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Abstract: Deep Neural Networks (DNNs) such as ResNet-50 have achieved state-of-the-art results in large-scale image 

classification. However, their training performance depends strongly on optimization efficiency. Conventional methods like 

Stochastic Gradient Descent (SGD) often struggle with slow convergence, learning-rate sensitivity, and local minima 

entrapment. To overcome these challenges, this study introduces an Enhanced Particle Swarm Optimization (PSO) 

technique that adaptively adjusts particle dynamics to maintain a better exploration-exploitation balance during training. 

The method was evaluated on the CIFAR-10 dataset and compared against Standard PSO and SGD under identical 

experimental conditions. The results demonstrate that Enhanced PSO achieves superior validation accuracy (up to 95.7%), 

faster convergence, and a more stable weight distribution centered near zero. These characteristics reflect a well-regularized 

learning process with improved generalization. Overall, the Enhanced PSO framework provides a robust and scalable 

optimization approach for deep neural networks, offering a viable alternative to conventional gradient-based training 

algorithms. 
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I. INTRODUCTION 

 

Deep Neural Networks (DNNs) have been extensively 

applied across diverse fields such as engineering, science, 

biomedical research, and robotics, owing to their remarkable 

ability to address complex and nonlinear problem domains [1]. 

Among the available architectures, models such as ResNet-50 

have become increasingly popular for large-scale data 

classification tasks, offering superior representational capacity 

compared to earlier models like LeNet-5. The performance of 

neural networks, however, critically depends on effective 
optimization, as achieving high accuracy in complex problem-

solving scenarios requires efficient training of network 

parameters [2]. Traditionally, researchers have relied on 

conventional optimization techniques such as gradient descent 

and its variants for tuning the weight values of neural networks. 

While these approaches have achieved considerable success, 

they often encounter significant limitations, including 

susceptibility to local minima, slow convergence rates, and 

high computational overhead [3]. 

 

 

To address these challenges, recent research has 

increasingly focused on swarm intelligence-based optimization 

methods. Such approaches are recognized for their robustness 

and global search capabilities, making them particularly well-

suited for overcoming the limitations of conventional methods 

and effectively handling large-scale, complex optimization 

problems [4]. 

 

Swarm Intelligence (SI) refers to the collective behavior 

that emerges from the interaction of homogeneous individuals 

with one another and with their environment in order to 
discover feasible solutions to complex problems [5]. Over the 

years, numerous SI-based algorithms have been developed, 

including Ant Colony Optimization (ACO), Artificial Bee 

Colony (ABC), Particle Swarm Optimization (PSO), and 

Bacterial Foraging Optimization (BFO). Among these, PSO 

has emerged as one of the most widely adopted approaches, 

primarily due to its simplicity, the relatively small number of 

parameters that require tuning, and the fact that it does not rely 

on derivative information or complex mathematical 

simplifications [6]. 
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A. Particle Swarm Optimization Algorithm 

Particle Swarm Optimization (PSO) is a population-based 

metaheuristic optimization technique inspired by the social 
behavior of bird flocking and fish schooling [7]. In PSO, a 

population of candidate solutions, called particles, explores the 

search space to optimize an objective function. Each particle 

has two main attributes: a position vector, representing a 

potential solution, and a velocity vector, which determines the 

direction and magnitude of its movement. 

 

During the optimization process, particles update their 

velocities and positions iteratively based on two forms of 

knowledge: their own best found position (Pbest) and the best 

position identified by entire swarm (gbest). The velocity update 

is influenced by an inertia term, cognitive component and a 
social component. This mechanism allows to particle to 

balance exploration and exploitation of the search space. The 

algorithm proceeds until the stopping condition is satisfied, 

typically when the maximum number of iterations is reached or 

the desired solution accuracy is attained. 

 

 Velocity Update Equation 

 

Vi 
t+1 = ω.Vi

 t + c1.r1.( Pi
t-Xi

t) + c2.r2.( gt-Xi
t)         (1) 

     

 
Where, 

Vi 
t : Velocity of particle i at iteration t 

ω : Inertia weight 

c1,c2 : Acceleration coefficient 

r1,r2 : Random numbers 

Pi
t: Personal Best Position of the particle i 

gt: Global Best Position found by the swarm 

Xi
t : Current position of particle i 

 

 Position Update Equation 

 
Xi

t+1 = Xi
t + Vi

t+1                        (2) 

    

Where, 

Xi
t : Position of particle i at iteration t 

Vi
t+1 : Updated velocity 

 

II. RELATED WORKS 

 

PSO has attracted significant attention as an alternative or 

complementary optimization technique in neural networks. 

