Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25n0v282

ConfigBindX: A Configuration-Driven
Framework for Binding Data in Cloud Digital
Experience (DX) Portals

Ali M. Igbal'; Fahad Al Shunaiber?; Majed Al Otaibi’; Prasanna Krishnamurthy*

L234Enterprise Digital Solutions Division, Saudi Aramco, Dhahran, Saudi Arabia

Publication Date: 2025/11/19

Abstract: Modern cloud digital experience portals demand flexible, reusable UI components that can adapt to
heterogeneous service architecture and evolving data schemas. Traditional frameworks often rely on tightly coupled
bindings between components and service responses, limiting reuse, maintainability, and integration with legacy systems.
This paper introduces ConfigBindX, a configuration-driven framework for declarative data binding and transformation.
ConfigBindX enables schema-agnostic rendering by separating widget templates from service-specific logic, allowing each
widget instance to operate independently through its own configuration. Using composable grammar inspired by the
Decorator Pattern, ConfigBindX supports runtime evaluation of expressions enabling dynamic adaptation without
modifying component code. The architecture supports scalable instantiation of widgets across domains like HR, CRM, and
Finance, with each instance consuming data from its respective service via a shared resolver. This decoupling allows even
legacy services to be integrated seamlessly, promoting modularity and maintainability. Future extensions include
ConfigBindX-based Data Connectors, which will declaratively orchestrate service requests, payload construction, and
response transformation—further advancing the vision of fully declarative Ul-service interaction.

Keywords: Declarative Binding, Compone, Configuartation-Driven Ul, Schema-Agnostic Rendering, Template Reuse, Expression
Resolver, Decorator Pattern, Cross-Domain Ul, Dynamic Ul Composition, Configuration Isolation.

How to Cite: Ali M. Igbal; Fahad Al Shunaiber; Majed Al Otaibi; Prasanna Krishnamurthy (2025) ConfigBindX: A
Configuration-Driven Framework for Binding Data in Cloud Digital Experience (DX) Portals.
International Journal of Innovative Science and Research Technology, 10(11), 825-832.
https://doi.org/10.38124/ijisrt/25n0v282

L. INTRODUCTION runtime—without requiring changes to the underlying widget
code. The framework supports:

Modern enterprise portals and web applications
increasingly rely on small dynamic, data-driven user e Schema-agnostic binding: Widgets can operate across
interfaces, often referred to as widgets, that must adapt to services with varying JSON structures
heterogeneous service architectures, evolving schemas, and e Runtime evaluation: Configurations are interpreted
diverse rendering contexts. Traditional User Interface (UI) dynamically, allowing late binding and contextual
frameworks often assume tightly coupled data contracts and adaptation
static component bindings, which limit reusability, scalability, e Composable directives: A rich grammar of expression
and maintainability across functional/business domains such language (e.g., @select, @filter, @message, @sum)
as Human Resources (HR), Customer Relationship enables expressive data manipulation.
Management (CRM), and Finance etc. o Instance-level isolation: Each widget instance maintains
its own configuration and service context, promoting

This paper introduces ConfigBindX, a configuration-
driven binding framework designed to decouple User
Interface (UI) widget templates from service-specific data
structures. ConfigBindX enables declarative transformation
and binding of arbitrary JSON payloads to reusable User
Interface (UI) components, using composable grammar
inspired by the Decorator Design Pattern. Each widget
instance is configured via a lightweight, schema-agnostic
configuration file that selects, transforms, and injects data at

IJISRT25NOV282

modularity and reuse

ConfigBindX has been deployed in Digial Experience
(DX) Portals to support scalable rendering of counter cards,
form widgets, and nested dashboards across multiple
enterprise domains. Through layered architecture, declarative
grammar, and runtime resolution, ConfigBindX offers a
flexible alternative to rigid Ul-service coupling, enabling
maintainable, extensible, and context-aware user interfaces.

