
Volume 10, Issue 11, November– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov395

IJISRT25NOV395 www.ijisrt.com 363

Efficiency and Performance Trade-Offs: A

Comparative Analysis of Statistical N-Gram

Models and Resource-Optimized Small

Language Models (SLMs) for Edge

Computing Applications

Arnab Sen1

1Finance, Birla Institute of Technology and Science, Pilani, India

Publication Date: 2025/11/14

Abstract: Background: This research addresses the fundamental trade-off between model complexity and operational

efficiency in Natural Language Processing (NLP), specifically for resource-constrained environments like edge computing.1

While Large Language Models (LLMs) offer unprecedented capabilities, their massive resource demands necessitate

efficient alternatives.1 Materials and Methods: A critical comparative analysis was conducted on two dominant language

model architectures: statistical N-gram models and modern Transformer-based Small Language Models (SLMs).1 The

study evaluates their architectural mechanisms, efficiency metrics, tokenization strategies, and performance trade-offs,

particularly focusing on metrics such as Perplexity (PPL) and qualitative semantic coherence.1 Results: SLMs, leveraging

architectural optimizations like knowledge distillation and quantization, provide superior contextual understanding and

deployment efficiency (days/weeks of training on small clusters) over N-gram models.1 N-gram models are severely limited

by data sparsity, finite context windows, and storage bottlenecks, despite their fast lookup times.1 SLMs' use of subword

tokenization (BPE) effectively eliminates the Out-of-Vocabulary (OOV) problem, preserving information lost by the N-

gram’s generic $\langle \text{unk} \rangle$ token.1 Conclusion: Resource-optimized SLMs are the most effective solution

for high-performance, specialized NLP tasks in edge computing.1 While N-grams retain a niche as high-precision baselines

for purely local statistical distributions, the efficiency and depth of comprehension favor the SLM for modern applications.1

Keyword: Edge Computing; N-gram Models; Perplexity; Small Language Models; Transformer.

How to Cite: Arnab Sen (2025). Efficiency and Performance Trade-Offs: A Comparative Analysis of Statistical N-Gram Models

and Resource-Optimized Small Language Models (SLMs) for Edge Computing Applications.

International Journal of Innovative Science and Research Technology, 10(11), 363-369.
https://doi.org/10.38124/ijisrt/25nov395

I. INTRODUCTION

 Background and Motivation for Language Modeling

(LMs)

Language Models (LMs) are foundational to Natural

Language Processing (NLP), serving the core function of

estimating the probability of word sequences.1 Historically,

LMs were indispensable components in classic NLP

applications such as speech recognition and machine

translation.1 The field has since undergone a profound
transformation, shifting from relying primarily on statistical

methods to leveraging sophisticated deep learning

architectures, most notably the Transformer.1

The subsequent emergence of Large Language Models

(LLMs), characterized by their extensive parameter counts—

often spanning hundreds of billions or even trillions—has

unlocked unprecedented linguistic capabilities.1 However,

this scale introduces significant logistical and architectural

challenges. The massive computational resources, protracted

training times, and substantial energy consumption required

to develop and operate LLMs necessitate infrastructure

typically accessible only to the largest technology firms.1

This resource exclusivity creates a significant economic and

practical barrier to entry for many researchers and

organizations. This reality necessitates the search for highly

efficient, specialized, and practical alternatives that can
operate effectively outside of vast cloud infrastructure.1 The

target operational parameters focus on resource-constrained

environments, such as edge computing, mobile devices, and

embedded systems, where speed, cost-effectiveness, and data

privacy are paramount.1 The analysis presented here is

fundamentally filtered by the requirement of deployability in

these constrained environments.

https://doi.org/10.38124/ijisrt/25nov395
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov395

Volume 10, Issue 11, November– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov395

IJISRT25NOV395 www.ijisrt.com 364

 Literature Context: The Shift from Statistical to Neural

LMs

For decades, statistical N-gram models were the

dominant architecture for language processing.1 These

models relied on count-based probability estimation derived

from empirical data, successfully providing a measurable

metric for sequence likelihood.1 Despite their historical

importance, N-gram models suffer from a fundamental
architectural limitation: a finite context window. They are

unable to capture dependencies beyond the immediate $N-1$

preceding words.1 This constraint, coupled with the

exponential growth of computational demands and storage

requirements as N increases, compelled the research

community to seek more sophisticated, representation-based

models.1

Initial attempts to capture longer-range dependencies

included the introduction of Recurrent Neural Networks

(RNNs) and Long Short-Term Memory networks (LSTMs),
which offered solutions to the vanishing gradient problem

inherent in simple RNNs.1 The definitive paradigm shift,

however, was cemented by the introduction of the

Transformer architecture in 2017.1 Transformer-based

architectures utilize self-attention mechanisms, processing

the entire input sequence in parallel without recurrent units,

which enables superior parallel processing and significantly

better performance in capturing global context compared to

their predecessors.1 Small Language Models (SLMs) embody

the practical realization of this architectural superiority,

optimized for efficiency to bridge the capability gap between

resource-intensive LLMs and demanding real-world,
decentralized applications.1 SLMs, therefore, represent not

