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Abstract: Background: This research addresses the fundamental trade-off between model complexity and operational 

efficiency in Natural Language Processing (NLP), specifically for resource-constrained environments like edge computing.1 

While Large Language Models (LLMs) offer unprecedented capabilities, their massive resource demands necessitate 

efficient alternatives.1 Materials and Methods: A critical comparative analysis was conducted on two dominant language 

model architectures: statistical N-gram models and modern Transformer-based Small Language Models (SLMs).1 The 

study evaluates their architectural mechanisms, efficiency metrics, tokenization strategies, and performance trade-offs, 

particularly focusing on metrics such as Perplexity (PPL) and qualitative semantic coherence.1 Results: SLMs, leveraging 

architectural optimizations like knowledge distillation and quantization, provide superior contextual understanding and 

deployment efficiency (days/weeks of training on small clusters) over N-gram models.1 N-gram models are severely limited 

by data sparsity, finite context windows, and storage bottlenecks, despite their fast lookup times.1 SLMs' use of subword 

tokenization (BPE) effectively eliminates the Out-of-Vocabulary (OOV) problem, preserving information lost by the N-

gram’s generic $\langle \text{unk} \rangle$ token.1 Conclusion: Resource-optimized SLMs are the most effective solution 

for high-performance, specialized NLP tasks in edge computing.1 While N-grams retain a niche as high-precision baselines 

for purely local statistical distributions, the efficiency and depth of comprehension favor the SLM for modern applications.1 
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I. INTRODUCTION 

 

 Background and Motivation for Language Modeling 

(LMs) 

Language Models (LMs) are foundational to Natural 

Language Processing (NLP), serving the core function of 

estimating the probability of word sequences.1 Historically, 

LMs were indispensable components in classic NLP 

applications such as speech recognition and machine 

translation.1 The field has since undergone a profound 
transformation, shifting from relying primarily on statistical 

methods to leveraging sophisticated deep learning 

architectures, most notably the Transformer.1 

 

The subsequent emergence of Large Language Models 

(LLMs), characterized by their extensive parameter counts—

often spanning hundreds of billions or even trillions—has 

unlocked unprecedented linguistic capabilities.1 However, 

this scale introduces significant logistical and architectural 

challenges. The massive computational resources, protracted 

training times, and substantial energy consumption required 

to develop and operate LLMs necessitate infrastructure 

typically accessible only to the largest technology firms.1 

This resource exclusivity creates a significant economic and 

practical barrier to entry for many researchers and 

organizations. This reality necessitates the search for highly 

efficient, specialized, and practical alternatives that can 
operate effectively outside of vast cloud infrastructure.1 The 

target operational parameters focus on resource-constrained 

environments, such as edge computing, mobile devices, and 

embedded systems, where speed, cost-effectiveness, and data 

privacy are paramount.1 The analysis presented here is 

fundamentally filtered by the requirement of deployability in 

these constrained environments. 

https://doi.org/10.38124/ijisrt/25nov395
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov395


Volume 10, Issue 11, November– 2025                               International Journal of Innovative Science and Research Technology  

ISSN No:-2456-2165                                                                                                                  https://doi.org/10.38124/ijisrt/25nov395 

 

 

IJISRT25NOV395                                                                   www.ijisrt.com                                  364  

 Literature Context: The Shift from Statistical to Neural 

LMs 

For decades, statistical N-gram models were the 

dominant architecture for language processing.1 These 

models relied on count-based probability estimation derived 

from empirical data, successfully providing a measurable 

metric for sequence likelihood.1 Despite their historical 

importance, N-gram models suffer from a fundamental 
architectural limitation: a finite context window. They are 

unable to capture dependencies beyond the immediate $N-1$ 

preceding words.1 This constraint, coupled with the 

exponential growth of computational demands and storage 

requirements as $N$ increases, compelled the research 

community to seek more sophisticated, representation-based 

models.1 

 

