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Abstract: Deep Neural Networks (DNNs) such as ResNet-50 have achieved state-of-the-art results in large-scale image
classification. However, their training performance depends strongly on optimization efficiency. Conventional methods like
Stochastic Gradient Descent (SGD) often struggle with slow convergence, learning-rate sensitivity, and local minima
entrapment. To overcome these challenges, this study introduces an Enhanced Particle Swarm Optimization (PSO)
technique that adaptively adjusts particle dynamics to maintain a better exploration-exploitation balance during training.
The method was evaluated on the CIFAR-10 dataset and compared against Standard PSO and SGD under identical
experimental conditions. The results demonstrate that Enhanced PSO achieves superior validation accuracy (up to 95.7%),
faster convergence, and a more stable weight distribution centered near zero. These characteristics reflect a well-regularized
learning process with improved generalization. Overall, the Enhanced PSO framework provides a robust and scalable
optimization approach for deep neural networks, offering a viable alternative to conventional gradient-based training
algorithms.
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. INTRODUCTION

Deep Neural Networks (DNNs) have been extensively
applied across diverse fields such as engineering, science,
biomedical research, and robotics, owing to their remarkable
ability to address complex and nonlinear problem domains [1].
Among the available architectures, models such as ResNet-50
have become increasingly popular for large-scale data
classification tasks, offering superior representational capacity
compared to earlier models like LeNet-5. The performance of
neural networks, however, critically depends on effective
optimization, as achieving high accuracy in complex problem-
solving scenarios requires efficient training of network
parameters [2]. Traditionally, researchers have relied on
conventional optimization techniques such as gradient descent
and its variants for tuning the weight values of neural networks.
While these approaches have achieved considerable success,
they often encounter significant limitations, including
susceptibility to local minima, slow convergence rates, and
high computational overhead [3].
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To address these challenges, recent research has
increasingly focused on swarm intelligence-based optimization
methods. Such approaches are recognized for their robustness
and global search capabilities, making them particularly well-
suited for overcoming the limitations of conventional methods
and effectively handling large-scale, complex optimization
problems [4].

Swarm Intelligence (SI) refers to the collective behavior
that emerges from the interaction of homogeneous individuals
with one another and with their environment in order to
discover feasible solutions to complex problems [5]. Over the
years, numerous Sl-based algorithms have been developed,
including Ant Colony Optimization (ACO), Artificial Bee
Colony (ABC), Particle Swarm Optimization (PSO), and
Bacterial Foraging Optimization (BFO). Among these, PSO
has emerged as one of the most widely adopted approaches,
primarily due to its simplicity, the relatively small number of
parameters that require tuning, and the fact that it does not rely
on derivative information or complex mathematical
simplifications [6].
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A. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a population-based
metaheuristic optimization technique inspired by the social
behavior of bird flocking and fish schooling [7]. In PSO, a
population of candidate solutions, called particles, explores the
search space to optimize an objective function. Each particle
has two main attributes: a position vector, representing a
potential solution, and a velocity vector, which determines the
direction and magnitude of its movement.

During the optimization process, particles update their
velocities and positions iteratively based on two forms of
knowledge: their own best found position (Pbest) and the best
position identified by entire swarm (gbest). The velocity update
is influenced by an inertia term, cognitive component and a
social component. This mechanism allows to particle to
balance exploration and exploitation of the search space. The
algorithm proceeds until the stopping condition is satisfied,
typically when the maximum number of iterations is reached or
the desired solution accuracy is attained.

» Velocity Update Equation

Vit = 0. Vit + crry (P-X) + car2(g-Xi) 1

Where,

Vi'*Velocity of particle i at iteration t

o : Inertia weight

C1,C2 : Acceleration coefficient

r,r2 : Random numbers

Pit: Personal Best Position of the particle i
g Global Best Position found by the swarm
Xit: Current position of particle i

» Position Update Equation
Xt = X'+ vitt )

Where,
Xit : Position of particle i at iteration t
Vit*l: Updated velocity

1. RELATED WORKS

PSO has attracted significant attention as an alternative or
complementary optimization technique in neural networks.
Gad [8] provided a comprehensive review of PSO applications
in deep learning, highlighting its use in weight optimization,
hyper parameter tuning, and feature selection. The study
emphasized PSO’s derivative-free nature, which allows it to
function effectively in highly nonlinear optimization
landscapes, as well as its promise in identifying discriminative
features. However, Gad noted that direct application of PSO to
large-scale architectures such as ResNet is computationally
expensive, limiting its scalability. The review therefore
concludes that hybrid approaches, which integrate PSO with
gradient-based methods, offer a more feasible direction for
deep learning optimization.
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Banks et al. [9] examined early applications of PSO in
neural networks, focusing on shallow models such as
feedforward neural networks and multilayer perceptrons. In
these contexts, PSO was successfully applied to optimize
network weights and biases as an alternative to traditional
backpropagation. While this demonstrated the potential of PSO
as a training method, the review was conducted before the
widespread adoption of deep learning, and thus its scope was
limited to relatively small architectures with modest parameter
counts.