just a technical improvement but an economic solution to

making advanced NLP accessible and deployable in latency-

sensitive ecosystems like edge computing.1

 Thesis Statement and Paper Contribution

This research presents a critical comparative analysis of

statistical N-gram models and modern Transformer-based

Small Language Models (SLMs).1 The objective is to

rigorously evaluate their fundamental architectural

mechanisms, resource efficiency metrics, and performance
trade-offs under the severe constraints typical of edge

computing deployment.1 The core assertion of this paper is

that resource-optimized Small Language Models (SLMs),

utilizing modern architectural efficiencies, provide a superior

solution for high-performance, specialized Natural Language

Processing tasks when deployed under the resource

constraints inherent to edge computing environments.1

This paper details how architectural differences—

specifically in data handling, tokenization, and contextual

awareness—dictate practical utility and define the ideal use

case for each model type in the contemporary computational
landscape.1 The contribution lies in synthesizing the evidence

to recommend the architecturally sound and deployable

solution for decentralized AI applications.

II. MODEL ARCHITECTURES AND

EFFICIENCY CONSIDERATIONS

This section provides a rigorous comparison of the

model structures, focusing on how they manage memory,

computation, and scaling, which are the primary determinants

of feasibility in edge deployment.

 N-gram Model Fundamentals and Sparsity Mitigation

N-gram models operate by estimating the probability of

the next word, w_i, given the preceding $N-1$ context

words ($w_{i-N+1}...w_{i-1}$) using Maximum Likelihood

Estimation (MLE).1 This estimation is derived directly from

empirical word count frequencies within a training corpus.1

The selection of the context size, N, is a critical design

choice, requiring a balance between the estimate's statistical

stability and its appropriateness for the domain; for instance,

trigrams ($N=3$) are often preferred for massive corpora,

while bigrams ($N=2$) might suffice for smaller datasets.1

The primary architectural vulnerability of N-gram

models is data sparsity. Since the number of possible N-

grams grows exponentially with N, most potential

sequences are never observed in the training data, leading to

the "zero probability problem".1 When this zero probability

occurs, key evaluation metrics like perplexity cannot be

calculated, demanding corrective action.1 To address this,

smoothing or discounting algorithms are mandatory; these

techniques redistribute probability mass from frequent,

observed events to unseen events, ensuring all plausible

sequences have a non-zero probability.1 While Laplace
smoothing (add-one) is a simple baseline, it is insufficient for

modern deployment due to its tendency to over-smooth the

data.1 Consequently, high-accuracy N-gram applications

necessitate advanced techniques, such as Good–Turing

discounting and Kneser-Ney smoothing, to manage this

statistical necessity.1

The efficiency trade-off for N-grams is centered on

storage versus lookup speed. While statistical lookups during

inference are extremely fast, the models still represent a

major resource bottleneck, particularly in large-scale
applications.1 The limitation is fixed memory size: the largest

models can require storing hundreds of billions of N-grams

and their associated count data, presenting a major

infrastructure problem for decentralized deployment.1

Research efforts to mitigate this focus on developing highly

compact and fast-to-query implementations, often utilizing

lossless compression techniques like tabular trie encodings,

which can achieve representations as low as 23 bits per N-

gram, significantly improving storage efficiency.1

 Small Language Model (SLM) Architecture

Small Language Models (SLMs) are compact versions
of deep neural networks, defined typically as models ranging

from 1 million to 10 billion parameters, fundamentally based

on the Transformer architecture.1 They are engineered

specifically for efficiency and operational effectiveness in

computationally limited settings.1

https://doi.org/10.38124/ijisrt/25nov395
http://www.ijisrt.com/

Volume 10, Issue 11, November– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov395

IJISRT25NOV395 www.ijisrt.com 365

The architectural backbone of the SLM is the

Transformer, which uses a multi-head self-attention

mechanism to process the entire input sequence in parallel.1

This parallel capacity allows the model to capture long-range

dependencies efficiently, fundamentally overcoming the

limited context window that constrains N-gram models.1

Input text is converted into tokens, mapped to vectors via an

Embedding layer, and processed through alternating attention
and feedforward layers (Transformer blocks) to extract

increasingly complex linguistic patterns.1

The designation "small" is achieved through a

sophisticated optimization stack designed to reduce the

model's size and computational footprint without incurring

catastrophic performance degradation.1 These architectural

optimizations are crucial for meeting edge computing

requirements. Key techniques include:

 Knowledge Distillation:
A smaller "student" model is trained to emulate the

outputs and internal state representations of a larger, high-

performing "teacher" model.1 This process effectively

compresses the complex knowledge base of the larger model

into a lower parameter count.1

 Pruning:

Redundant or statistically insignificant parameters

(weights and connections) within the neural network are

systematically identified and removed, resulting in a thinned,

faster network structure.1

 Quantization:

The precision of the numerical values used to store the

model's weights is drastically reduced. For instance,

converting weights from high-precision 32-bit floating-point

numbers to lower-precision 8-bit integers substantially

decreases the model’s memory footprint and accelerates

inference speed.1 This process addresses the memory I/O

bottleneck, as operations are performed on smaller, reduced-

precision data types, decreasing memory bandwidth demands

crucial for low-power edge deployment.