Initial attempts to capture longer-range dependencies 

included the introduction of Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory networks (LSTMs), 
which offered solutions to the vanishing gradient problem 

inherent in simple RNNs.1 The definitive paradigm shift, 

however, was cemented by the introduction of the 

Transformer architecture in 2017.1 Transformer-based 

architectures utilize self-attention mechanisms, processing 

the entire input sequence in parallel without recurrent units, 

which enables superior parallel processing and significantly 

better performance in capturing global context compared to 

their predecessors.1 Small Language Models (SLMs) embody 

the practical realization of this architectural superiority, 

optimized for efficiency to bridge the capability gap between 

resource-intensive LLMs and demanding real-world, 
decentralized applications.1 SLMs, therefore, represent not 

just a technical improvement but an economic solution to 

making advanced NLP accessible and deployable in latency-

sensitive ecosystems like edge computing.1 

 

 Thesis Statement and Paper Contribution 

This research presents a critical comparative analysis of 

statistical N-gram models and modern Transformer-based 

Small Language Models (SLMs).1 The objective is to 

rigorously evaluate their fundamental architectural 

mechanisms, resource efficiency metrics, and performance 
trade-offs under the severe constraints typical of edge 

computing deployment.1 The core assertion of this paper is 

that resource-optimized Small Language Models (SLMs), 

utilizing modern architectural efficiencies, provide a superior 

solution for high-performance, specialized Natural Language 

Processing tasks when deployed under the resource 

constraints inherent to edge computing environments.1 

 

This paper details how architectural differences—

specifically in data handling, tokenization, and contextual 

awareness—dictate practical utility and define the ideal use 

case for each model type in the contemporary computational 
landscape.1 The contribution lies in synthesizing the evidence 

to recommend the architecturally sound and deployable 

solution for decentralized AI applications. 

 

 

 

 

II. MODEL ARCHITECTURES AND 

EFFICIENCY CONSIDERATIONS 

 

This section provides a rigorous comparison of the 

model structures, focusing on how they manage memory, 

computation, and scaling, which are the primary determinants 

of feasibility in edge deployment. 

 
 N-gram Model Fundamentals and Sparsity Mitigation 

N-gram models operate by estimating the probability of 

the next word, $w_i$, given the preceding $N-1$ context 

words ($w_{i-N+1}...w_{i-1}$) using Maximum Likelihood 

Estimation (MLE).1 This estimation is derived directly from 

empirical word count frequencies within a training corpus.1 

The selection of the context size, $N$, is a critical design 

choice, requiring a balance between the estimate's statistical 

stability and its appropriateness for the domain; for instance, 

trigrams ($N=3$) are often preferred for massive corpora, 

while bigrams ($N=2$) might suffice for smaller datasets.1 

 

The primary architectural vulnerability of N-gram 

models is data sparsity. Since the number of possible $N$-

grams grows exponentially with $N$, most potential 

sequences are never observed in the training data, leading to 

the "zero probability problem".1 When this zero probability 

occurs, key evaluation metrics like perplexity cannot be 

calculated, demanding corrective action.1 To address this, 

smoothing or discounting algorithms are mandatory; these 

techniques redistribute probability mass from frequent, 

observed events to unseen events, ensuring all plausible 

sequences have a non-zero probability.1 While Laplace 
smoothing (add-one) is a simple baseline, it is insufficient for 

modern deployment due to its tendency to over-smooth the 

data.1 Consequently, high-accuracy N-gram applications 

necessitate advanced techniques, such as Good–Turing 

discounting and Kneser-Ney smoothing, to manage this 

statistical necessity.1 

 

The efficiency trade-off for N-grams is centered on 

storage versus lookup speed. While statistical lookups during 

inference are extremely fast, the models still represent a 

major resource bottleneck, particularly in large-scale 
applications.1 The limitation is fixed memory size: the largest 

models can require storing hundreds of billions of N-grams 

and their associated count data, presenting a major 

infrastructure problem for decentralized deployment.1 

Research efforts to mitigate this focus on developing highly 

compact and fast-to-query implementations, often utilizing 

lossless compression techniques like tabular trie encodings, 

which can achieve representations as low as 23 bits per N-

gram, significantly improving storage efficiency.1 

 

 Small Language Model (SLM) Architecture 

Small Language Models (SLMs) are compact versions 
of deep neural networks, defined typically as models ranging 

from 1 million to 10 billion parameters, fundamentally based 

on the Transformer architecture.1 They are engineered 

specifically for efficiency and operational effectiveness in 

computationally limited settings.1 
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The architectural backbone of the SLM is the 

