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Abstract: This study aims to evaluate the thermomechanical stresses to which bellows may be subjected in order to make a 

judicious choice of the appropriate material for its manufacture and improve its lifespan. To do this, thermomechanical 

stresses are determined as a function of mechanical and thermal loads. By varying certain geometric and technical 

parameters, we evaluated the stresses and displacements. We used the State-Space method to determine the state equation 

and the state matrix in order to numerically determine the intrinsic and extrinsic behaviors of the materials. The different 

numerical simulations using the finite element method on Abaqus/CAE allowed us to determine the maximum 

thermomechanical stress for each type of material. The weakening criterion between the mechanical and thermal stresses 

and the lifespans under thermomechanical stress for the cases of Stainless Steel 1.4571 and Inconel 718 materials are 

identified and make it possible to choose the material for the manufacture of the metal bellows. 
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I. INTRODUCTION 

 

Bellows-sealed globe valves are commonly used in 

industrial thermal hydraulic systems for applications 

involving superheated steam and thermal oil. The bellows' 

material must withstand both corrosion and high 

temperatures. Stresses on the bellows are influenced by its 

geometry and applied loads, such as pressure and torsional 

force. By comparing these calculated stresses to the material's 
allowable limits, safety factors can be determined for 

stainless steel 1.4571 and Inconel 718. 

 

Previous research, such as Anatoly's work [1], has 

explored the superalloy Inconel 718, focusing on selective 

laser melting and its effects on microstructure and mechanical 

properties. Other studies have investigated the use of laser 

fusion technology on Inconel 939, linking changes in 

microstructure and residual stresses to process parameters [3-

6]. Experimental data on austenitic stainless steel 1.4571 has 

also been collected at varying temperatures to determine key 

mechanical properties like tensile strength and creep behavior 

[7-12]. While these studies have been valuable, they often 

relied on finite element methods and experiments without 

focusing on a comprehensive lifecycle analysis. 

 

More recent work, using Directed Energy Deposition 

(DED) processes, has examined how substrate properties like 

hardness and slope affect the thermomechanical 

characteristics of deposited Inconel 718, aiming to improve 

component reliability [13-20]. 
 

This paper's contribution is to model the 

thermomechanical behavior of bellows made from Inconel 

718 and stainless steel 1.4571. The goal is to identify a 

damage criterion between mechanical and thermal stress and 

determine the parameters necessary to optimize the valve's 

lifespan. The study is structured to present the state-space 

method, followed by numerical results from Abaqus and 

Matlab, concluding with a synthesis of the findings. 
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II. MATERIALS AND METHODS 

 

 Materials 

For this study, Abaqus/CAE and Matlab were used to 

perform various simulations. The primary components of our 

research are metallic bellows, which are thin-walled 

cylindrical parts with a corrugated surface. These bellows are 

manufactured by hydraulically forming thin-walled tubes. 

 

Bellows can be single-walled, which have low stiffness 
and are typically used in vacuum technology, or multi-walled. 

Multi-walled bellows offer both high pressure resistance and 

great flexibility, making them ideal for high-stress 

applications like valve stem seals, which can operate at 

pressures exceeding 400 bar. The design, including the 

number of walls, is determined by the specific application's 

requirements [21]. 

 
Fig 1 Metallic Bellows with and Without end Fittings from Left to Right [21] 

 

 Mathematical Formulation 

 

 Geometry and Problem Formulation 

The metallic bellows is represented in its structural form in figure 2 below, which has ten (10) convolutions with a three (03) 
mm thread separating each convolution, both internal and external. 

 

 
Fig 2 Geometry of the Problem 
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The thermomechanical behavior of the system is governed by 
the law given by equation (1): 

 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝛽𝑖𝑗𝑇                         (1) 

 

It represents the equation of motion, which will be 

solved using the state-space method. It is particularly 

important to understand the behavior of structures to evaluate 

their service life. Throughout their lifecycle, these structures 

are required to withstand various stresses and highly 

corrosive environments [22]. Therefore, modeling requires an 
appropriate approach. For this study, we use the state-space 

method, a mathematical technique for solving systems of 

dynamic equations. It transforms a system of partial 

differential equations into a first-order matrix system. This 

method is used in virtually all research fields involving 

dynamic systems, such as materials mechanics, electronics, 

and control engineering [23]. Dynamic models with linear 
factors, or state-space models, constitute an empirical class 

[24]. 