The critical distinction in resource constraint

management is that N-grams face a challenge of fixed

memory size that scales exponentially with vocabulary and

context length, necessitating massive storage that fails the

memory constraint for limited edge hardware.1 SLMs,

conversely, manage complexity during inference but solve

the memory problem through density and quantization,

allowing their dense vector set to be loaded and run

efficiently.1 By prioritizing speed and deployment efficiency,

SLMs require significantly less infrastructure; their training

process typically takes days to weeks on small GPU clusters,
making them far more cost-effective and accessible than

LLMs.1

III. PREPROCESSING AND TOKENIZATION

IMPACT ON MODEL PERFORMANCE

The method by which raw text is converted into

processing units (tokenization) dictates a model's ability to

handle the linguistic nuances of complexity, novelty, and

compositionality.1

 Tokenization for N-gram Models

N-gram models traditionally rely on simple word-level

tokenization, often splitting text based on white spaces, a

method that immediately introduces struggles with boundary

issues such as attached punctuation.1 The more profound

challenge is the management of Out-of-Vocabulary (OOV)

words—those present in the test corpus but absent from the

training lexicon.1 OOV words instantly result in a zero-

probability scenario, halting the generative process.1

The standard protocol for N-gram models addresses
OOV by introducing a special token, typically denoted as

$\langle \text{unk} \rangle$ (unknown).1 All rare or OOV

words encountered during training are effectively replaced

with this single token before the N-gram counts are

accumulated.1 While this necessity strongly influences

performance metrics like perplexity, the methodology

imposes a significant structural limitation: it inherently

destroys local contextual information.1 When complex or rare

words are collapsed into a generic $\langle \text{unk}

\rangle$ representation, all specific linguistic information

about that term, including its morphology or domain

relevance, is lost.1 This lack of informational integrity
compromises the statistical model’s ability to predict stably

and richly when encountering linguistic inputs outside of the

previously observed training corpus.1

 Subword Tokenization Strategies for SLMs

Transformer-based SLMs utilize sophisticated subword

tokenization methods to mitigate the OOV problem and

optimize vocabulary efficiency, achieving a balance between

expressiveness and memory limits.1 This capability is a

critical architectural advantage, allowing SLMs to manage

diverse inputs without the severe contextual compromises
faced by count-based N-gram models.1

The primary methods employed include:

 Byte Pair Encoding (BPE):

BPE is a frequency-based, deterministic approach.1 It

initiates with a base vocabulary of individual characters and

iteratively merges the most frequent adjacent symbol pairs

into longer, meaningful tokens until a predefined vocabulary

size is reached.1 This mechanism ensures that any rare or

unseen word can always be reliably decomposed into known

subword components, thereby eliminating the hard OOV
problem.1

 Unigram and WordPiece:

WordPiece, often used in large models, evaluates the

statistical gain of merging two symbols to ensure efficiency.1

The Unigram approach begins with a comprehensive

vocabulary and statistically trims it down based on

https://doi.org/10.38124/ijisrt/25nov395
http://www.ijisrt.com/

Volume 10, Issue 11, November– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov395

IJISRT25NOV395 www.ijisrt.com 366

probability.1

The shift to subword tokenization provides SLMs with

an information-preserving foundation for context

processing.1 For example, if an N-gram encounters a novel,

complex term like "re-quantization," it is forced to map it to

$\langle \text{unk} \rangle$, resulting in a loss of all semantic

content. Conversely, a BPE-based SLM will tokenize the
same word into its constituent semantic components (e.g.,

"re-", "quant", "ization"), allowing the model to leverage the

trained embeddings of those components.1 This capacity for

generalization, inferring meaning from morphological

components, ensures that the SLM maintains contextual

information and consistency, a vital benefit when processing

domain-specific or novel text in edge applications.1 This

allows SLMs to achieve linguistic generalization, whereas the

$\langle \text{unk} \rangle$ token forces N-grams into a

mode of memorization, fundamentally restricting their

utility in processing dynamic, modern language.1

IV. EVALUATION AND EXPERIMENTAL SETUP

A comprehensive comparison of LMs requires a dual

evaluation approach, moving beyond simple intrinsic

measurements to incorporate extrinsic, task-specific metrics

that accurately assess quality and utility.1

 Intrinsic Metric: Perplexity (PPL) Analysis

Perplexity (PPL) is the standard intrinsic metric for

evaluating language models.1 Mathematically, it is defined as
the inverse probability of the test set, normalized by the

number of words or tokens, which allows for comparison

across texts of varying lengths.1 A superior model assigns a

higher probability to the test corpus, indicating it is less

"surprised" by the sequence of words, thereby yielding a

lower perplexity score.1 Numerically, PPL can be interpreted

as the average number of equally likely choices the model

considers for each word.1

However, PPL faces significant methodological

constraints, particularly when comparing different
architectures.1 Critically, PPL computation is impossible if

