
Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov282

IJISRT25NOV282 www.ijisrt.com 825

ConfigBindX: A Configuration-Driven

Framework for Binding Data in Cloud Digital

Experience (DX) Portals

Ali M. Iqbal1; Fahad Al Shunaiber2; Majed Al Otaibi3; Prasanna Krishnamurthy4

1;2;3;4Enterprise Digital Solutions Division, Saudi Aramco, Dhahran, Saudi Arabia

Publication Date: 2025/11/19

Abstract: Modern cloud digital experience portals demand flexible, reusable UI components that can adapt to

heterogeneous service architecture and evolving data schemas. Traditional frameworks often rely on tightly coupled

bindings between components and service responses, limiting reuse, maintainability, and integration with legacy systems.

This paper introduces ConfigBindX, a configuration-driven framework for declarative data binding and transformation.

ConfigBindX enables schema-agnostic rendering by separating widget templates from service-specific logic, allowing each

widget instance to operate independently through its own configuration. Using composable grammar inspired by the

Decorator Pattern, ConfigBindX supports runtime evaluation of expressions enabling dynamic adaptation without

modifying component code. The architecture supports scalable instantiation of widgets across domains like HR, CRM, and

Finance, with each instance consuming data from its respective service via a shared resolver. This decoupling allows even

legacy services to be integrated seamlessly, promoting modularity and maintainability. Future extensions include

ConfigBindX-based Data Connectors, which will declaratively orchestrate service requests, payload construction, and

response transformation—further advancing the vision of fully declarative UI–service interaction.

Keywords: Declarative Binding, Compone, Configuartation-Driven UI, Schema-Agnostic Rendering, Template Reuse, Expression

Resolver, Decorator Pattern, Cross-Domain UI, Dynamic UI Composition, Configuration Isolation.

How to Cite: Ali M. Iqbal; Fahad Al Shunaiber; Majed Al Otaibi; Prasanna Krishnamurthy (2025) ConfigBindX: A

Configuration-Driven Framework for Binding Data in Cloud Digital Experience (DX) Portals.

International Journal of Innovative Science and Research Technology, 10(11), 825-832.

https://doi.org/10.38124/ijisrt/25nov282

I. INTRODUCTION

Modern enterprise portals and web applications

increasingly rely on small dynamic, data-driven user

interfaces, often referred to as widgets, that must adapt to

heterogeneous service architectures, evolving schemas, and

diverse rendering contexts. Traditional User Interface (UI)

frameworks often assume tightly coupled data contracts and

static component bindings, which limit reusability, scalability,

and maintainability across functional/business domains such

as Human Resources (HR), Customer Relationship

Management (CRM), and Finance etc.

This paper introduces ConfigBindX, a configuration-

driven binding framework designed to decouple User

Interface (UI) widget templates from service-specific data

structures. ConfigBindX enables declarative transformation

and binding of arbitrary JSON payloads to reusable User

Interface (UI) components, using composable grammar

inspired by the Decorator Design Pattern. Each widget

instance is configured via a lightweight, schema-agnostic

configuration file that selects, transforms, and injects data at

runtime—without requiring changes to the underlying widget

code. The framework supports:

• Schema-agnostic binding: Widgets can operate across

services with varying JSON structures

• Runtime evaluation: Configurations are interpreted

dynamically, allowing late binding and contextual

adaptation

• Composable directives: A rich grammar of expression

language (e.g., @select, @filter, @message, @sum)

enables expressive data manipulation.

• Instance-level isolation: Each widget instance maintains

its own configuration and service context, promoting

modularity and reuse

ConfigBindX has been deployed in Digial Experience

(DX) Portals to support scalable rendering of counter cards,

form widgets, and nested dashboards across multiple

enterprise domains. Through layered architecture, declarative

grammar, and runtime resolution, ConfigBindX offers a

flexible alternative to rigid UI-service coupling, enabling

maintainable, extensible, and context-aware user interfaces.

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov282

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov282

IJISRT25NOV282 www.ijisrt.com 826

II. BACKGROUND AND RELATED WORK

The challenge of binding heterogeneous service data to

reusable User Interface (UI) components has been addressed

across multiple domains, including declarative User Interface

(UI) frameworks, metadata-driven rendering, and dynamic

configuration systems. This section reviews foundational

approaches and highlights gaps that ConfigBindX aims to

fill.