 

In the cylindrical coordinate system, the linearized 

constitutive equations for an orthotropic cylindrical structure 

can be presented using the three-dimensional generalized 

Hooke's law as follows [25]: 

 

 State-Space Method 

Physical systems are governed by complex equations 

that can be difficult to solve. Numerical methods are often 
used to simplify these problems. In our study, we employed 

the state-space method. 

 

For an isotropic material, the equation of motion given 

in relation (1) is written in matrix form as follows: 
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      
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           

                                     (2) 

 

The structural equation of motion is expressed as follows: 

 
𝜕𝜎𝑟𝑟

𝜕𝑟
+

𝜕𝜎𝑟𝜑

𝜕𝜑
+

𝜕𝜎𝑟𝑧

𝜕𝑧
+

1

𝑟
(𝜎𝑟𝑟 − 𝜎𝜑𝜑) = 𝜌𝑐

𝜕2𝑈𝑟

𝜕𝑡2
        (3) 

 
𝜕𝜎𝑟𝜑

𝜕𝑟
+

𝜕𝜎𝜑𝜑

𝜕𝜑
+

2

𝑟
𝜎𝑟𝜑 +

𝜕𝜎𝑧𝜑

𝜕𝑧
= 𝜌𝑐

𝜕2𝑈𝜑

𝜕𝑡2
         (4) 

 
𝜕𝜎𝑟𝑧

𝜕𝑟
+

𝜕𝜎𝑧𝜑

𝑟𝜕𝜑
+

𝜎𝑟𝑧

𝑟
+

𝜕𝜎𝑧𝑧
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𝜕𝑡2
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Following the state-space method approach, the sixth-

order state equations for an orthotropic medium in cylindrical 

coordinates can be easily derived from the combination of 

equations (2), (3), and (5). 

 
𝜕𝑌

𝜕𝑟
= 𝑀𝑌,𝑌 = [𝑈𝑟 𝑈𝜑  𝑈𝑧 𝜎𝑟𝑟 𝜏𝑟𝜑  𝜏𝑟𝑧 , 𝑇]

𝑡
         (6) 

 
The components along the axes are as follows: 

 

𝜕𝑈𝑧

𝜕𝑟
= 𝜀𝑟𝑧 −

𝜕𝑈𝑟

𝜕𝑧
                          (7) 

 

Using equations (3) through (5) leads to the following 

equations: 

 
𝜕𝑈𝑧
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= [0  0  −

𝜕
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  0  0  

1

𝑄55
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⟹
𝜕𝑈𝑟
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⟹
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1
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Using the dynamic equation, we obtain the following 

equation: 

 

𝜕𝜎𝑟𝑟
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= [

1
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𝜕
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1
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2
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+

1
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2
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1
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(
𝑄12
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− 1) ] ;  [−

1

𝑟

𝜕

𝜕𝜑
;   −

𝜕
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; (

𝛽1

𝑄11
− 𝛽2)] (𝑌)     (13) 

 

Setting: 

 

𝜁2 = 𝑄23 −
𝑄12𝑄13

𝑄11
         (14) 

 

𝜁1 = 𝑄22 −
𝑄12
2

𝑄11
          (15) 
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⟹
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𝜕𝑌

𝜕𝑟
= 𝑀𝑌                                                                                   (24) 

 

Next, by using the appropriate normal mode expansions, the state variable vector Y can be expanded in terms of unknown 

modal coefficients. The form of the solutions to this state equation is given by [26]: 

 

{
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𝑈𝑟
𝜎𝑟𝑟
𝜏𝑟𝜑
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𝑗𝑅0𝑈̅𝑧,𝜂(𝜂)
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1 𝜏̅𝑟𝜑,𝜂(𝜂)
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1 𝜏̅𝑟𝑧,𝜂(𝜂)

𝑇0(𝜂) }
 
 
 
 

 
 
 
 

𝑒𝑥𝑝[𝑗(𝜔𝑡 − 𝐾𝑖𝑧𝑧 − 𝜂𝜑)]                                                                 (25) 

 

By solving the structural state equation, we get: 

 

𝑈𝑧 = ∑ 𝑗𝑅0𝑈̅𝑧,𝜂(𝜂) 𝑒𝑥𝑝[𝑗(𝜔𝑡 − 𝐾𝑖𝑧𝑧 − 𝜂𝜑)]                                                                  (26) 
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𝜕𝑈𝑧