the model assigns a zero probability to any sequence in the

test set, which underscores why smoothing is not merely

optional but mandatory for N-gram models.1 Furthermore,

PPL scores are highly sensitive to methodological choices

concerning OOV word handling and the total vocabulary size

employed.1 Interpreting a PPL score between a context-

limited, count-based N-gram and a deep, representation-

based SLM can be misleading.1 While N-grams, optimized

with advanced smoothing, may achieve a decent PPL score,

this result primarily reflects localized statistical fluency, not

the quality of long-term generative coherence.1

 Extrinsic and Qualitative Performance Metrics

Since the utility of LMs, particularly SLMs, often

resides in their ability to perform high-level, specialized

tasks, relying solely on intrinsic measures such as PPL is

insufficient.1 Extrinsic and qualitative metrics are essential

for assessing the generated output quality, particularly

concerning coherence and relevance.1

For structured tasks where a clear human reference text

is available (e.g., machine translation), Lexical Overlap

Metrics are commonly used.1 Metrics such as BLEU

(Bilingual Evaluation Understudy) and ROUGE quantify the

similarity between the generated text and the reference by

calculating the overlap of N-grams.1 These metrics,

however, can be restrictive because they penalize outputs that

use semantically equivalent synonyms or alternative sentence

structures, indicating a failure to capture deeper linguistic

variation.1

To capture the profound linguistic qualities of

generative models, Semantic and Coherence Metrics are

required, reflecting the architectural strengths of SLMs.1

These include:

 Fluency:

Evaluation of how natural, grammatical, and easy to

read the generated text is, adhering to the conventions of the

target language.1

 Coherence:

Assessment of the logical and thematic consistency of
the generated text, ensuring a smooth and unified flow of

ideas.1

 Relevance:

Measurement of the degree to which the generated

output accurately addresses or aligns with the initial input

prompt or specified task.1

A superior evaluation tool must align structurally with

the modern model architecture. For SLMs, which are

semantic and vector-driven, metrics that transcend simple
word overlap are necessary. Embedding-Based Metrics, such

as BERTScore, are vital because they leverage dense vector

representations (embeddings) from Transformer models to

measure semantic similarity between the generated and

reference texts.1 This approach provides a more accurate

assessment of conceptual similarity, which is crucial for

evaluating the nuanced, context-aware output of SLMs.1

The following table summarizes the comparative

landscape of evaluation metrics necessary for assessing

language models in resource-constrained environments:

https://doi.org/10.38124/ijisrt/25nov395
http://www.ijisrt.com/

Volume 10, Issue 11, November– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov395

IJISRT25NOV395 www.ijisrt.com 367

Table 1 Comparative Analysis of Language Model Evaluation Metrics for Resource-Constrained Environments

Metric Category Example Metrics Targeted Assessment Applicability

Language Modeling

(Intrinsic)

Perplexity (PPL) \cite{26} Statistical fluency, predictive

power of next token

Foundational for both; highly

sensitive to smoothing/OOV

handling in N-grams 1

Lexical Overlap (Extrinsic) BLEU, ROUGE \cite{32} N-gram match to reference

text

Useful for structured tasks;

limited in capturing semantic

diversity 1

Qualitative/Semantic Coherence, Fluency,

BERTScore \cite{32}

Logical flow, semantic

similarity, grammatical

correctness

Essential for evaluating the

generative quality of SLMs,

which excel at long-range

context 1

V. DISCUSSION AND PRACTICAL

IMPLICATIONS

 Trade-off Analysis: Resource Consumption vs. Accuracy

The core distinction between N-gram models and SLMs

is the balance they strike between computational cost,

resource efficiency, and linguistic fidelity.1 SLMs offer a

decisive advantage in deployment efficiency: they are

significantly faster to deploy and fine-tune, typically

requiring only days or weeks on smaller GPU clusters,

thereby making them financially and logistically accessible to
a wider range of institutions.1 By prioritizing efficiency

through architectural optimizations—specifically pruning,

knowledge distillation, and aggressive quantization—SLMs

deliver high performance suitable for resource-constrained

environments like embedded systems, mobile devices, and

IoT applications.1 They enable the real-time interaction that

massive, high-latency LLMs cannot sustain in these settings.1

Conversely, while N-gram models are inherently fast

during the immediate query execution phase, they are

structurally hampered by storage constraints. Their reliance

on massive count data makes them prone to storage
bottlenecks, often requiring complex, time-consuming

implementation research focused on advanced compression

techniques and trie-based encoding to achieve practical

deployment sizes.1 Furthermore, this reliance on large data

structures introduces an additional constraint in low-power

environments: the massive I/O required to manage and query

these count tables, even when compressed, translates directly

into increased power draw and startup latency. The SLM's

small, dense, quantized memory model is therefore superior

for energy-efficient, long-term edge deployment. Most

significantly, the N-gram architecture’s inherent inability to
capture dependencies beyond the limited N-gram window

fundamentally limits its potential for complex, coherent text

generation, rendering it obsolete for modern generative NLP

tasks.1

 Niche Advantages of N-gram Models

Although SLMs represent a profound architectural

advancement, statistical N-gram models have not become

entirely obsolete.1 The research suggests that the powerful

inductive bias of Transformer-based models, which is

inherently optimized for learning complex, dense semantic
representations, can paradoxically hinder their performance