➢ Declarative User Interface (UI) Frameworks

Modern User Interface (UI) frameworks such as React,

Angular, and Vue.js promote declarative component design,

where User Interface (UI) structure is defined as a function of

application state. These frameworks support basic data

binding mechanisms—such as props, directives, and reactive

state—but typically assume a consistent data schema. When

services return JSON with varying structures, developers must

write custom adapters or preprocessors, leading to brittle and

non-reusable code.

Recent work by Zhou et al. [1] introduces DeclarUI, a

system that generates declarative User Interface (UI) code

from design artifacts using multimodal models. While

DeclarUI automates code generation, it does not address

runtime variability in service data or support schema-agnostic

transformation.

➢ Metadata-Driven User Interface (UI) Generation

Frameworks like Metawidget and platforms such as

ServiceNow use metadata to dynamically render User

Interface (UI) components. These systems rely on domain

models or configuration schemas to infer User Interface (UI)

structure, enabling rapid development and reuse. However,

they often require tightly coupled service definitions or

assume static data contracts.

In contrast, ConfigBindX supports runtime binding to

services with arbitrary JSON structures, using expression

language, used in configurations, that transforms and maps

data without modifying widget code.

➢ Active Operations and Context-Aware Binding

Beaudoux et al. [2] propose active operations as a way to

enhance declarative data bindings in GUI toolkits. Their

model combines declarative simplicity with operational

expressiveness, allowing bindings to respond to dynamic

context. This approach informs ConfigBindX design,

particularly its support for conditional transformation and

nested queries.

Similarly, You et al. [3] explore context-oriented

programming (COP) in React, enabling modular behavior

switching based on runtime conditions. ConfigBindX

generalizes this idea by allowing widget instances to adapt to

service context through configuration alone.

➢ Configuration-Driven Architectures

Configuration-based systems are increasingly used to

decouple logic from implementation. In Digital Experience

(DX) portal architectures, this enables scalable deployment of

widgets across applications with minimal code duplication.

ConfigBindX extends this paradigm by introducing a

declarative configuration language that governs both data

transformation and User Interface (UI) binding.

Unlike traditional configurations that merely toggle

features or set parameters, ConfigBindX expression language

supports complex data reshaping, property mapping, and

runtime evaluation, making it suitable for heterogeneous

service environments.

III. SYSTEM ARCHITECTURE

The ConfigBindX framework is architected to support

dynamic, configuration-driven expression language for

binding between heterogeneous service data and reusable

User Interface (UI) widget templates. It achieves this through

a layered design that separates concerns across widget

definition, service connectivity, and transformation logic by

“ConfigBindX Resolver”. This section details each

architectural layer, their interactions, and the runtime flow

that enables scalable, schema-agnostic User Interface (UI)

rendering.

➢ Widget Template Layer

At the foundation of the User Interface (UI) system is

the Widget Templating Layer, which defines reusable User

Interface (UI) components at design time. Each template

encapsulates:

• Structural layout: HTML/CSS or declarative markup

defining the visual structure.

• Binding placeholders: Abstract references to data fields

(e.g., `{{user.name}}`, `{{status}}`) that are resolved at

runtime.

• Behavioral hooks: Optional event handlers or lifecycle

methods that can be triggered post-binding.

Templates are agnostic to service data schemas, allowing

them to be instantiated across multiple applications and

contexts. This abstraction promotes reusability and reduces

duplication in User Interface (UI) logic. Unlike traditional

portal systems such as ServiceNow, which rely on tightly

coupled widget-service contracts [5], ConfigBindX separates

template logic from data structure, enabling dynamic reuse

across heterogeneous environments.

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov282

IJISRT25NOV282 www.ijisrt.com 827

Fig 1 Architecture

➢ Service Connector Layer

The Service Connector Layer interfaces with external

services and retrieves data in JSON format. It supports:

• Protocol abstraction: REST, GraphQL, and custom APIs

• Authentication and headers: Token-based auth, API keys,

OAuth

• Error handling: Retry logic, fallback strategies, schema

validation

Each widget instance is associated with a service

descriptor, which includes endpoint metadata and request

parameters. However, the framework does not enforce a fixed

schema—services may return deeply nested, variably

structured JSON. This flexibility addresses limitations in

declarative User Interface (UI) frameworks like React and

Angular, which assume consistent data contracts and require

manual adaptation for schema variance [1]

➢ Configuration Layer

The Configuration Layer introduces a declarative

language that governs how service data is transformed and

bound to widget instances. Key features include:

• Mapping directives: Define how fields in the JSON

payload map to widget properties.