𝜕𝑟
=

𝜕𝑈𝑟

𝜕𝑟
+

1

𝑄55
𝜎𝑟𝑧                                                       (27) 

 

Replacing 𝑈𝑟 and 𝜎𝑟𝑧 , we have: 

 

𝜕𝑈𝑧

𝜕𝑟
= ∑[−𝑅0𝑈̅𝑟,𝜂(𝜂)𝐾𝑖𝑧𝑒𝑥𝑝[𝑗(𝜔𝑡 − 𝐾𝑖𝑧𝑧 − 𝜂𝜑)] + 𝑗

𝑄44

𝑄55
𝜎̅𝑟𝑧,𝜂(𝜂)𝑒𝑥𝑝[𝑗(𝜔𝑡 − 𝐾𝑖𝑧𝑧 − 𝜂𝜑)]]                                  (28) 

 

Also: 

 

𝑈𝑧 = ∑ 𝑗𝑅0𝑈̅𝑧,𝜂(𝜂) 𝑒𝑥𝑝[𝑗(𝜔𝑡 − 𝐾𝑖𝑧𝑧 − 𝜂𝜑)]                                                                  (29) 

 

Yet we know that: 𝜂 =
𝑟

𝑅0
⟹𝑑𝑟 = 𝑅0𝑑𝜂 

 
𝜕𝑈𝑧

𝜕𝑟
= ∑𝑗𝑅0

𝑑𝑈𝑧,𝜂(𝜂)

𝑅0𝑑𝜂
𝑒𝑥𝑝[𝑗(𝜔𝑡 − 𝐾𝑖𝑧𝑧 − 𝜂𝜑)]                                                                  (30) 

 
Equating (28) = (30) 

 

⟹
𝑑𝑈𝑧,𝜂(𝜂)

𝑑𝜂
= [0    0    𝑅0𝐾𝑖𝑧    0    0    

𝑄44
1

𝑄55
    0] (𝑌̅)                                                                  (31) 

 
𝜕𝑈𝜑

𝜕𝑟
=

1

𝑟
𝑈𝜑 −

1

𝑟

𝜕𝑈𝑟

𝜕𝜑
+

1

𝑄66
𝜎𝑟𝜑                                                      (32) 

 
𝜕𝑈𝜑

𝜕𝑟
= 𝑗

𝑅0

𝑟
𝑈̅𝜑,𝜂(𝜂) + 𝑗

𝜂𝑅0

𝑟
𝑈̅𝑟,𝜂(𝜂) + 𝑗

𝑄44
1

𝑄66
𝜎̅𝑟𝜑,𝜂(𝜂)                                                                  (33) 

 

also: 

 
𝜕𝑈𝜑

𝜕𝑟
=

𝜕

𝜕𝜑
[∑ 𝑗𝑅0𝑈̅𝜑,𝜂(𝜂)𝑒𝑥𝑝[𝑗(𝜔𝑡 − 𝐾𝑖𝑧𝑧 − 𝜂𝜑)]]                                                                  (34) 

 

⟹
𝜕𝑈𝜑

𝜕𝑟
=

𝑑𝑈𝜑

𝑑𝜂̅
                                                                                   (35) 

 

⟹
𝑑𝑈𝜑,𝜂(𝜂)

𝑑𝜂̅
= [0    

1

𝜂
    

𝑛

𝜂
    0    

𝑄44

𝑄66
    0    0] (𝑌̅)                                                                               (36) 

 
𝜕𝑈𝑟

𝜕𝑟
= −

𝑄13

𝑄11

𝜕𝑈𝑧

𝜕𝑧
−

𝑄12

𝑄11

1

𝑟

𝜕𝑈𝜑

𝜕𝜑
−

𝑄12

𝑄11

1

𝑟
𝑈𝑟 +

1

𝑄11
𝜎𝑟𝑟 +

𝛽1

𝑄11
𝑇                                                                              (37) 

 
𝜕𝑈𝑟

𝜕𝑟
= −

𝑄13𝑅0𝐾𝑖𝑧

𝑄11
𝑈̅𝑧,𝜂 +

𝑄12

𝑄11

1

𝑟
𝑛𝑅0𝑈̅𝜑,𝜂 −

𝑄12

𝑄11

𝑅0

𝑟
𝑈̅𝑟,𝜂 +

𝑄44
1

𝑄55
𝜎̅𝑟𝑟,𝜂 +

𝛽1𝑇0

𝑄11
𝑇̅(𝜂)                                                               (38) 