when required to approximate simple, non-representational

probability distributions.1 For instance, when tested on

constrained language models with arbitrary next-symbol

probabilities—distributions that N-gram models inherently

capture perfectly through raw counting—transformers have

been observed to perform comparatively worse than the

count-based techniques.1

This suggests that the N-gram's retention in the field is

not a measure of architectural strength for general NLP, but

rather a reflection of their utility in covering statistical blind

spots of the Transformer architecture. N-gram models may

still serve as highly effective, high-precision baselines for
extremely specialized, vocabulary-limited sequence

prediction tasks where computational simplicity and a strict

reliance on purely local statistics are the design requirement.1

The N-gram architecture's structural simplicity, when

combined with advanced statistical correction like Kneser-

Ney smoothing, grants it a specific, tactical operational utility

for niche baseline comparisons.1

 Real-World SLM Applications and Specialization

SLMs excel precisely because they are focused on

specialization.1 Their success comes from being optimized

for targeted tasks rather than general conversational breadth.
They are finding application across various latency-critical

and regulated domains, including specialized legal document

assistance, customized workflows in finance, and on-device

symptom checking in healthcare.1

This necessary focus on efficiency, however, imposes a

constraint: SLMs are typically characterized by a narrow

focus, optimized explicitly for the task for which they were

fine-tuned.1 A model trained as a specialized legal document

assistant, for example, is not expected to perform well at

complex code generation or casual conversation unless
further, task-specific fine-tuning is performed.1 This narrow

specialization means SLMs do not possess the broad, zero-

shot generalization capabilities of massive LLMs.1

Nevertheless, for the targeted enterprise use case, this

specialization delivers superior accuracy, lower latency, and

faster development cycles, making them the pragmatic and

responsible choice for edge computing.1 Crucially, the

relative cost-effectiveness of SLM development

democratizes advanced NLP, allowing smaller organizations

to deploy competitive, task-specific AI solutions without

requiring access to hyperscale infrastructure.

https://doi.org/10.38124/ijisrt/25nov395
http://www.ijisrt.com/

Volume 10, Issue 11, November– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov395

IJISRT25NOV395 www.ijisrt.com 368

 Future Directions: SLM/LLM Collaboration

The future trajectory of language modeling is

increasingly trending toward collaboration and optimization

across architectural scales, rather than strict competition.1

SLMs are emerging as essential tools for optimizing the LLM

ecosystem itself.1 They can be strategically leveraged to

generate sizable, high-quality training datasets, significantly

reducing the reliance on laborious and expensive manual
annotation during the training and fine-tuning phases of

massive LLMs.1

Furthermore, utilizing SLMs as highly specialized

agents, data routers, or task orchestrators can mitigate the

necessity for constant, full-scale fine-tuning or querying of

massive LLMs.1 This cooperative approach leads to

substantial reductions in required computational resources

and helps address critical concerns related to scalability, data

privacy, and ethical safety often associated with deploying

the largest foundation models.1

VI. CONCLUSION AND FUTURE WORK

 Conclusion

This comparative analysis confirms that resource-

optimized Small Language Models (SLMs) represent the

most effective and architecturally feasible solution for high-

performance natural language tasks deployed in edge

computing and resource-constrained environments.1 The

Transformer architecture, optimized through industrial

techniques such as knowledge distillation, pruning, and

quantization, grants SLMs superior contextual
understanding, effectively addressing the fundamental

limitations of long-range dependency failure and the limited

context window inherent in statistical N-gram models.1

Moreover, the use of Byte Pair Encoding (BPE)

subword tokenization by SLMs provides a robust,

information-preserving solution for Out-of-Vocabulary

words, crucially avoiding the substantial information loss

associated with the N-gram’s reliance on the generic $\langle

\text{unk} \rangle$ token approach.1 While highly optimized

N-gram models can still offer fast, compact, and high-
precision baselines for specific, localized probability

distributions, their severe storage constraints and inherent

data sparsity issues relegate them to niche or legacy

applications.1 Ultimately, the selection between these two

architectures is dictated by the available resource budget and

the required scope of linguistic generalization; the confluence

of efficiency, depth of comprehension, and operational

feasibility decisively favors the SLM architecture for modern

decentralized applications.1

 Future Work

Future research must transition from theoretical
architectural comparisons to rigorous empirical

implementation and verification within simulated edge

computing parameters.1 This necessitates conducting

quantitative side-by-side performance tests of a state-of-the-

art compressed N-gram model (employing advanced

smoothing such as Kneser-Ney) against a highly pruned and

aggressively quantized SLM (e.g., a small-scale decoder-only

Transformer).1

These experiments must integrate a comprehensive suite

of metrics, balancing the traditional intrinsic measure of

Perplexity with crucial semantic measures, including

Coherence and BERTScore, to accurately quantify the

genuine performance trade-off relative to the architectural

resource footprint.1 Additionally, focused efforts should be
directed toward refining distillation and pruning

methodologies to maximize the knowledge transfer

effectiveness from LLMs to SLMs, specifically optimizing

the resultant models for ultra-low-power, highly specialized

domain deployment efficiency.1

REFRENCES

[1]. Plagiarism Free Writing Techniques: Avoiding

Common Pitfalls in Research Writing - San Francisco

Edit, accessed on November 7, 2025,
https://www.sfedit.net/plagiarism-free-writing-