Yang [10] positioned PSO within the broader family of
nature-inspired metaheuristic algorithms, noting its simplicity,
minimal parameter requirements, derivative-free optimization,
and strong global search ability. Nevertheless, he also
identified several drawbacks that restrict its robustness in
complex problem spaces, including premature convergence,
sensitivity to parameter tuning, poor scalability in high-
dimensional search spaces, and the lack of rigorous theoretical
guarantees of convergence. These limitations suggest that,
while PSO remains an attractive global optimizer, it requires
modifications or hybridization to remain effective in large-
scale, real-world applications.

To address some of these limitations, Serizawa and Fujita
[11] proposed the Linearly Decreasing Weight Particle Swarm
Optimization (LDW-PSO) for optimizing Convolutional
Neural Networks (CNNs). By linearly decreasing the inertia
weight, LDW-PSO improved the balance between exploration
and exploitation, enabling more effective global search in the
early stages and better convergence in later stages. This
approach demonstrated advantages such as more stable
convergence, reduced risk of premature stagnation, and higher
classification accuracy compared to standard PSO and
gradient-based methods. However, the study also revealed
persistent drawbacks, including high computational cost for
swarm-based optimization at each training step, scalability
challenges when applied to deeper networks, and the need for
careful parameter tuning.

The reviewed literature collectively establishes PSO as a
promising optimization strategy for neural networks, with
demonstrated success in shallow architectures, hyperparameter
tuning, and CNN-level optimizations. However, significant
limitations remain when extending PSO to very deep
architectures such as ResNet-50. Challenges include the high
computational overhead of swarm-based optimization in
networks with millions of parameters, the tendency toward
premature convergence in high-dimensional search spaces, and
difficulties in integrating PSO efficiently with gradient-based
training. Although variants such as LDW-PSO show potential
improvements, their scalability to deeper models remains
underexplored. Therefore, the research gap lies in developing
enhanced PSO strategies that can be efficiently embedded into
deep architectures like ResNet-50, balancing global search
capability with computational feasibility to improve training
performance without incurring excessive cost.
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11. MATERIALS AND METHODS

In this study, PSO is employed as an optimization strategy
for training deep neural networks on large-scale datasets such
as CIFAR 10. Unlike conventional applications of PSO that
primarily optimized network weights, the proposed approach
extends the search space to also include key training hyper
parameters.

Each particle X; in the swarm is represented as a joint
vector of hyperparameters and network weights:

Xi = [n,m,A,b,w] (3)

Where,

1 : Learning rate

m: Momentum coefficient
A: Weight decay factor

b : Batch size

o: Trainable weights
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To ensure the efficient model training and fair
comparison, a set of hyperparamters was defined within
specific ranges. These parameters were tuned during the
optimization process using SGD and PSO. Table 1 summarizes
the range of values considered for each hyperparameter.

Table 1 Hyperparameter Search Space for Model Training

Parameter Range
Learning Rate (1) [0.0001,0.1]
Momentum Coefficient [0.5,0.99]
(m)
Weight Decay Factor (1) [1Xx107%1x1073]
Batch Size (b) {64,128,256}
Trainable Weights (®) Learned during training

The overall workflow for the proposed PSO-enhanced
ResNet-50 model applied to the CIFAR-10 dataset is illustrated
in Figure 1.
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Fig 1 Flowchart of the Proposed Methodology
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V. RESULTS AND DISCUSSION

The experimental results obtained from training the
ResNet-50 model using SGD, Standard PSO, and the Enhanced
PSO approach are presented in this section. Each model was
trained for ten epochs under identical experimental settings,
and the validation accuracy was evaluated after each epoch.
The corresponding performance outcomes are summarized in
Table2.