 

We obtain: 
 
𝜕𝑈𝑟

𝜕𝑟
= ∑𝑅0

𝑑𝑈𝑟,𝜂

𝑅0𝑑𝜂̅
𝑈̅𝑟,𝜂(𝜂)𝑒𝑥𝑝[𝑗(𝜔𝑡 − 𝐾𝑖𝑧𝑧 − 𝜂𝜑)]                                                                               (39) 

 

⟹
𝜕𝑈𝑟

𝜕𝑟
=

𝑑𝑈𝑟,𝜂

𝑑𝜂̅
                                                                                   (40) 

 

Equations (40) and (38) give: 

 

⟺
𝑑𝑈𝑟,𝜂

𝑑𝜂̅
= [

𝑄13

𝑄11
𝑅0𝐾𝑖𝑧    −

𝑄12

𝑄11

𝑛

𝜂
   −

𝑄12

𝑄11

1

𝜂
    

𝑄44
1

𝑄55
    0     0    

𝛽1𝑇0

𝑄11
] (𝑌̅)                                                  (41) 

 
𝜁2

𝑟

𝜕𝑈𝑟

𝜕𝑟
+

𝜁1

𝑟2

𝜕𝑈𝜑

𝜕𝜑
+ (𝜌

𝜕2

𝜕𝑡2
+

𝜁1

𝑟2
)𝑈𝑟 +

1

𝑟
(
𝑄12

𝑄11
− 1) 𝜎𝑟𝑟 −

1

𝑟

𝜕𝜎𝑟𝜑

𝜕𝜑
−

𝜕𝜎𝑟𝑧

𝜕𝑧
+ (

𝛽1

𝑄11
− 𝛽2)𝑇 =

𝜕𝜎𝑟𝑟

𝜕𝑟
                                               (42) 

 

Similarly, by replacing 𝑈𝑟 , 𝑈𝜑 , 𝑈𝑧 , 𝜎𝑟𝑟 , 𝜎𝑟𝜑 , 𝜎𝑟𝑧 and T with its expressions, we get the following relationship: 
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𝑑𝜎̅𝑟𝑟,𝜂

𝑑𝜂̅
= [

𝜁2𝛼

𝑄44
1 𝜂
  

𝜁1𝜂

𝑄44𝜂
2   

1

𝑄44
1 (𝛽 +

𝜁1

𝜂2
)  

1

𝜂
(
𝑄12

𝑄11
− 1) −

𝑛

𝜂
 − 𝛼  (

𝛽1

𝑄11
− 𝛽2)𝑇0] 𝑌̅                                                               (43) 

 

𝛼 = 𝐾𝑖𝑧𝑅0                                                                                   (44) 

 

𝛽 = −𝜌𝑐𝜔
2𝑅0

2                                                                                                (45) 

 
𝑑𝜎̅𝑟𝑧,𝜂

𝑑𝜂̅
= [

1

𝑄44
(𝛽 + 𝜁3𝛼

2 +
𝑄44
1 𝑛2

𝜂2
)
(𝑄44
1 +𝜁2𝛼)

𝑄44𝜂
  
𝜁2𝛼

𝑄44𝜂
  
𝑄44
1 𝛼

𝑄44
    0 −

1

𝜂
  (

𝛽1

𝑄11
− 𝛽3) 𝑇0] (𝑌̅)                                                              (46) 

 
𝑑𝑇

𝑑𝜂
= [0   0   0   0   0   0   0](𝑌̅)                                                                    (47) 
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     (48) 

 

Cette équation est de la forme : 

 
𝑑𝑉𝑛

𝑑𝜂
= 𝐷𝜂𝑉𝜂           (49) 

 

Solving this equation for the entire structure is not 

straightforward because the components of the matrix depend 
on the thickness. In the current formulation, the elements of 

the matrix aren't constant; they're functions of the radial 

coordinate z. Therefore, a direct solution to the equation is 

very difficult [27-28]. 

 

To address this, we'll use the approximate layer model. 

We'll divide the structure into P sub-layers of very small 

thickness. This makes the matrix elements constant within 

each layer. For our study, all sub-layers are perfectly bonded 

and aligned so their axes of symmetry coincide. 