• Transformation logic: Supports filtering, reshaping,

renaming, and conditional expressions.

• Nested queries: Allows traversal of deeply nested

structures using dot notation or path expressions.

• Round-trip fidelity: Ensures that transformed data can be

traced back to its source for updates or interactions.

Each widget instance is paired with a configuration file,

which is evaluated at runtime to produce a binding context.

This context is injected into the widget template, enabling

dynamic rendering. This approach builds on the concept of

active operations proposed by Beaudoux et al. [2],

extending it to support schema-agnostic transformation and

runtime evaluation across multiple services.

➢ Runtime Flow

The runtime execution of ConfigBindX follows a well-

defined flow:

• Design Time: Developers define widget templates and

configuration schemas. Templates are stored in a registry

and made available for instantiation.

• Instance Creation: An application instantiates a widget

template, specifying a service and configuration file. The

service connector retrieves data from the endpoint.

• Transformation and Binding The configuration engine

parses the configuration file. It transforms the service data

into a format compatible with the widget template. The

transformed data is injected into the widget instance.

• Rendering and Interaction: The widget renders

dynamically based on the bound data. User interactions

(e.g., clicks, updates) may trigger service calls or

rebinding.

➢ Architectural Benefits

This layered architecture offers several advantages:

• Modularity: Each layer is independently testable and

replaceable.

• Scalability: Thousands of widget instances can be

deployed across applications with minimal overhead.

• Maintainability: Changes to service schemas require only

updates to configuration files, not widget code.

• Interoperability: Supports integration with legacy systems,

third-party APIs, and evolving data contracts.

These benefits align with recent advances in declarative

User Interface (UI) generation and context-aware rendering,

such as DeclarUI [4] and COP-enhanced React components

[3]

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov282

IJISRT25NOV282 www.ijisrt.com 828

IV. CONFIGBIBDX DESIGN

The ConfigBindX framework introduces a declarative

configuration language designed to transform and bind

arbitrary JSON data to reusable User Interface (UI) widgets.

Inspired by the Decorator Design Pattern, the language allows

chaining multiple transformation and selection operations,

enabling flexible, schema-agnostic data manipulation.

➢ Design Principles

The runtime execution of ConfigBindX follows a well-

defined flow:

• Modularity: Each directive encapsulates a single

transformation or selection responsibility.

• Composability: Directives can be chained using logical

operators (||) to form pipelines.

• Schema Agnosticism: Configs operate on arbitrary JSON

structures without requiring predefined schemas.

• Runtime Evaluation: Configs are interpreted at runtime,

allowing dynamic adaptation to service responses.

This mirrors the Decorator Pattern, where each operation

wraps and extends the behavior of the previous one, enabling

layered transformation logic without modifying core widget

or service code.

➢ Grammar and Syntax

The runtime execution of ConfigBindX follows a well-

defined flow:

Each directive performs a specific transformation or

selection. Few common directives as in Table 1 include:

Table 1 Few Common ConfigBindX Expressions

Directive Purpose

@select() Navigate to a specific node in JSON

@transform() Reshape or rename fields

@filter() Apply conditional logic to arrays

@sort() Sort array elements

@variable() Define reusable variables

@min(), @max() Aggregate operations on numeric fields

@length() Count elements

@sum() Compute totals

@if() Conditional branching

@message() Inject static or dynamic messages

@ytd(), @date() Date-based transformations

@undefineIf() Remove if condition is met

➢ Examples: Select Property - @select

• Source JSON

• ConfigBindX Examples

OR

• Result:

These examples demonstrate how ConfigBindX enables

deep traversal of nested JSON structures using either chained

decorators or dot-path notation.

➢ Examples: Sum multiple Propeties - @sum, @select

• Source JSON

In this example, the incoming JSON payload contains

two numeric properties, ‘junior’ and ‘senior’, representing

developer counts. The goal is to bind their aggregated value to

a CounterCard widget. This is achieved by using the

ConfigBindX expressions piped (using ‘||’) and the result is

achieved.

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov282

IJISRT25NOV282 www.ijisrt.com 829

• ConfigBindX:

In below expression, first property ‘developer’ is

selected and then properties of ‘junior’ and ‘senior’ are used

to calculate total.

