooling system that maintains airflow and reduces heat and sweat inside the helmet during long rides.
- To implement an ultrasonic-based rear object detection system that alerts the rider when a vehicle or object approaches from behind.
- To utilize renewable solar energy through a flexible solar panel mounted on the top or visor surface of the helmet for powering both the cooling and alert systems.
- To store and regulate the harvested solar energy using a rechargeable battery combined with a power booster circuit and capacitor network for stable voltage output.
- To include an external charging port as an auxiliary power option for situations where sunlight is insufficient.
- To promote sustainable innovation by combining comfort, safety, and energy efficiency in a single eco-friendly helmet system.

ISSN No:-2456-2165

Volume 10, Issue 11, November – 2025

V. DESIGN

Fig 1 Design of Safety Helmet

VI. WORKING

The Solar-Powered Smart Air-Cooled Helmet functions through the integration of a cooling mechanism, object detection system, and renewable energy source. A flexible solar panel mounted on the top or visor area captures sunlight and stores it in a rechargeable battery, regulated by a power booster and capacitor circuit to maintain a steady power supply. This stored energy operates the entire system, including an automatic air-cooling unit and safety alert mechanism. Inside the helmet, a car seat–inspired micro air circulation pad and compact fan ensure continuous airflow to reduce heat and moisture. The system is controlled by temperature and humidity sensors that

automatically activate the cooling fan when internal conditions exceed the set threshold, maintaining comfort and hygiene. For safety, an ultrasonic sensor installed at the rear of the helmet detects approaching vehicles within a preset distance, triggering a red LED indicator positioned near the bottom edge of the visor to alert the rider of potential danger. The helmet also includes an external charging port to recharge the battery when solar input is insufficient. Overall, the design ensures automatic comfort control, rear-side awareness, and self-sustaining power generation, making it a reliable, eco-friendly, and intelligent

https://doi.org/10.38124/ijisrt/25nov171

VII. ADVANTAGES

- Provides automatic cooling for rider comfort.
- Detects approaching vehicles for enhanced safety.
- Operates on renewable solar energy.

solution for modern motorcyclists.

- Functions automatically without manual control.
- Ensures stable power through booster and capacitors.
- Increases helmet lifespan by reducing sweat and bacteria.

VIII. APPLICATION

- Daily commuters for comfortable and safe rides.
- Long-distance riders to prevent heat and fatigue.
- Delivery and courier personnel for continuous use in all weather conditions.
- Traffic police and patrol officers who ride for extended hours.
- Two-wheeler drivers in urban areas for better safety in dense traffic.
- Riders in hot or humid regions for improved ventilation and comfort.
- Electric bike users promoting green and sustainable transportation.

IX. FUTURE SCOPE

- Integration of Bluetooth connectivity for navigation and call alerts
- Incorporation of GPS for real-time tracking and route assistance
- Implementation of an accident detection module for emergency response
- Addition of voice control for hands-free operation
- Development of a dedicated mobile application for realtime monitoring of temperature, humidity, battery status, and sensor alerts
- Use of lightweight composite materials to reduce weight and enhance comfort.
- Integration of LIDAR or radar-based sensors for improved object detection accuracy and range
- Optimization of design and cost for large-scale production
- Enhancement of commercial potential for widespread adoption and safer riding experiences

ISSN No:-2456-2165

X. CONCLUSION

The Solar-Powered Smart Air-Cooled Helmet with Object Detection System successfully combines comfort, safety, and sustainability in a single innovative design. The integration of a micro air-cooling mechanism effectively reduces heat and moisture inside the helmet, ensuring a more comfortable riding experience. The rear-mounted ultrasonic sensor enhances safety by detecting approaching vehicles and alerting the rider through a red LED indicator placed near the visor. By utilizing a flexible solar panel as the primary power source, supported by a booster circuit, capacitors, and an external charging port, the system operates efficiently and promotes renewable energy usage. The project not only addresses the discomfort faced by riders during long or high-temperature rides but also enhances road safety and hygiene. Overall, this design demonstrates a practical and eco-friendly solution for modern motorcyclists and represents a significant step toward intelligent, self-powered protective gear for future transportation systems.

ACKNOWLEDGEMENT

The authors would like to express their sincere gratitude to the DAS Organization for their continuous support, guidance, and encouragement throughout the development of this project. We also acknowledge the constant support and cooperation of all members of the DAS Organization for providing the necessary facilities, insights, and inspiration during the design and development of the Smart Air Cooled Safety Helmet with Solar-Powered Object Detection System. Finally, we express our heartfelt thanks to our colleagues, friends, and family members for their patience, encouragement, and assistance throughout the research process.

REFERENCES

- [1] S. Sharma, A. Gupta, and R. Singh, "Development of Smart Helmet for Accident Detection and Safety," *International Journal of Engineering Research & Technology (IJERT)*, Vol. 9, Issue 5, pp. 112–116, 2022.
- [2] P. Kumar and M. Yadav, "Design of an Intelligent Helmet for Rider Safety," *International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET)*, Vol. 10, Issue 3, pp. 2050–2055, 2021.
- [3] V. Patil, D. Kulkarni, and A. Joshi, "Implementation of Solar Energy in Smart Helmet for Two-Wheeler Riders," *International Journal of Scientific Research in Engineering and Management (IJSREM)*, Vol. 5, Issue 4, pp. 34–39, 2023.
- [4] N. Pandey and K. Sinha, "Design and Fabrication of Air-Cooled Helmet Using Peltier Module," *Journal of Mechanical and Civil Engineering (IOSR-JMCE)*, Vol. 17, Issue 2, pp. 12–17, 2020.

[5] M. Rahman, S. Ahmed, and F. Chowdhury, "Solar Powered Smart Helmet for Road Safety and Comfort," *IEEE International Conference on Renewable Energy Research and Applications (ICRERA)*, pp. 1–6, 2021.