 

In the j-th layer of the structure, we denote: 
 

𝐷𝜂 = 𝐷𝜂(𝑗 − 1)          (50) 

 
where: 

 

𝜂 = 𝜂𝑗−1 = 𝑅𝑗−1          (51) 

 

The solution to the state equation is as follows: 

 

𝑉𝜂(𝜂) = 𝑉𝜂(𝜂𝑗−1)𝑒𝑥𝑝[(𝜂 − 𝜂𝑗−1)𝐷𝜂(𝜂𝑗−1)]      (52) 

 

With, c 𝑗 = 1, … , 𝑝. 
 

Where: 

 

𝜂𝑗−1 = 𝑅0 + (𝑗 − 1)
ℎ𝑝

𝑝
≤ 𝜂 ≤ 𝜂𝑗 = 𝑅0 + 𝑗

ℎ𝑝

𝑝
      (53) 

 

ℎ𝑝 =
ℎ

𝑝
           (54) 

 

and: 

 

𝑅𝑗 = 𝑅0 + 𝑗ℎ𝑝          (55) 

 

𝜂 = 𝜂𝑗 ⟹𝑉𝜂(𝜂𝑗) = 𝑉𝜂(𝜂𝑗−1)𝑒𝑥𝑝[(𝜂𝑗 − 𝜂𝑗−1)𝐷𝜂(𝜂𝑗−1)]    (56) 

 

𝜂𝑗 − 𝜂𝑗−1 =
𝑅0

𝑅𝑝
+ 𝑗

ℎ𝑝

𝑝
−

𝑅0

𝑅𝑝
− 𝑗

ℎ𝑝

𝑅𝑝
+

ℎ𝑝

𝑅𝑝
=

ℎ𝑝

𝑅𝑝
      (57) 

 

⟺ 𝑉𝜂(𝜂𝑗) = 𝑉𝜂(𝜂𝑗−1)𝑒𝑥𝑝 [
ℎ𝑝

𝑅𝑝
𝐷𝜂(𝜂𝑗−1)]       (58) 
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𝑗 = 1 ⟹ 𝑉𝜂(𝜂1) = 𝑉𝜂(𝜂0)𝑒𝑥𝑝 [
ℎ𝑝

𝑅𝑝
𝐷𝜂(𝜂0)]       (59) 

 

This is the transfer relationship between the lower and 

upper interface of the first sub-layer of the layer. j. 

 

𝑗 = 2 ⟹ 𝑉𝜂(𝜂2) = 𝑉𝜂(𝜂1)𝑒𝑥𝑝 [
ℎ𝑝

𝑅𝑝
𝐷𝜂(𝜂1)]       (60) 

 

𝑗 = 𝑝 − 1 ⟹ 𝑉𝜂(𝜂𝑝−1) = 𝑉𝜂(𝜂𝑝−2)𝑒𝑥𝑝 [
ℎ𝑝

𝑅𝑝
𝐷𝜂(𝜂𝑝−2)]   (61) 

 

𝑗 = 𝑝 ⟹ 𝑉𝜂(𝜂𝑝) = 𝑉𝜂(𝜂𝑝−1)𝑒𝑥𝑝 [
ℎ𝑝

𝑅𝑝
𝐷𝜂(𝜂𝑝−1)]      (62) 

 
Using the continuity relationships, we have: 

 

𝑉𝜂(𝜂𝑝) = 𝑉𝜂(𝜂𝑝−1) =  …………… .= 𝑉𝜂(𝜂2) = 𝑉𝜂(𝜂1)   (63) 

 

𝑉𝜂(𝜂𝑝) = 𝑒𝑥𝑝 [
ℎ𝑝

𝑅𝑝
𝐷𝑛(𝜂)] 𝑒𝑥𝑝 [

ℎ𝑝

𝑅𝑝
𝐷𝑛(𝜂1)] 𝑒𝑥𝑝 [

ℎ𝑝

𝑅𝑝
𝐷𝜂(𝜂2)] × ……… . .× 𝑒𝑥𝑝 [

ℎ𝑝

𝑅𝑝
𝐷𝑛(𝜂𝑝−1)] 𝑒𝑥𝑝 [

ℎ𝑝

𝑅𝑝
𝐷𝑛(𝜂𝑝)]𝑉𝜂(𝜂0)     (64) 

 

⟹ 𝑉𝜂(𝜂𝑝) = 𝑇𝑛𝑉𝜂(𝜂0)         (65) 

 

Hence, we have: 

 

𝑇𝑛 = 𝑒𝑥𝑝 [
ℎ𝑝

𝑅𝑝
𝐷𝑛(𝜂0)] × …………× 𝑒𝑥𝑝 [

ℎ𝑝

𝑅𝑝
𝐷𝑛(𝜂𝑝)]      (66) 

 

𝑇𝑛 = ∏ 𝑒𝑥𝑝 [
ℎ𝑝

𝑅𝑝
𝐷𝑛(𝜂𝑗−1)]

𝑝
𝑗−1         (67) 

 

𝑇𝑛 = (6 × 6) 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟  𝑚𝑎𝑡𝑟𝑖𝑥. 
 