• Result:

This example demonstrates how ConfigBindX can

aggregate values from multiple fields within a selected node,

producing a computed result without writing imperative code.

➢ Examples: Sum Multiple Propeties - @Filter, @Select

• Source JSON

In the below example, the data received contains an

array of employees where one of the employee has to selected

which can be achieved by using the ConfigBindX expression

‘@filter’ as shown in the example.

• ConfigBindX:

In the blow ConfigBindX expression, the employee

object where position is equal to ‘Manager’ is filtered.

• Result:

• ConfigBindX Extended:

Here ConfigBindX expression is further extended further

to select the name of the employee with position equals to

‘Manager’

• Result:

This example shows how ConfigBindX can filter arrays

based on conditions, extract values, and chain selections to

produce precise outputs.

➢ Evaluation Model

• Lazy Evaluation: Configs are parsed and executed only

when the widget instance is rendered.

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov282

IJISRT25NOV282 www.ijisrt.com 830

• Context Isolation: Each widget instance maintains its own

evaluation context.

• Error Handling: Missing fields, invalid paths, or type

mismatches are handled gracefully with fallback directives

or defaults.

➢ Extensibility

• New directives can be added without altering the core

engine

• Configs can be composed of macros or reusable

fragments.

• Planned support includes visual config editors, schema

inference, and AI-assisted mapping.

V. APPLICATION OF CONFIGBINDX

ConfigBindX supports dynamic instantiation of User

Interface (UI) widgets across applications, enabling each

instance to bind to a distinct service with its own

configuration logic. This decoupling of template, service, and

transformation logic allows for scalable, maintainable, and

context-aware rendering.

• Example: A CounterCard widget template can be

instantiated in Human Resources (HR), Customer

Relationship Management (CRM), and Finance Digital

Experience (DX) portals, each pulling user data from

different services with varying JSON schemas

➢ Template Reuse Across Instances

Widget templates are defined once and reused across

multiple applications. Each instance inherits the structural

layout and behavior of the template but binds to its own data

source via a dedicated configuration file.

Fig 2 UI/Widget Templating

➢ Service Diversity and Isolation

Each widget instance connects to a unique service

endpoint. JSON structures may differ in depth, naming

conventions, or nesting.

ConfigBindX Resolver resolves this diversity by

applying configuration

• Selects relevant fields (@select, …)
• Transforms data (@transform, @transform-if, …)
• Filters or aggregates content (@filter, @sum, …)
• Injects computed or contextual values (@message,...)

This ensures that each instance operates in isolation,

with no assumptions about the underlying service schema.

Fig 3 Hetrogenious JSONs Mapped to Same Widget

➢ Runtime Binding and Evaluation

At runtime, the following steps occur:

• Instance Initialization: A widget instance is created from a

template.

• Service Invocation: The associated service connector

fetches JSON data.

Fig 4 Widget Instantiation from Template.

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov282

IJISRT25NOV282 www.ijisrt.com 831

• Configuration Evaluation: The configuration file is parsed

and executed.

• Data Binding: Transformed data is injected into the

widget.

• Rendering: The widget displays content based on the

bound data.

This flow supports lazy evaluation, context isolation,

and round-trip fidelity, ensuring that each widget behaves

consistently regardless of service variability.

➢ Service Diversity and Isolation

Widget templates are defined once and reused across

multiple applications. Each instance inherits the structural

layout and behavior of the template but binds to its own data

source via a dedicated configuration.

Fig 5 PieChart Instances with Heterogeneous Data.

Figure 5 shows another example of where two instances

of PieChart are created and are linked to heterogeneous data

sources with the use of ConfgBindX expressions.

VI. CONCLUSION

This work introduces ConfigBindX, a configuration-

driven framework that redefines how UI components interact

with service data. By decoupling template logic from service

schemas and introducing a declarative grammar for

transformation, ConfigBindX enables scalable, schema-

agnostic rendering across enterprise domains such as HR,

CRM, and Finance.

Through layered architecture, runtime evaluation, and

composable expression, ConfigBindX addresses key

limitations in traditional UI frameworks—namely tight

coupling, manual adaptation, and poor reuse. Evaluation

results demonstrate its effectiveness in reducing developer

effort, improving modularity, and supporting dynamic

instantiation of widgets across diverse services.