techniques-avoiding-common-pitfalls-in-research-

writing/

[2]. How to Write a Plagiarism-Free Research Paper or

Thesis - Papergen AI, accessed on November 7, 2025,

https://www.papergen.ai/blog/how-to-write-a-

plagiarism-free-research-paper-or-thesis

[3]. How to Avoid Plagiarism | Harvard Guide to Using

Sources, accessed on November 7, 2025,

https://usingsources.fas.harvard.edu/how-avoid-

plagiarism-0

[4]. Best Practices to Avoid Plagiarism - Purdue OWL,
accessed on November 7, 2025,

https://owl.purdue.edu/owl/avoiding_plagiarism/best

_practices.html

[5]. IOSR Manuscript Preparation Guidelines | PDF -

Scribd, accessed on November 7, 2025,

https://www.scribd.com/document/768600584/IOSR-

Manuscript-Preparation-Guidelines

[6]. Paper preparation guidelines for IOSR Journal of

Engineering, accessed on November 7, 2025,

https://ternaengg.ac.in/equinox2018/PaperFormat.pdf

[7]. Manuscript Preparation Guidelines (2 Page) | PDF |
Abstract (Summary) | Paragraph - Scribd, accessed on

November 7, 2025,

https://www.scribd.com/document/98842041/Manus

cript-Preparation-Guidelines-2-Page

[8]. IOSR Journal of Computer Engineering (IOSR-JCE)

Template - International Organization of Scientific

Research - SciSpace, accessed on November 7, 2025,

https://scispace.com/formats/international-

organization-of-scientific-research/iosr-journal-of-

computer-engineering-iosr-

jce/489e0da8074e4cfc8b861a6709e6969f

[9]. Paper Template - IOSR Journal, accessed on
November 7, 2025,

https://www.iosrjournals.org/doc/Paper%20Template

.doc

[10]. N-gram Language Models - Stanford University,

accessed on November 7, 2025,

https://web.stanford.edu/~jurafsky/slp3/3.pdf

https://doi.org/10.38124/ijisrt/25nov395
http://www.ijisrt.com/
https://www.sfedit.net/plagiarism-free-writing-techniques-avoiding-common-pitfalls-in-research-writing/
https://www.sfedit.net/plagiarism-free-writing-techniques-avoiding-common-pitfalls-in-research-writing/
https://www.sfedit.net/plagiarism-free-writing-techniques-avoiding-common-pitfalls-in-research-writing/
https://www.papergen.ai/blog/how-to-write-a-plagiarism-free-research-paper-or-thesis
https://www.papergen.ai/blog/how-to-write-a-plagiarism-free-research-paper-or-thesis
https://usingsources.fas.harvard.edu/how-avoid-plagiarism-0
https://usingsources.fas.harvard.edu/how-avoid-plagiarism-0
https://owl.purdue.edu/owl/avoiding_plagiarism/best_practices.html
https://owl.purdue.edu/owl/avoiding_plagiarism/best_practices.html
https://www.scribd.com/document/768600584/IOSR-Manuscript-Preparation-Guidelines
https://www.scribd.com/document/768600584/IOSR-Manuscript-Preparation-Guidelines
https://ternaengg.ac.in/equinox2018/PaperFormat.pdf
https://www.scribd.com/document/98842041/Manuscript-Preparation-Guidelines-2-Page
https://www.scribd.com/document/98842041/Manuscript-Preparation-Guidelines-2-Page
https://scispace.com/formats/international-organization-of-scientific-research/iosr-journal-of-computer-engineering-iosr-jce/489e0da8074e4cfc8b861a6709e6969f
https://scispace.com/formats/international-organization-of-scientific-research/iosr-journal-of-computer-engineering-iosr-jce/489e0da8074e4cfc8b861a6709e6969f
https://scispace.com/formats/international-organization-of-scientific-research/iosr-journal-of-computer-engineering-iosr-jce/489e0da8074e4cfc8b861a6709e6969f
https://scispace.com/formats/international-organization-of-scientific-research/iosr-journal-of-computer-engineering-iosr-jce/489e0da8074e4cfc8b861a6709e6969f
https://www.iosrjournals.org/doc/Paper%20Template.doc
https://www.iosrjournals.org/doc/Paper%20Template.doc
https://web.stanford.edu/~jurafsky/slp3/3.pdf

Volume 10, Issue 11, November– 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov395

IJISRT25NOV395 www.ijisrt.com 369

[11]. Word n-gram language model - Wikipedia, accessed

on November 7, 2025,

https://en.wikipedia.org/wiki/Word_n-

gram_language_model

[12]. Transformer (deep learning architecture) - Wikipedia,

accessed on November 7, 2025,

https://en.wikipedia.org/wiki/Transformer_(deep_lea

rning_architecture)
[13]. Small Language Models (SLM): A Comprehensive

Overview - Hugging Face, accessed on November 7,

2025, https://huggingface.co/blog/jjokah/small-

language-model

[14]. SLM vs LLM: The Key Differences - WEKA,

accessed on November 7, 2025,

https://www.weka.io/learn/ai-ml/slm-vs-llm/

[15]. What Are Small Language Models (SLMs)? A

Practical Guide - Aisera, accessed on November 7,

2025, https://aisera.com/blog/small-language-models/

[16]. Large and small language models: A side-by-side
comparison - Rabiloo, accessed on November 7, 2025,

https://rabiloo.com/blog/large-and-small-language-

models-a-side-by-side-comparison

[17]. Understanding Language Modeling: From N-grams to

Transformer-based Neural Models | by Roshmita Dey

| Medium, accessed on November 7, 2025,

https://medium.com/@roshmitadey/understanding-

language-modeling-from-n-grams-to-transformer-

based-neural-models-d2bdf1532c6d

[18]. LLM Transformer Model Visually Explained - Polo

Club of Data Science, accessed on November 7, 2025,

https://poloclub.github.io/transformer-explainer/
[19]. Comparing the Effect of Smoothing and N-gram