III. RESULTS AND DISCUSSION 

 

The characteristics of the materials in the simulations 

used in this study are summarized in Table 1. 

 

 

Table 1 Characteristics of Stainless Steel 1.4571 and Inconel 718 Materials [1, 8]. 

Material Stainless steel. 1.4571 Inconel 718 

Density (in Kg/m3) 8000 8440 

Young's Modulus (GPa at 200°C) 186 267 

Poisson's Ratio 0,3 0,28 

Thermal expansion (m m-1K-1 20°C-200°C) 17,5 13 

 

 Overall Stress Variation in the Metallic Bellows 

In the simulations, the metallic bellows was studied 

for both mechanical loading and thermal heating phases. 
While the state-space method provided a solid mathematical 

model, we used Abaqus to simulate the actual behavior and 

determine which of thermal or mechanical stresses causes 

faster material deterioration. 

 

The thermomechanical simulations were performed 

on stainless steel 1.4571 and Inconel 718. The results showed 

that the Von Mises equivalent stress reached 8222 MPa for 

stainless steel 1.4571 and 12170 MPa for Inconel 718. The 

stress on the Inconel 718 was significantly higher than on the 

stainless steel. We found that the stresses exerted during this 
phase are most concentrated in the outer convolution of the 

bellows' free section, which is a key factor in steam circuit 

malfunctions. 

 Comportement Du Soufflet Métallique 

Based on the figure (1 to 3) and the simulation results, 

several observations can be made on the behavior of the 
metallic bellows. 

 

The maximum Von Mises equivalent stress is found in 

the free section of the bellows. This stress reached 8222 MPa 

for stainl ess steel 1.4571 and 12170 MPa for Inconel 718. 

The stress on Inconel 718 was significantly higher than on the 

stainless steel. 

 

These results indicate that while Inconel 718 can 

withstand higher stress, stainless steel 1.4571 performs 

comparably well under the given conditions. Therefore, all 
material parameters must be carefully considered during the 

manufacturing process to ensure the bellows' integrity. 
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Fig 3 Distribution of the Von Mises Equivalent Stress (in MPa) Under Thermomechanical Loads for Stainless Steel 1.4571. 

 

 
Fig 4 Distribution of the Von Mises Equivalent Stress (in MPa) Under Thermomechanical Loads for Stainless Steel. 1.4571. 
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Fig 5 Distribution of the Von Mises Equivalent Stress in MPa Under Thermomechanical Loads for Inconel. 718. 

 

 
Fig 6 Distribution of the Von Mises Equivalent Stress in MPa Under Thermomechanical Loads for Inconel 718 
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In these simulations, we varied the mass density both 
above and below a reference value of 8000 kg/m3 to observe 

its effect on the bellows' behavior. We used values of 7000 

kg/m3 and 9000 kg/m3. 

 

We found that the maximum thermomechanical stress 

value remained constant regardless of the mass density. This 

suggests that for the conditions studied, mass density does not 

have a significant impact on the peak stress experienced by 

the metallic bellows. 

 

 Lifecycles of the Two Materials 

The relationships between the maximum stress 𝜎𝑚𝑎𝑥 

produced in the bellows and its allowable and fracture 

lifecycle (N) are expressed as follows [29]: 

𝑁𝐴 = (
563

𝜎𝑚𝑎𝑥
)
3,5

          (68) 

 

𝑁𝑅 = (
1125

𝜎𝑚𝑎𝑥
)
3,5

          (69) 

 

According to Von Mises, the maximum 

thermomechanical stresses for Inconel 718 and stainless steel 

1.4571 are obtained from simulations, which are then used to 

determine the materials' lifecycles. The lifecycles of these 

two materials are summarized in Table 2. 