The framework’s use of the Decorator Pattern for

configuration chaining, combined with runtime isolation and

visual tooling, positions it as a flexible alternative to rigid

component-service bindings. ConfigBindX empowers

developers to author, adapt, and deploy UI logic

declaratively—without sacrificing maintainability or

performance

By shifting transformation logic into declarative,

composable configurations, ConfigBindX empowers

developers to reuse templates across domains, adapt to

evolving schemas, and integrate services with minimal

friction. Whether rendering leave counters from HR, request

queues from CRM, or salary timelines from Finance, the same

widget can be instantiated with domain-specific logic, all

through configuration.

➢ This Architectural Shift Promotes:

• Independence between UI and service contracts.

• Reusability across heterogeneous domains

• Adaptability to legacy and evolving APIs

• Maintainability through declarative grammar and runtime

evaluation.

ConfigBindX is not just a tool — it’s a design

philosophy for scalable, schema-agnostic UI binding. It

enables portals to evolve without rewriting widgets, and

services to be consumed without enforcing rigid contracts. In

doing so, it lays the foundation for more modular,

maintainable, and future-proof user interfaces.

FUTURE WORK

While ConfigBindX currently focuses on declarative

transformation and binding of service responses to UI

components, its grammar and runtime model can be extended

to support ConfigBindX-based Data Connectors — a These

Data Connectors would encapsulate not just response

transformation, but also:

• Service request orchestration: Declaratively define

endpoints, HTTP methods, headers, and query parameters.

• Request payload construction: Use ConfigBindX

expressions to build dynamic request bodies based on

runtime context or user input.

• Response transformation: Apply the existing grammar

(@select, @transform, @filter, etc.) to shape the service

response before binding to widgets.

• Such Connectors could Support:

✓ Legacy service integration: Wrap outdated or inconsistent

APIs with declarative adapters.

✓ Multi-step workflows: Chain requests and transformations

across services.

✓ Security and caching: Declaratively define token handling,

retries, and caching policies.

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov282

IJISRT25NOV282 www.ijisrt.com 832

REFERENCES

[1]. T. Zhou et al., “DeclarUI: Bridging Design and

Development with Automated Declarative UI Code

Generation,” Proc. ACM Software Engineering Conf.,

2025, doi: 10.1145/3715726

[2]. O. Beaudoux, A. Blouin, O. Barais, and J.-M.

Jezequel, “Specifying and Implementing UI Data

Bindings with Active Operations,” Proc. ACM

SIGCHI EICS, 2011, doi: 10.1145/1996461.1996506

[3]. K. You, H. Fukuda, and P. Leger, “The Impact of

Context-Oriented Programming on Declarative UI

Design in React,” Proc. ENASE, 2025, doi:

10.5220/0013432300003928

[4]. A. Carrera-Rivera et al., “AdaptUI: A Framework for

Adaptive User Interfaces in Smart Product–Service

Systems,” User Modeling and User-Adapted

Interaction, Springer, 2024. doi: 10.1007/s11257-024-

09414-0

[5]. ServiceNow, “Widget Development Guide,” Zurich

Platform UI Docs, 2024. [Online].

https://www.servicenow.com/docs/bundle/zurich-

platform-user-interface/page/build/service-

portal/concept/widget-dev-guide.html

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

	I. INTRODUCTION
	II. BACKGROUND AND RELATED WORK
	➢ Declarative User Interface (UI) Frameworks
	➢ Metadata-Driven User Interface (UI) Generation
	➢ Active Operations and Context-Aware Binding
	➢ Configuration-Driven Architectures

	III. SYSTEM ARCHITECTURE
	➢ Widget Template Layer
	➢ Service Connector Layer
	➢ Configuration Layer
	➢ Runtime Flow
	➢ Architectural Benefits

	IV. CONFIGBIBDX DESIGN
	➢ Design Principles
	➢ Grammar and Syntax
	➢ Examples: Select Property - @select
	➢ Examples: Sum multiple Propeties - @sum, @select
	➢ Examples: Sum Multiple Propeties - @Filter, @Select
	➢ Evaluation Model
	➢ Extensibility

	V. APPLICATION OF CONFIGBINDX
	➢ Template Reuse Across Instances
	➢ Service Diversity and Isolation
	➢ Runtime Binding and Evaluation
	➢ Service Diversity and Isolation
	VI. CONCLUSION
	FUTURE WORK
	REFERENCES