Order - Scholarship Repository @ Florida Tech,

accessed on November 7, 2025,

https://repository.fit.edu/cgi/viewcontent.cgi?article=

1712&context=etd

[20]. Faster and Smaller N-Gram Language Models - ACL

Anthology, accessed on November 7, 2025,

https://aclanthology.org/P11-1027.pdf

[21]. Faster and Smaller N-Gram Language Models - The

Berkeley NLP Group, accessed on November 7, 2025,

http://nlp.cs.berkeley.edu/pubs/Pauls-
Klein_2011_LM_paper.pdf

[22]. Summary of the tokenizers - Hugging Face, accessed

on November 7, 2025,

https://huggingface.co/docs/transformers/en/tokenize

r_summary

[23]. Predictive Incremental Parsing Helps Language

Modeling - ACL Anthology, accessed on November

7, 2025, https://aclanthology.org/C16-1026.pdf

[24]. Byte Pair Encoding vs. Unigram Tokenization: A

Deep Dive into Subword Models - Medium, accessed

on November 7, 2025,

https://medium.com/@hexiangnan/byte-pair-
encoding-vs-unigram-tokenization-a-deep-dive-into-

subword-models-4963246e9a34

[25]. Two minutes NLP — A Taxonomy of Tokenization

Methods | by Fabio Chiusano - Medium, accessed on

November 7, 2025, https://medium.com/nlplanet/two-

minutes-nlp-a-taxonomy-of-tokenization-methods-

60e330aacad3

[26]. Arnab Sen Paper.docx

[27]. Can Transformers Learn n-gram Language Models? -

ACL Anthology, accessed on November 7, 2025,

https://aclanthology.org/2024.emnlp-main.550.pdf

[28]. A Comparison of Tokenization Impact in Attention

Based and State Space Genomic Language Models |

bioRxiv, accessed on November 7, 2025,
https://www.biorxiv.org/content/10.1101/2024.09.09.

612081v2.full-text

[29]. A Comparative analysis of different LLM Evaluation

Metrics | by Satyadeep Behera - Medium, accessed on

November 7, 2025,

https://medium.com/@satyadeepbehera/a-

comparative-analysis-of-different-llm-evaluation-

metrics-98395c3d8e79

[30]. Perplexity Metric for LLM Evaluation - Analytics

Vidhya, accessed on November 7, 2025,

https://www.analyticsvidhya.com/blog/2025/04/perpl
exity-metric-for-llm-evaluation/

[31]. How to evaluate a text generation model: strengths

and limitations of popular evaluation metrics - The

Analytics Lab, accessed on November 7, 2025,

https://theanalyticslab.nl/how-to-evaluate-a-text-

generation-model-strengths-and-limitations-of-

popular-evaluation-metrics/

[32]. LLM Evaluation: 15 Metrics You Need to Know,

accessed on November 7, 2025,

https://arya.ai/blog/llm-evaluation-metrics

[33]. Testing & Evaluating Large Language

Models(LLMs): Key Metrics and Best Practices Part-
2, accessed on November 7, 2025,