 

Table 2 Lifecycles of Stainless Steel 1.4571 and Inconel 718 [1, 8] 

Material stainless steel. 1.4571 Inconel 718 

𝜎𝑚𝑎𝑥 (in kg/mm2) × 10−2 

𝑁𝐴 

𝑁𝑅 

83810,957 

248 

2802 

124054,895 

62 

710 

 

The acceptable and fracture lifecycles for stainless steel 

1.4571 are 248 and 2802 respectively, in contrast to Inconel 

718, which has lifecycles of 62 and 710. This demonstrates 

the superior resistance of the stainless steel to the different 
stresses. 

 

 Thermomechanical Effect 

 

 

 Stainless Steel 1.4571 

The simulations were conducted at two temperatures, 

45°C and 400°C, to study the effects of both mechanical and 

thermal stresses. The mechanical stresses simulated were the 
opening and closing of the valve, while the thermal stresses 

were caused solely by temperature variations. 

 

The results for the 45°C temperature are shown in the 

following figure 7. 

 

 
Fig 7 Thermomechanical Stress of Stainless Steel 1.4571 as a Function of Frequency 
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 This Figure Shows Three Distinct Ranges for the 
Following Frequency Bands: 

 

 First Range:  

30 Hz to 630 Hz: In this range, the sigma (σ) stress is 

higher than the z stress. The sigma stress reaches a maximum 

of 27.07 Pa and then decreases with an upward concavity 

until 630 Hz. The z stress, however, grows from 30 Hz to 390 

Hz, reaching an amplitude of 14.32 Pa before stabilizing at 

this level up to 630 Hz. The phi (ϕ) stress remains zero 

throughout this range. 

 
 Second Range:  

630 Hz to 780 Hz: Both the sigma (σ) and z stress curves 

are negative. They show a trough at 660 Hz, with the sigma 

stress at -11.71 Pa and the z stress at -38.63 Pa. This range 

should be avoided as it indicates anti-resonance. 

 

 Third Range:  
780 Hz to 1000 Hz: This range is notably stable, with 

both sigma (σ) and z stresses decreasing. The sigma stress 

drops from 8.027 Pa to 4.53 Pa, while the z stress decreases 

from 12.78 Pa to 11.1 Pa. 

 

When temperature is considered for this material, the 

first two frequency ranges should be avoided due to 

instability, while the third range shows good stability. This 

confirms that temperature has a significant influence on the 

structure. 

 
 Results for 400°C 

The results for this temperature are shown in the 

following figure 8. 

 
Fig 8 Thermomechanical Stress of Stainless Steel 1.4571 as a Function of Frequency 

 

 At 400°C, We Observe the Inverse Phenomenon 

Compared to the 45°C Simulation. Three Frequency 

Ranges Stand Out: 

 

 30 Hz to 630 Hz:  

Both sigma (σ) and z stresses become negative, with the 
z stress being higher in magnitude than the sigma stress. The 

z stress decreases from -1.68 Pa to -14.11 Pa and then 

stabilizes, becoming linear at around -14 Pa. The sigma stress, 

however, has two parts in this range: it decreases from -6.63 

Pa to -27.19 Pa and then increases from -27.11 Pa to -14 Pa. 

 

 630 Hz to 780 Hz:  

Both the sigma (σ) and z stresses are positive and show 

a distinct peak. The sigma stress peaks at (660 Hz, 11.56 Pa) 

and the z stress at (660 Hz, 38.79 Pa). Unlike the 45°C case, 

this range is considered acceptable. 

 

 780 Hz to 1000 Hz:  

In this range, both stress curves for sigma (σ) and z are 

linear and increase with frequency. The phi (ϕ) stress remains 

zero. 

 

We can see that at this higher temperature, the sigma (σ) 
and z stresses are at their maximum in the second frequency 

range. This suggests that the material can operate optimally 

for a limited time under these conditions. 

 

 Inconel 718 

Applying the same methodology to Inconel 718. For a 

temperature of 45°C, the thermomechanical stress curve for 

Inconel 718 is shown in figure 9. 

 

 For a Temperature of 45°C 

Figure 9 shows the thermomechanical stress curve for 

Inconel 718 at 45°C. 
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Fig 9 Thermomechanical Stress of Inconel 718 at 45°C 

 

 This Figure Reveals Three Distinct Frequency Ranges for 

the Material: 

 

 First Range (30 Hz to 640 Hz):  
The sigma (σ) stress shows linear elasticity, while the z 

stress increases gradually before stabilizing. 