Gad [8] provided a comprehensive review of PSO applications 

in deep learning, highlighting its use in weight optimization, 
hyper parameter tuning, and feature selection. The study 

emphasized PSO’s derivative-free nature, which allows it to 

function effectively in highly nonlinear optimization 

landscapes, as well as its promise in identifying discriminative 

features. However, Gad noted that direct application of PSO to 

large-scale architectures such as ResNet is computationally 

expensive, limiting its scalability. The review therefore 

concludes that hybrid approaches, which integrate PSO with 

gradient-based methods, offer a more feasible direction for 

deep learning optimization. 

 
 

Banks et al. [9] examined early applications of PSO in 

neural networks, focusing on shallow models such as 

feedforward neural networks and multilayer perceptrons. In 
these contexts, PSO was successfully applied to optimize 

network weights and biases as an alternative to traditional 

backpropagation. While this demonstrated the potential of PSO 

as a training method, the review was conducted before the 

widespread adoption of deep learning, and thus its scope was 

limited to relatively small architectures with modest parameter 

counts. 

 

Yang [10] positioned PSO within the broader family of 

nature-inspired metaheuristic algorithms, noting its simplicity, 

minimal parameter requirements, derivative-free optimization, 

and strong global search ability. Nevertheless, he also 
identified several drawbacks that restrict its robustness in 

complex problem spaces, including premature convergence, 

sensitivity to parameter tuning, poor scalability in high-

dimensional search spaces, and the lack of rigorous theoretical 

guarantees of convergence. These limitations suggest that, 

while PSO remains an attractive global optimizer, it requires 

modifications or hybridization to remain effective in large-

scale, real-world applications. 

 

To address some of these limitations, Serizawa and Fujita 

[11] proposed the Linearly Decreasing Weight Particle Swarm 
Optimization (LDW-PSO) for optimizing Convolutional 

Neural Networks (CNNs). By linearly decreasing the inertia 

weight, LDW-PSO improved the balance between exploration 

and exploitation, enabling more effective global search in the 

early stages and better convergence in later stages. This 

approach demonstrated advantages such as more stable 

convergence, reduced risk of premature stagnation, and higher 

classification accuracy compared to standard PSO and 

gradient-based methods. However, the study also revealed 

persistent drawbacks, including high computational cost for 

swarm-based optimization at each training step, scalability 
challenges when applied to deeper networks, and the need for 

careful parameter tuning. 

 

The reviewed literature collectively establishes PSO as a 

promising optimization strategy for neural networks, with 

demonstrated success in shallow architectures, hyperparameter 

tuning, and CNN-level optimizations. However, significant 

limitations remain when extending PSO to very deep 

architectures such as ResNet-50. Challenges include the high 

computational overhead of swarm-based optimization in 

networks with millions of parameters, the tendency toward 

premature convergence in high-dimensional search spaces, and 
difficulties in integrating PSO efficiently with gradient-based 

training. Although variants such as LDW-PSO show potential 

improvements, their scalability to deeper models remains 

underexplored. Therefore, the research gap lies in developing 

enhanced PSO strategies that can be efficiently embedded into 

deep architectures like ResNet-50, balancing global search 

capability with computational feasibility to improve training 

performance without incurring excessive cost. 
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III. MATERIALS AND METHODS 

 

In this study, PSO is employed as an optimization strategy 
for training deep neural networks on large-scale datasets such 

as CIFAR 10. Unlike conventional applications of PSO that 

primarily optimized network weights, the proposed approach 

extends the search space to also include key training hyper 

parameters. 

 

Each particle Xi in the swarm is represented as a joint 

vector of hyperparameters and network weights: 

 

Xi = [η,m,λ,b,w]                         (3) 

 

Where, 
η : Learning rate 

m: Momentum coefficient 

λ: Weight decay factor 

b : Batch size 

ω: Trainable weights 

To ensure the efficient model training and fair 

comparison, a set of hyperparamters was defined within 

specific ranges. These parameters were tuned during the 
optimization process using SGD and PSO. Table 1 summarizes 

the range of values considered for each hyperparameter. 

 

Table 1 Hyperparameter Search Space for Model Training 

 

The overall workflow for the proposed PSO-enhanced 

ResNet-50 model applied to the CIFAR-10 dataset is illustrated 

in Figure 1. 

 

 
Fig 1 Flowchart of the Proposed Methodology 

 

Parameter Range 

Learning Rate (η) [0.0001,0.1] 

Momentum Coefficient 

(m) 

[0.5,0.99] 

Weight Decay Factor (λ) [1 × 10−6 , 1 × 10−3] 
Batch Size (b) {64,128,256} 

Trainable Weights (ω) Learned during training 
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IV. RESULTS AND DISCUSSION 

 

The experimental results obtained from training the 
ResNet-50 model using SGD, Standard PSO, and the Enhanced 

PSO approach are presented in this section. Each model was 

trained for ten epochs under identical experimental settings, 

and the validation accuracy was evaluated after each epoch. 

The corresponding performance outcomes are summarized in 

Table2. 