WWwWw.ijisrt.com 825

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov282

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

II. BACKGROUND AND RELATED WORK

The challenge of binding heterogeneous service data to
reusable User Interface (UI) components has been addressed
across multiple domains, including declarative User Interface
(UI) frameworks, metadata-driven rendering, and dynamic
configuration systems. This section reviews foundational
approaches and highlights gaps that ConfigBindX aims to
fill.

» Declarative User Interface (Ul) Frameworks

Modern User Interface (UI) frameworks such as React,
Angular, and Vue.js promote declarative component design,
where User Interface (UI) structure is defined as a function of
application state. These frameworks support basic data
binding mechanisms—such as props, directives, and reactive
state—but typically assume a consistent data schema. When
services return JSON with varying structures, developers must
write custom adapters or preprocessors, leading to brittle and
non-reusable code.

Recent work by Zhou et al. [1] introduces DeclarUI, a
system that generates declarative User Interface (UI) code
from design artifacts using multimodal models. While
DeclarUI automates code generation, it does not address
runtime variability in service data or support schema-agnostic
transformation.

» Metadata-Driven User Interface (Ul) Generation

Frameworks like Metawidget and platforms such as
ServiceNow use metadata to dynamically render User
Interface (UI) components. These systems rely on domain
models or configuration schemas to infer User Interface (UI)
structure, enabling rapid development and reuse. However,
they often require tightly coupled service definitions or
assume static data contracts.

In contrast, ConfigBindX supports runtime binding to
services with arbitrary JSON structures, using expression
language, used in configurations, that transforms and maps
data without modifying widget code.

» Active Operations and Context-Aware Binding

Beaudoux et al. [2] propose active operations as a way to
enhance declarative data bindings in GUI toolkits. Their
model combines declarative simplicity with operational
expressiveness, allowing bindings to respond to dynamic
context. This approach informs ConfigBindX design,
particularly its support for conditional transformation and
nested queries.

Similarly, You et al. [3] explore context-oriented

programming (COP) in React, enabling modular behavior
switching based on runtime conditions. ConfigBindX

IJISRT25NOV282

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25n0v282

generalizes this idea by allowing widget instances to adapt to
service context through configuration alone.

» Configuration-Driven Architectures

Configuration-based systems are increasingly used to
decouple logic from implementation. In Digital Experience
(DX) portal architectures, this enables scalable deployment of
widgets across applications with minimal code duplication.
ConfigBindX extends this paradigm by introducing a
declarative configuration language that governs both data
transformation and User Interface (UI) binding.

Unlike traditional configurations that merely toggle
features or set parameters, ConfigBindX expression language
supports complex data reshaping, property mapping, and
runtime evaluation, making it suitable for heterogeneous
service environments.

I11. SYSTEM ARCHITECTURE

The ConfigBindX framework is architected to support
dynamic, configuration-driven expression language for
binding between heterogeneous service data and reusable
User Interface (UI) widget templates. It achieves this through
a layered design that separates concerns across widget
definition, service connectivity, and transformation logic by
“ConfigBindX Resolver”. This section details each
architectural layer, their interactions, and the runtime flow
that enables scalable, schema-agnostic User Interface (UI)
rendering.

» Widget Template Layer

At the foundation of the User Interface (UI) system is
the Widget Templating Layer, which defines reusable User
Interface (UI) components at design time. Each template
encapsulates:

e Structural layout: HTML/CSS or declarative markup
defining the visual structure.

e Binding placeholders: Abstract references to data fields
(e.g., "{{user.name}}", *{{status}}’) that are resolved at
runtime.

e Behavioral hooks: Optional event handlers or lifecycle
methods that can be triggered post-binding.

Templates are agnostic to service data schemas, allowing
them to be instantiated across multiple applications and
contexts. This abstraction promotes reusability and reduces
duplication in User Interface (UI) logic. Unlike traditional
portal systems such as ServiceNow, which rely on tightly
coupled widget-service contracts [5], ConfigBindX separates
template logic from data structure, enabling dynamic reuse
across heterogeneous environments.