Transformer, which uses a multi-head self-attention 

mechanism to process the entire input sequence in parallel.1 

This parallel capacity allows the model to capture long-range 

dependencies efficiently, fundamentally overcoming the 

limited context window that constrains N-gram models.1 

Input text is converted into tokens, mapped to vectors via an 

Embedding layer, and processed through alternating attention 
and feedforward layers (Transformer blocks) to extract 

increasingly complex linguistic patterns.1 

 

The designation "small" is achieved through a 

sophisticated optimization stack designed to reduce the 

model's size and computational footprint without incurring 

catastrophic performance degradation.1 These architectural 

optimizations are crucial for meeting edge computing 

requirements. Key techniques include: 

 

 Knowledge Distillation:  
A smaller "student" model is trained to emulate the 

outputs and internal state representations of a larger, high-

performing "teacher" model.1 This process effectively 

compresses the complex knowledge base of the larger model 

into a lower parameter count.1 

 

 Pruning:  

Redundant or statistically insignificant parameters 

(weights and connections) within the neural network are 

systematically identified and removed, resulting in a thinned, 

faster network structure.1 

 

 Quantization:  

The precision of the numerical values used to store the 

model's weights is drastically reduced. For instance, 

converting weights from high-precision 32-bit floating-point 

numbers to lower-precision 8-bit integers substantially 

decreases the model’s memory footprint and accelerates 

inference speed.1 This process addresses the memory I/O 

bottleneck, as operations are performed on smaller, reduced-

precision data types, decreasing memory bandwidth demands 

crucial for low-power edge deployment. 

 
The critical distinction in resource constraint 

management is that N-grams face a challenge of fixed 

memory size that scales exponentially with vocabulary and 

context length, necessitating massive storage that fails the 

memory constraint for limited edge hardware.1 SLMs, 

conversely, manage complexity during inference but solve 

the memory problem through density and quantization, 

allowing their dense vector set to be loaded and run 

efficiently.1 By prioritizing speed and deployment efficiency, 

SLMs require significantly less infrastructure; their training 

process typically takes days to weeks on small GPU clusters, 
making them far more cost-effective and accessible than 

LLMs.1 

 

 

 

 

 

 

III. PREPROCESSING AND TOKENIZATION 

IMPACT ON MODEL PERFORMANCE 

 

The method by which raw text is converted into 

processing units (tokenization) dictates a model's ability to 

handle the linguistic nuances of complexity, novelty, and 

compositionality.1 

 
 Tokenization for N-gram Models 

N-gram models traditionally rely on simple word-level 

tokenization, often splitting text based on white spaces, a 

method that immediately introduces struggles with boundary 

issues such as attached punctuation.1 The more profound 

challenge is the management of Out-of-Vocabulary (OOV) 

words—those present in the test corpus but absent from the 

training lexicon.1 OOV words instantly result in a zero-

probability scenario, halting the generative process.1 

 

The standard protocol for N-gram models addresses 
OOV by introducing a special token, typically denoted as 

$\langle \text{unk} \rangle$ (unknown).1 All rare or OOV 

words encountered during training are effectively replaced 

with this single token before the $N$-gram counts are 

accumulated.1 While this necessity strongly influences 

performance metrics like perplexity, the methodology 

imposes a significant structural limitation: it inherently 

destroys local contextual information.1 When complex or rare 

words are collapsed into a generic $\langle \text{unk} 

\rangle$ representation, all specific linguistic information 

about that term, including its morphology or domain 

relevance, is lost.1 This lack of informational integrity 
compromises the statistical model’s ability to predict stably 

and richly when encountering linguistic inputs outside of the 

previously observed training corpus.1 

 

 Subword Tokenization Strategies for SLMs 

Transformer-based SLMs utilize sophisticated subword 

tokenization methods to mitigate the OOV problem and 

optimize vocabulary efficiency, achieving a balance between 

expressiveness and memory limits.1 This capability is a 

critical architectural advantage, allowing SLMs to manage 

diverse inputs without the severe contextual compromises 
faced by count-based N-gram models.1 

 

The primary methods employed include: 

 

 Byte Pair Encoding (BPE):  

BPE is a frequency-based, deterministic approach.1 It 

initiates with a base vocabulary of individual characters and 

iteratively merges the most frequent adjacent symbol pairs 

into longer, meaningful tokens until a predefined vocabulary 

size is reached.1 This mechanism ensures that any rare or 

unseen word can always be reliably decomposed into known 

subword components, thereby eliminating the hard OOV 
problem.1 

 