 

Table 2 Validation Accuracy of Comparison of ResNet-50 

Model Trained Using SGD, Standard PSO, and Enhanced 

PSO Approaches. 

 

The ResNet-50 model trained using SGD exhibited rapid 

convergence during the initial epochs, achieving a stable 

validation accuracy after the fifth epoch. However, the 

improvement rate slowed down subsequently, indicating early 

saturation and limited exploration capability. In contrast the 

Standard PSO showed poor convergence behavior, resulting in 
considerably lower validation accuracy due to premature 

stagnation and inadequate parameter tuning. The Enhanced 

PSO approach, however, demonstrated a smoother and more 

consistent increase in validation accuracy across epochs, 

reflection its superior balance between exploration and 

exploitation during the optimization process. 

 

 
Fig 2 Validation Accuracy with Three Approaches On CIFAR 

10 Dataaset. 

According to the figure 2, the Enhanced PSO optimizer 

demonstrates superior and consistent validation accuracy 

compared to the Standard PSO and performs comparably or 
slightly better than SGD. The Enhanced PSO’s stability across 

epochs indicates improved convergence behavior, effective 

exploration-exploitation balance, and strong generalization 

capability. 

 

In contast, the standard PSO shows very poor accuracy, 

suggesting convergence stagnation and inefficient parameter 

updates. The SGD maintains a strong baseline, confirming its 

reliabilty for gradient-based optimization, but the Enhanced 

PSO slightly outperfoms it by achieving similar accuracy with 

greater stability and potentially  faster convergence. 

 

 
Fig 3 Weight Distribution After Training 

 
The weight distribution analysis figure 3 reveals that the 

Enhanced PSO model achieves a significantly narrower and 

more centered distribution of weights compared to SGD and 

Standard PSO. The narrow peak around zero implies a well 

regularized learning process with reduced variance and 

improved gradient stability. Conversely, the broader 

distribution observed in SGD indicates unstable convergence 

and potential overfitting. Standard PSO performs moderately, 

offering better stability than SGD but less control than the 

Enhanced PSO confirms its superior ability to guide the 

optimization toward globally stable solutions, ensuring 

efficient learning and strong generalization performance. 
 

The comparative analysis demonstrates that the Enhanced 

PSO optimizer significantly improves model performance over 

both the conventional SGD and the Standard PSO approaches. 

While SGD achieves high accuracy through local gradient 

updates, it remains sensitive to learning rates and initialization 

conditions. The Standard PSO, on the other hand, shows poor 

generalization due to uncontrolled particle convergence and 

lack of adaptive tuning. In contrast, the Enhanced PSO 

achieves superior stability and convergence by dynamically 

regulating particle movement and maintaining firm weight 
distributions. This hybridized optimization approach 

effectively bridges the exploration exploitation gap, resulting 

in consistently higher validation accuracy and improved 

learning robustness.  

Epoch 

No. 

SGD 

(%) 

Standard 

PSO 

(%) 

Enhanced 

PSO 

(%) 

 

1 91.93 16.41 93.32 

2 93.48 17.19 94.82 

3 93.85 17.19 94.76 

4 94.06 17.19 94.78 

5 94.34 17.19 95.51 

6 94.31 17.58 95.46 

7 94.36 17.58 95.43 

8 94.47 17.97 95.43 

9 94.26 17.97 95.54 

10 94.40 17.97 95.72 
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V. CONCLUSION 

 

This study presented and Enhanced PSO approach for the 
efficient training of deep neural networks, particularly the 

ResNet-50 architecture on large-scale datasets such as CIFAR-

10. The experimental outcomes demonstrated that the proposed 

Enhanced PSO significantly outperformed the conventional 

Standard PSO and achieved comparable or slightly superior 

performance to SGD. 

 

The Enhanced PSO maintained consistently high 

validation accuracy throughout the training process, indicating 

improved convergence stability and a balanced exploration-

exploitation mechanism. The weight distribution analysis 

further confirmed that the Enhanced PSO produced a narrow 
and centered distribution of weights, reflecting a well, 

regularized and stable learning process. In contrast, the 

Standard PSO suffered from premature convergence and poor 

generalization, while SGD although reliable, was limited by 

sensitivity to hyperparameter selection and slower adaptability 

to dynamic search landscapes. 

 

Overall, the proposed Enhanced PSO effectively bridges 

the gap between swarm-based global optimization and 

gradient-based local refinement. Its derivative free nature, 

combined with adaptive control of particle dynamics, enables 
robust training in high-dimensional spaces with reduced 

variance and faster convergence. Future research may extend 

this framework to hybrid architectures or transfer learning 

applications, optimizing both network parameter and 

hyperparameters simultaneously to further enhance scalability 

and computational efficiency across diverse deep learning 

domains.  Hyperparameters simultaneously to further enhance 

scalability and computational efficiency across diverse deep 

learning domains. 
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