WWwWw.ijisrt.com 826

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25n0v282

)[Instance

] Widget
J Instance

Widget
Template

ConfigBind X]
Resolver

Instance
Configuration

[Service Connector]

Fig 1 Architecture

» Service Connector Layer
The Service Connector Layer interfaces with external
services and retrieves data in JSON format. It supports:

e Protocol abstraction: REST, GraphQL, and custom APIs

o Authentication and headers: Token-based auth, API keys,
OAuth

e Error handling: Retry logic, fallback strategies, schema
validation

Each widget instance is associated with a service
descriptor, which includes endpoint metadata and request
parameters. However, the framework does not enforce a fixed
schema—services may return deeply nested, variably
structured JSON. This flexibility addresses limitations in
declarative User Interface (UI) frameworks like React and
Angular, which assume consistent data contracts and require
manual adaptation for schema variance [1]

» Configuration Layer

The Configuration Layer introduces a declarative
language that governs how service data is transformed and
bound to widget instances. Key features include:

e Mapping directives: Define how fields in the JSON
payload map to widget properties.

e Transformation logic: Supports filtering, reshaping,
renaming, and conditional expressions.

e Nested queries: Allows traversal of deeply nested
structures using dot notation or path expressions.

e Round-trip fidelity: Ensures that transformed data can be
traced back to its source for updates or interactions.

Each widget instance is paired with a configuration file,
which is evaluated at runtime to produce a binding context.
This context is injected into the widget template, enabling
dynamic rendering. This approach builds on the concept of
*active operations® proposed by Beaudoux et al. [2],

IJISRT25NOV282

extending it to support schema-agnostic transformation and
runtime evaluation across multiple services.

» Runtime Flow
The runtime execution of ConfigBindX follows a well-
defined flow:

e Design Time: Developers define widget templates and
configuration schemas. Templates are stored in a registry
and made available for instantiation.

e Instance Creation: An application instantiates a widget
template, specifying a service and configuration file. The
service connector retrieves data from the endpoint.

e Transformation and Binding The configuration engine
parses the configuration file. It transforms the service data
into a format compatible with the widget template. The
transformed data is injected into the widget instance.

e Rendering and Interaction: The widget renders
dynamically based on the bound data. User interactions
(e.g., clicks, updates) may trigger service calls or
rebinding.

» Architectural Benefits
This layered architecture offers several advantages:

e Modularity: Each layer is independently testable and
replaceable.

e Scalability: Thousands of widget instances can be
deployed across applications with minimal overhead.

e Maintainability: Changes to service schemas require only
updates to configuration files, not widget code.

o Interoperability: Supports integration with legacy systems,
third-party APIs, and evolving data contracts.

These benefits align with recent advances in declarative
User Interface (UI) generation and context-aware rendering,
such as DeclarUI [4] and COP-enhanced React components

[3]

WWwWw.ijisrt.com 827

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

Iv. CONFIGBIBDX DESIGN

The ConfigBindX framework introduces a declarative
configuration language designed to transform and bind
arbitrary JSON data to reusable User Interface (UI) widgets.
Inspired by the Decorator Design Pattern, the language allows
chaining multiple transformation and selection operations,
enabling flexible, schema-agnostic data manipulation.

» Design Principles
The runtime execution of ConfigBindX follows a well-
defined flow:

e Modularity: Each directive encapsulates a
transformation or selection responsibility.

e Composability: Directives can be chained using logical
operators (||) to form pipelines.

e Schema Agnosticism: Configs operate on arbitrary JSON
structures without requiring predefined schemas.

single

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25n0v282

e Runtime Evaluation: Configs are interpreted at runtime,
allowing dynamic adaptation to service responses.

This mirrors the Decorator Pattern, where each operation
wraps and extends the behavior of the previous one, enabling
layered transformation logic without modifying core widget
or service code.

» Grammar and Syntax

The runtime execution of ConfigBindX follows a well-
defined flow:

#Grammar of Simple ConfigBindX

@directive(argl; arg2; ..)