Table 2 Validation Accuracy of Comparison of ResNet-50
Model Trained Using SGD, Standard PSO, and Enhanced

PSO Approaches.
Enhanced
Epoch SGD S“;‘D”Sdgrd PSO
0, 0,

No. (%) (%) (%)
1 91.93 16.41 93.32
2 93.48 17.19 94.82
3 93.85 17.19 94.76
4 94.06 17.19 94.78
5 94.34 17.19 95.51
6 94.31 17.58 95.46
7 94.36 17.58 95.43
8 94.47 17.97 95.43
9 94.26 17.97 95.54
10 94.40 17.97 95.72

The ResNet-50 model trained using SGD exhibited rapid
convergence during the initial epochs, achieving a stable
validation accuracy after the fifth epoch. However, the
improvement rate slowed down subsequently, indicating early
saturation and limited exploration capability. In contrast the
Standard PSO showed poor convergence behavior, resulting in
considerably lower validation accuracy due to premature
stagnation and inadequate parameter tuning. The Enhanced
PSO approach, however, demonstrated a smoother and more
consistent increase in validation accuracy across epochs,
reflection its superior balance between exploration and
exploitation during the optimization process.
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Fig 2 Validation Accuracy with Three Approaches On CIFAR
10 Dataaset.
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According to the figure 2, the Enhanced PSO optimizer
demonstrates superior and consistent validation accuracy
compared to the Standard PSO and performs comparably or
slightly better than SGD. The Enhanced PSO’s stability across
epochs indicates improved convergence behavior, effective
exploration-exploitation balance, and strong generalization
capability.

In contast, the standard PSO shows very poor accuracy,
suggesting convergence stagnation and inefficient parameter
updates. The SGD maintains a strong baseline, confirming its
reliabilty for gradient-based optimization, but the Enhanced
PSO slightly outperfoms it by achieving similar accuracy with
greater stability and potentially faster convergence.
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Fig 3 Weight Distribution After Training

The weight distribution analysis figure 3 reveals that the
Enhanced PSO model achieves a significantly narrower and
more centered distribution of weights compared to SGD and
Standard PSO. The narrow peak around zero implies a well
regularized learning process with reduced variance and
improved gradient stability. Conversely, the broader
distribution observed in SGD indicates unstable convergence
and potential overfitting. Standard PSO performs moderately,
offering better stability than SGD but less control than the
Enhanced PSO confirms its superior ability to guide the
optimization toward globally stable solutions, ensuring
efficient learning and strong generalization performance.

The comparative analysis demonstrates that the Enhanced
PSO optimizer significantly improves model performance over
both the conventional SGD and the Standard PSO approaches.
While SGD achieves high accuracy through local gradient
updates, it remains sensitive to learning rates and initialization
conditions. The Standard PSO, on the other hand, shows poor
generalization due to uncontrolled particle convergence and
lack of adaptive tuning. In contrast, the Enhanced PSO
achieves superior stability and convergence by dynamically
regulating particle movement and maintaining firm weight
distributions.  This  hybridized optimization approach
effectively bridges the exploration exploitation gap, resulting
in consistently higher validation accuracy and improved
learning robustness.
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V. CONCLUSION

This study presented and Enhanced PSO approach for the
efficient training of deep neural networks, particularly the
ResNet-50 architecture on large-scale datasets such as CIFAR-
10. The experimental outcomes demonstrated that the proposed
Enhanced PSO significantly outperformed the conventional
Standard PSO and achieved comparable or slightly superior
performance to SGD.

The Enhanced PSO maintained consistently high
validation accuracy throughout the training process, indicating
improved convergence stability and a balanced exploration-
exploitation mechanism. The weight distribution analysis
further confirmed that the Enhanced PSO produced a narrow
and centered distribution of weights, reflecting a well,
regularized and stable learning process. In contrast, the
Standard PSO suffered from premature convergence and poor
generalization, while SGD although reliable, was limited by
sensitivity to hyperparameter selection and slower adaptability
to dynamic search landscapes.

Overall, the proposed Enhanced PSO effectively bridges
the gap between swarm-based global optimization and
gradient-based local refinement. Its derivative free nature,
combined with adaptive control of particle dynamics, enables
robust training in high-dimensional spaces with reduced
variance and faster convergence. Future research may extend
this framework to hybrid architectures or transfer learning
applications, optimizing both network parameter and
hyperparameters simultaneously to further enhance scalability
and computational efficiency across diverse deep learning
domains. Hyperparameters simultaneously to further enhance
scalability and computational efficiency across diverse deep
learning domains.
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