 Unigram and WordPiece:  

WordPiece, often used in large models, evaluates the 

statistical gain of merging two symbols to ensure efficiency.1 

The Unigram approach begins with a comprehensive 

vocabulary and statistically trims it down based on 
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probability.1 

 

The shift to subword tokenization provides SLMs with 

an information-preserving foundation for context 

processing.1 For example, if an N-gram encounters a novel, 

complex term like "re-quantization," it is forced to map it to 

$\langle \text{unk} \rangle$, resulting in a loss of all semantic 

content. Conversely, a BPE-based SLM will tokenize the 
same word into its constituent semantic components (e.g., 

"re-", "quant", "ization"), allowing the model to leverage the 

trained embeddings of those components.1 This capacity for 

generalization, inferring meaning from morphological 

components, ensures that the SLM maintains contextual 

information and consistency, a vital benefit when processing 

domain-specific or novel text in edge applications.1 This 

allows SLMs to achieve linguistic generalization, whereas the 

$\langle \text{unk} \rangle$ token forces N-grams into a 

mode of memorization, fundamentally restricting their 

utility in processing dynamic, modern language.1 

 

IV. EVALUATION AND EXPERIMENTAL SETUP 

 

A comprehensive comparison of LMs requires a dual 

evaluation approach, moving beyond simple intrinsic 

measurements to incorporate extrinsic, task-specific metrics 

that accurately assess quality and utility.1 

 

 Intrinsic Metric: Perplexity (PPL) Analysis 

 

Perplexity (PPL) is the standard intrinsic metric for 

evaluating language models.1 Mathematically, it is defined as 
the inverse probability of the test set, normalized by the 

number of words or tokens, which allows for comparison 

across texts of varying lengths.1 A superior model assigns a 

higher probability to the test corpus, indicating it is less 

"surprised" by the sequence of words, thereby yielding a 

lower perplexity score.1 Numerically, PPL can be interpreted 

as the average number of equally likely choices the model 

considers for each word.1 

 

However, PPL faces significant methodological 

constraints, particularly when comparing different 
architectures.1 Critically, PPL computation is impossible if 

the model assigns a zero probability to any sequence in the 

test set, which underscores why smoothing is not merely 

optional but mandatory for N-gram models.1 Furthermore, 

PPL scores are highly sensitive to methodological choices 

concerning OOV word handling and the total vocabulary size 

employed.1 Interpreting a PPL score between a context-

limited, count-based N-gram and a deep, representation-

based SLM can be misleading.1 While N-grams, optimized 

with advanced smoothing, may achieve a decent PPL score, 

this result primarily reflects localized statistical fluency, not 

the quality of long-term generative coherence.1 

 

 Extrinsic and Qualitative Performance Metrics 

Since the utility of LMs, particularly SLMs, often 

resides in their ability to perform high-level, specialized 

tasks, relying solely on intrinsic measures such as PPL is 

insufficient.1 Extrinsic and qualitative metrics are essential 

for assessing the generated output quality, particularly 

concerning coherence and relevance.1 

 
For structured tasks where a clear human reference text 

is available (e.g., machine translation), Lexical Overlap 

Metrics are commonly used.1 Metrics such as BLEU 

(Bilingual Evaluation Understudy) and ROUGE quantify the 

similarity between the generated text and the reference by 

calculating the overlap of $N$-grams.1 These metrics, 

however, can be restrictive because they penalize outputs that 

use semantically equivalent synonyms or alternative sentence 

structures, indicating a failure to capture deeper linguistic 

variation.1 

 
To capture the profound linguistic qualities of 

generative models, Semantic and Coherence Metrics are 

required, reflecting the architectural strengths of SLMs.1 

These include: 

 

 Fluency:  

Evaluation of how natural, grammatical, and easy to 

read the generated text is, adhering to the conventions of the 

target language.1 

 

 Coherence:  

Assessment of the logical and thematic consistency of 
the generated text, ensuring a smooth and unified flow of 

ideas.1 

 

 Relevance:  

Measurement of the degree to which the generated 

output accurately addresses or aligns with the initial input 

prompt or specified task.1 

 