Each directive performs a specific transformation or
selection. Few common directives as in Table 1 include:

Table 1 Few Common ConfigBindX Expressions

Directive Purpose
@select() Navigate to a specific node in JSON
@transform() Reshape or rename fields
@filter() Apply conditional logic to arrays
@sort() Sort array elements
(@variable() Define reusable variables
@min(), @max() Aggregate operations on numeric fields
@length() Count elements
@sum() Compute totals
@if() Conditional branching
(@message() Inject static or dynamic messages
@ytd(), @date() Date-based transformations
@undefinelf() Remove if condition is met

» Examples: Select Property - @select

e Source JSSON

||R1l: {

uuseru: {
"n": "Ali Mazhar",

"g": 178

o ConfigBindX Examples

@select('R.user.n')

IJISRT25NOV282

OR

Aselect('R') || @select('user') || @select('n')

e Result:

"Al1 Mazhar"

These examples demonstrate how ConfigBindX enables
deep traversal of nested JSON structures using either chained
decorators or dot-path notation.

» Examples: Sum multiple Propeties - @sum, @select

e Source JSON

In this example, the incoming JSON payload contains
two numeric properties, ‘junior’ and ‘senior’, representing
developer counts. The goal is to bind their aggregated value to
a CounterCard widget. This is achieved by using the
ConfigBindX expressions piped (using ‘||’) and the result is
achieved.

WWwWw.ijisrt.com 828

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

"data": {

'orgTitle": "Application
"'orgCode” : "

"developers": {"junior": 7, "senior": 4}

o ConfigBindX:

In below expression, first property ‘developer’ is
selected and then properties of ‘junior’ and ‘senior’ are used
to calculate total.

Bselect('data.developers') || @sun(junior; senior)

o Result:

This example demonstrates how ConfigBindX can
aggregate values from multiple fields within a selected node,
producing a computed result without writing imperative code.

» Examples: Sum Multiple Propeties - @Filter, @Select

e Source JSON

In the below example, the data received contains an
array of employees where one of the employee has to selected
which can be achieved by using the ConfigBindX expression
‘@filter’ as shown in the example.

"orgTitle": "
"orgCode": '

name": " ", "position":

"gradeCode": I

, 'name”: ", "position":

radeCode "
3, "name": "position":

, gradeCode"

: 4, "name": s position":

“"gradeCode": 9 },

": 5, "name": "Uz » 'position":
, 'gradeCode™:
": 6, "name": “position®:
, 'gradeCode"
": 8, "name": , position":

» gradeCode™: 9 }

IJISRT25NOV282

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25n0v282

o ConfigBindX:
In the blow ConfigBindX expression, the employee
object where position is equal to “Manager”’ is filtered.

@select('data.employee') || @filter('[?].position ==

e Result:

{ "id": 1, "name";

"gradeCode”; 17 }

o ConfigBindX Extended:

Here ConfigBindX expression is further extended further
to select the name of the employee with position equals to
‘Manager’

Plaintext

@select('data.employee’) || @filter('[?].position ==

“Manager"') || @value() || @select('name')

e Result:

Plaintext

“khalid”

This example shows how ConfigBindX can filter arrays
based on conditions, extract values, and chain selections to
produce precise outputs.

» Evaluation Model

e Lazy Evaluation: Configs are parsed and executed only
when the widget instance is rendered.

WWwWw.ijisrt.com 829

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

o Context Isolation: Each widget instance maintains its own
evaluation context.

e Error Handling: Missing fields, invalid paths, or type
mismatches are handled gracefully with fallback directives
or defaults.

» Extensibility

e New directives can be added without altering the core
engine

e Configs can be composed of macros or reusable
fragments.

e Planned support includes visual config editors, schema
inference, and Al-assisted mapping.

V. APPLICATION OF CONFIGBINDX

ConfigBindX supports dynamic instantiation of User
Interface (UI) widgets across applications, enabling each
instance to bind to a distinct service with its own
configuration logic. This decoupling of template, service, and
transformation logic allows for scalable, maintainable, and
context-aware rendering:

e Example: A CounterCard widget template can be
instantiated in Human Resources (HR), Customer
Relationship Management (CRM), and Finance Digital
Experience (DX) portals, each pulling user data from
different services with varying JSON schemas

» Template Reuse Across Instances

Widget templates are defined once and reused across
multiple applications. Each instance inherits the structural
layout and behavior of the template but binds to its own data
source via a dedicated configuration file.