 

 Second Range (640 Hz to 690 Hz):  

Both the sigma (σ) and z stresses drop sharply into the 

negative range before recovering. The sigma stress plunges to 

-8 Pa and then rises to 11 Pa. Similarly, the z stress drops to -

39 Pa before increasing to 12 Pa. This range should be 

avoided due to this instability. 

 Third Range (690 Hz to 1000 Hz):  

Both sigma (σ) and z stresses are decreasing but show 

signs of stabilization. 

 
The phi (ϕ) stress remains zero across the entire 

frequency spectrum. 

 

Overall, the intermediate ranges are recommended for 

optimal use of the metallic bellows. 

 

 For a Temperature of 400°C 

Figure 10 presents the thermomechanical stresses of 

Inconel 718 at a temperature of 400°C. 

 

 
Fig 10 Thermomechanical Stress of Inconel 718 at 400°C 
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 For Inconel 718 at 400°C, the Inverse Phenomenon 
Occurs, Similar to the Change Seen with Stainless Steel. 

Three Distinct Frequency Ranges are Noteworthy: 

 

 First Range (30 Hz to 640 Hz):  

The sigma (σ) stress shows a reverse linear elasticity, 

initially decreasing and then increasing in the negative region. 

The z stress, however, decreases gradually and then 

stabilizes. 

 

 Second Range (640 Hz to 690 Hz):  

Both stresses have sharp peaks. The sigma (σ) stress 
peaks at 8 Pa and then immediately drops to -11 Pa. Similarly, 

the z stress peaks at 39 Pa and quickly falls to -12 Pa. This 

area should be avoided. 

 

 Third Range (690 Hz to 1000 Hz):  

Both the sigma (σ) and z stress curves are increasing in 

the negative region but show signs of stabilization. 

 

The phi (ϕ) stress remains zero across the entire 

frequency range. 

 

It's important to note that the intermediate ranges are 
recommended for optimal use of the metallic bellows. 

 

IV. DISCUSSION 

 

In this work, we evaluated the life cycles of stainless 

steel and Inconel 718 metal bellows materials. We have 

presented the details of allowable and failure life cycles in 

Table 2. These results demonstrate the performance of 1.4571 

stainless steel in comparison to Inconel 718. Our data reflects 

the steel's resistance to various stresses. The results indicate 

that all parameters must be considered during the 
manufacturing process to extend the service life. 

 

We varied the mass density around the reference value. 

The values of 700 kg/m3 and 9000 kg/m3 were chosen to 

assess the change in behavior. It appears that in terms of 

maximum thermomechanical stress, consistency is observed 

regardless of the mass density value. 

 

With regard to temperature effects, we tested three 

frequency ranges. We noticed that when temperature is taken 

into account (45°C and 400°C) for 1.4571 stainless steel, the 
first two ranges are unstable and should therefore be avoided, 

unlike the third range, which is stable. Temperature has a 

significant influence on the structure (Figures 7 and 8). At 

high temperatures, the sigma (σ) and z stresses are at their 

maximum in the second range. The material can function 

optimally in a short period of time. 

 

For Inconel 718, we conducted the study using the same 

temperature values and also used three different frequency 

ranges. The phi (φ) stress was zero across the entire frequency 

range, as shown in Figures 9 and 10. It appears that the 

intermediate ranges are more suitable for optimal use of the 
metal bellows. 

 

 

V. CONCLUSION 
 

This study presents a thermomechanical stress model 

for a gate valve with a metallic bellows, focusing on two 

materials: Inconel 718 and stainless steel 1.4571. Both were 

subjected to mechanical stresses (opening and closing) and 

extreme temperature conditions. We used the state-space 

method to model the thermomechanical stresses during 

operation. We also calculated the material lifecycles and 

specific heat capacity. The results from Abaqus/CAE and 

Matlab allowed us to evaluate the thermomechanical stresses 

on the bellows, which is crucial for selecting the right 
material to ensure durability. 

 

Our thermomechanical simulations showed a Von 

Mises equivalent stress of 8222 MPa for stainless steel 1.4571 

and 12170 MPa for Inconel 718. The thermomechanical 

stress on the stainless steel was lower than that on the Inconel. 

The acceptable and fracture lifecycles for stainless steel 

1.4571 were 248 and 2802, respectively, which are higher 

than those of Inconel 718 (62 and 710). This confirms that 

stainless steel has a longer lifespan under these conditions. 

 

Additionally, both at low and high temperatures, we 
observed specific optimal operating zones and zones of 

instability. 
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