https://medium.com/@sumit.somanchd/testing-

evaluating-large-language-models-llms-key-metrics-

and-best-practices-part-2-0ac7092c9776

[34]. Small Language Models: A Business Leader's Guide

to Affordable, Task-Tuned AI, accessed on November

7, 2025, https://deliveringdataanalytics.com/small-

language-models-business-guide/

[35]. The Rise of Small Language Models - IEEE Computer

Society, accessed on November 7, 2025,

https://www.computer.org/csdl/magazine/ex/2025/01
/10897262/24uGPS4TUQ0

https://doi.org/10.38124/ijisrt/25nov395
http://www.ijisrt.com/
https://en.wikipedia.org/wiki/Word_n-gram_language_model
https://en.wikipedia.org/wiki/Word_n-gram_language_model
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)
https://huggingface.co/blog/jjokah/small-language-model
https://huggingface.co/blog/jjokah/small-language-model
https://www.weka.io/learn/ai-ml/slm-vs-llm/
https://aisera.com/blog/small-language-models/
https://rabiloo.com/blog/large-and-small-language-models-a-side-by-side-comparison
https://rabiloo.com/blog/large-and-small-language-models-a-side-by-side-comparison
https://medium.com/@roshmitadey/understanding-language-modeling-from-n-grams-to-transformer-based-neural-models-d2bdf1532c6d
https://medium.com/@roshmitadey/understanding-language-modeling-from-n-grams-to-transformer-based-neural-models-d2bdf1532c6d
https://medium.com/@roshmitadey/understanding-language-modeling-from-n-grams-to-transformer-based-neural-models-d2bdf1532c6d
https://poloclub.github.io/transformer-explainer/
https://repository.fit.edu/cgi/viewcontent.cgi?article=1712&context=etd
https://repository.fit.edu/cgi/viewcontent.cgi?article=1712&context=etd
https://aclanthology.org/P11-1027.pdf
http://nlp.cs.berkeley.edu/pubs/Pauls-Klein_2011_LM_paper.pdf
http://nlp.cs.berkeley.edu/pubs/Pauls-Klein_2011_LM_paper.pdf
https://huggingface.co/docs/transformers/en/tokenizer_summary
https://huggingface.co/docs/transformers/en/tokenizer_summary
https://aclanthology.org/C16-1026.pdf
https://medium.com/@hexiangnan/byte-pair-encoding-vs-unigram-tokenization-a-deep-dive-into-subword-models-4963246e9a34
https://medium.com/@hexiangnan/byte-pair-encoding-vs-unigram-tokenization-a-deep-dive-into-subword-models-4963246e9a34
https://medium.com/@hexiangnan/byte-pair-encoding-vs-unigram-tokenization-a-deep-dive-into-subword-models-4963246e9a34
https://medium.com/nlplanet/two-minutes-nlp-a-taxonomy-of-tokenization-methods-60e330aacad3
https://medium.com/nlplanet/two-minutes-nlp-a-taxonomy-of-tokenization-methods-60e330aacad3
https://medium.com/nlplanet/two-minutes-nlp-a-taxonomy-of-tokenization-methods-60e330aacad3
https://aclanthology.org/2024.emnlp-main.550.pdf
https://www.biorxiv.org/content/10.1101/2024.09.09.612081v2.full-text
https://www.biorxiv.org/content/10.1101/2024.09.09.612081v2.full-text
https://medium.com/@satyadeepbehera/a-comparative-analysis-of-different-llm-evaluation-metrics-98395c3d8e79
https://medium.com/@satyadeepbehera/a-comparative-analysis-of-different-llm-evaluation-metrics-98395c3d8e79
https://medium.com/@satyadeepbehera/a-comparative-analysis-of-different-llm-evaluation-metrics-98395c3d8e79
https://www.analyticsvidhya.com/blog/2025/04/perplexity-metric-for-llm-evaluation/
https://www.analyticsvidhya.com/blog/2025/04/perplexity-metric-for-llm-evaluation/
https://theanalyticslab.nl/how-to-evaluate-a-text-generation-model-strengths-and-limitations-of-popular-evaluation-metrics/
https://theanalyticslab.nl/how-to-evaluate-a-text-generation-model-strengths-and-limitations-of-popular-evaluation-metrics/
https://theanalyticslab.nl/how-to-evaluate-a-text-generation-model-strengths-and-limitations-of-popular-evaluation-metrics/
https://arya.ai/blog/llm-evaluation-metrics
https://medium.com/@sumit.somanchd/testing-evaluating-large-language-models-llms-key-metrics-and-best-practices-part-2-0ac7092c9776
https://medium.com/@sumit.somanchd/testing-evaluating-large-language-models-llms-key-metrics-and-best-practices-part-2-0ac7092c9776
https://medium.com/@sumit.somanchd/testing-evaluating-large-language-models-llms-key-metrics-and-best-practices-part-2-0ac7092c9776
https://deliveringdataanalytics.com/small-language-models-business-guide/
https://deliveringdataanalytics.com/small-language-models-business-guide/
https://www.computer.org/csdl/magazine/ex/2025/01/10897262/24uGPS4TUQ0
https://www.computer.org/csdl/magazine/ex/2025/01/10897262/24uGPS4TUQ0

	Efficiency and Performance Trade-Offs: A Comparative Analysis of Statistical N-Gram Models and Resource-Optimized Small
	Language Models (SLMs) for Edge
	Computing Applications
	I. INTRODUCTION
	 Background and Motivation for Language Modeling (LMs)
	 Literature Context: The Shift from Statistical to Neural LMs
	 Thesis Statement and Paper Contribution

	II. MODEL ARCHITECTURES AND EFFICIENCY CONSIDERATIONS
	 N-gram Model Fundamentals and Sparsity Mitigation
	 Small Language Model (SLM) Architecture

	III. PREPROCESSING AND TOKENIZATION IMPACT ON MODEL PERFORMANCE
	 Tokenization for N-gram Models
	 Subword Tokenization Strategies for SLMs

	IV. EVALUATION AND EXPERIMENTAL SETUP
	 Intrinsic Metric: Perplexity (PPL) Analysis
	 Extrinsic and Qualitative Performance Metrics

	V. DISCUSSION AND PRACTICAL IMPLICATIONS
	 Trade-off Analysis: Resource Consumption vs. Accuracy
	 Niche Advantages of N-gram Models
	 Real-World SLM Applications and Specialization
	 Future Directions: SLM/LLM Collaboration

	VI. CONCLUSION AND FUTURE WORK
	 Conclusion
	 Future Work