Widget Template
{ $wnum}
{ $wmessage}
HR CRM Finance
Remaining Pending Days until
Leaves Requests Salary Transfer

Fig 2 UI/Widget Templating

» Service Diversity and Isolation

Each widget instance connects to a unique service
endpoint. JSON structures may differ in depth, naming
conventions, or nesting.

IJISRT25NOV282

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25n0v282

ConfigBindX Resolver resolves this diversity by
applying configuration

Selects relevant fields (@select, ...)

Transforms data (@transform, @transform-if; ...)
Filters or aggregates content (@filter, @sum, ...)
Injects computed or contextual values (@message,...)

This ensures that each instance operates in isolation,
with no assumptions about the underlying service schema.

w— . {"type" "hr" HE
ervice
'‘val's 15
| 15
Remaining
Leaves
{'type': "crm"
CRM Service . ount:7 | configgina- CRM
} Resolver

7

{'empld" 2321 Pending

Finance Service “timing" 6 Requests
"name': "Ali Mazhar" "

} Finance

Days until

Salary Transfer

Fig 3 Hetrogenious JSONs Mapped to Same Widget

» Runtime Binding and Evaluation
At runtime, the following steps occur:

o Instance Initialization: A widget instance is created from a
template.

e Service Invocation: The associated service connector
fetches JSON data.

Create/Edit Widget Intance
Widget Type

CounterCard ~

Instance 1D
HR_LEAVE_CARD

URL for HR Service

http://hr.company.com/api/leave/remaingg

Count

@select("val’)

Message

Remaining Leaves

15

Remaining

Leaves

Fig 4 Widget Instantiation from Template.

WWwWw.ijisrt.com 830

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

o Configuration Evaluation: The configuration file is parsed
and executed.

e Data Binding: Transformed data is injected into the
widget.

e Rendering: The widget displays content based on the
bound data.

This flow supports lazy evaluation, context isolation,
and round-trip fidelity, ensuring that each widget behaves
consistently regardless of service variability.

» Service Diversity and Isolation

Widget templates are defined once and reused across
multiple applications. Each instance inherits the structural
layout and behavior of the template but binds to its own data
source via a dedicated configuration.

HR

HR Service
{"type": {"leaves":
{"spent": 13,
"remaining": 23}}

}

. . Remainng
Flnal:lce ConfigBind B spent
Service Resolver

{"category":{"budget": Finance

{
"name":"Expenses”,
"percentage": 61"}

}
}

B Expenses

B Remaining

Fig 5 PieChart Instances with Heterogeneous Data.

Figure 5 shows another example of where two instances
of PieChart are created and are linked to heterogeneous data
sources with the use of ConfgBindX expressions.

VI CONCLUSION

This work introduces ConfigBindX, a configuration-
driven framework that redefines how Ul components interact
with service data. By decoupling template logic from service
schemas and introducing a declarative grammar for
transformation, ConfigBindX enables scalable, schema-
agnostic rendering across enterprise domains such as HR,
CRM, and Finance.

Through layered architecture, runtime evaluation, and
composable expression, ConfigBindX addresses key
limitations in traditional UI frameworks—namely tight
coupling, manual adaptation, and poor reuse. Evaluation
results demonstrate its effectiveness in reducing developer
effort, improving modularity, and supporting dynamic
instantiation of widgets across diverse services.

IJISRT25NOV282

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25n0v282

The framework’s use of the Decorator Pattern for
configuration chaining, combined with runtime isolation and
visual tooling, positions it as a flexible alternative to rigid
component-service bindings. ConfigBindX empowers
developers to author, adapt, and deploy UI logic
declaratively—without sacrificing maintainability or
performance

By shifting transformation logic into declarative,
composable configurations, ConfigBindX empowers
developers to reuse templates across domains, adapt to
evolving schemas, and integrate services with minimal
friction. Whether rendering leave counters from HR, request
queues from CRM, or salary timelines from Finance, the same
widget can be instantiated with domain-specific logic, all
through configuration.

» This Architectural Shift Promotes:

e Independence between Ul and service contracts.

e Reusability across heterogeneous domains

e Adaptability to legacy and evolving APIs

e Maintainability through declarative grammar and runtime
evaluation.

ConfigBindX is not just a tool — it’s a design
philosophy for scalable, schema-agnostic Ul binding. It
enables portals to evolve without rewriting widgets, and
services to be consumed without enforcing rigid contracts. In
doing so, it lays the foundation for more modular,
maintainable, and future-proof user interfaces.

FUTURE WORK

While ConfigBindX currently focuses on declarative
transformation and binding of service responses to Ul
components, its grammar and runtime model can be extended
to support ConfigBindX-based Data Connectors — a These
Data Connectors would encapsulate not just response
transformation, but also:

e Service request orchestration: Declaratively define
endpoints, HTTP methods, headers, and query parameters.

e Request payload construction: Use ConfigBindX
expressions to build dynamic request bodies based on
runtime context or user input.

e Response transformation: Apply the existing grammar
(@select, @transform, @filter, etc.) to shape the service
response before binding to widgets.

o Such Connectors could Support:

v' Legacy service integration: Wrap outdated or inconsistent
APIs with declarative adapters.

v' Multi-step workflows: Chain requests and transformations
across services.

v" Security and caching: Declaratively define token handling,
retries, and caching policies.

WWwWw.ijisrt.com 831

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025

ISSN No:-2456-2165

[1].

[4].

[5].

IJISRT25NOV282

REFERENCES

T. Zhou et al., “DeclarUl: Bridging Design and
Development with Automated Declarative Ul Code
Generation,” Proc. ACM Software Engineering Conf.,
2025, doi: 10.1145/3715726

O. Beaudoux, A. Blouin, O. Barais, and J.-M.
Jezequel, “Specifying and Implementing UI Data
Bindings with Active Operations,” Proc. ACM
SIGCHI EICS, 2011, doi: 10.1145/1996461.1996506
K. You, H. Fukuda, and P. Leger, “The Impact of
Context-Oriented Programming on Declarative Ul
Design in React,” Proc. ENASE, 2025, doi:
10.5220/0013432300003928

A. Carrera-Rivera et al., “AdaptUl: A Framework for
Adaptive User Interfaces in Smart Product—Service
Systems,” User Modeling and User-Adapted
Interaction, Springer, 2024. doi: 10.1007/s11257-024-
09414-0

ServiceNow, “Widget Development Guide,” Zurich
Platform Ul Docs, 2024. [Online].
https://www.servicenow.com/docs/bundle/zurich-
platform-user-interface/page/build/service-
portal/concept/widget-dev-guide.html

WWwWw.ijisrt.com

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25n0v282

832

https://doi.org/10.38124/ijisrt/25nov282
http://www.ijisrt.com/

	I. INTRODUCTION
	II. BACKGROUND AND RELATED WORK
	➢ Declarative User Interface (UI) Frameworks
	➢ Metadata-Driven User Interface (UI) Generation
	➢ Active Operations and Context-Aware Binding
	➢ Configuration-Driven Architectures

	III. SYSTEM ARCHITECTURE
	➢ Widget Template Layer
	➢ Service Connector Layer
	➢ Configuration Layer
	➢ Runtime Flow
	➢ Architectural Benefits

	IV. CONFIGBIBDX DESIGN
	➢ Design Principles
	➢ Grammar and Syntax
	➢ Examples: Select Property - @select
	➢ Examples: Sum multiple Propeties - @sum, @select
	➢ Examples: Sum Multiple Propeties - @Filter, @Select
	➢ Evaluation Model
	➢ Extensibility

	V. APPLICATION OF CONFIGBINDX
	➢ Template Reuse Across Instances
	➢ Service Diversity and Isolation
	➢ Runtime Binding and Evaluation
	➢ Service Diversity and Isolation
	VI. CONCLUSION
	FUTURE WORK
	REFERENCES