A superior evaluation tool must align structurally with 

the modern model architecture. For SLMs, which are 

semantic and vector-driven, metrics that transcend simple 
word overlap are necessary. Embedding-Based Metrics, such 

as BERTScore, are vital because they leverage dense vector 

representations (embeddings) from Transformer models to 

measure semantic similarity between the generated and 

reference texts.1 This approach provides a more accurate 

assessment of conceptual similarity, which is crucial for 

evaluating the nuanced, context-aware output of SLMs.1 

 

The following table summarizes the comparative 

landscape of evaluation metrics necessary for assessing 

language models in resource-constrained environments: 
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Table 1 Comparative Analysis of Language Model Evaluation Metrics for Resource-Constrained Environments 

Metric Category Example Metrics Targeted Assessment Applicability 

Language Modeling 

(Intrinsic) 

Perplexity (PPL) \cite{26} Statistical fluency, predictive 

power of next token 

Foundational for both; highly 

sensitive to smoothing/OOV 

handling in N-grams 1 

Lexical Overlap (Extrinsic) BLEU, ROUGE \cite{32} N-gram match to reference 

text 

Useful for structured tasks; 

limited in capturing semantic 

diversity 1 

Qualitative/Semantic Coherence, Fluency, 

BERTScore \cite{32} 

Logical flow, semantic 

similarity, grammatical 

correctness 

Essential for evaluating the 

generative quality of SLMs, 

which excel at long-range 

context 1 

 

V. DISCUSSION AND PRACTICAL 

IMPLICATIONS 

 

 Trade-off Analysis: Resource Consumption vs. Accuracy 

The core distinction between N-gram models and SLMs 

is the balance they strike between computational cost, 

resource efficiency, and linguistic fidelity.1 SLMs offer a 

decisive advantage in deployment efficiency: they are 

significantly faster to deploy and fine-tune, typically 

requiring only days or weeks on smaller GPU clusters, 

thereby making them financially and logistically accessible to 
a wider range of institutions.1 By prioritizing efficiency 

through architectural optimizations—specifically pruning, 

knowledge distillation, and aggressive quantization—SLMs 

deliver high performance suitable for resource-constrained 

environments like embedded systems, mobile devices, and 

IoT applications.1 They enable the real-time interaction that 

massive, high-latency LLMs cannot sustain in these settings.1 

 

Conversely, while N-gram models are inherently fast 

during the immediate query execution phase, they are 

structurally hampered by storage constraints. Their reliance 

on massive count data makes them prone to storage 
bottlenecks, often requiring complex, time-consuming 

implementation research focused on advanced compression 

techniques and trie-based encoding to achieve practical 

deployment sizes.1 Furthermore, this reliance on large data 

structures introduces an additional constraint in low-power 

environments: the massive I/O required to manage and query 

these count tables, even when compressed, translates directly 

into increased power draw and startup latency. The SLM's 

small, dense, quantized memory model is therefore superior 

for energy-efficient, long-term edge deployment. Most 

significantly, the N-gram architecture’s inherent inability to 
capture dependencies beyond the limited $N$-gram window 

fundamentally limits its potential for complex, coherent text 

generation, rendering it obsolete for modern generative NLP 

tasks.1 

 

 Niche Advantages of N-gram Models 

Although SLMs represent a profound architectural 

advancement, statistical N-gram models have not become 

entirely obsolete.1 The research suggests that the powerful 

inductive bias of Transformer-based models, which is 

inherently optimized for learning complex, dense semantic 
representations, can paradoxically hinder their performance 

when required to approximate simple, non-representational 

probability distributions.1 For instance, when tested on 

constrained language models with arbitrary next-symbol 

probabilities—distributions that N-gram models inherently 

capture perfectly through raw counting—transformers have 

been observed to perform comparatively worse than the 

count-based techniques.1 

 

This suggests that the N-gram's retention in the field is 

not a measure of architectural strength for general NLP, but 

rather a reflection of their utility in covering statistical blind 

spots of the Transformer architecture. N-gram models may 

still serve as highly effective, high-precision baselines for 
extremely specialized, vocabulary-limited sequence 

prediction tasks where computational simplicity and a strict 

reliance on purely local statistics are the design requirement.1 

The N-gram architecture's structural simplicity, when 

combined with advanced statistical correction like Kneser-

Ney smoothing, grants it a specific, tactical operational utility 

for niche baseline comparisons.1 

 

 Real-World SLM Applications and Specialization 

SLMs excel precisely because they are focused on 

specialization.1 Their success comes from being optimized 

for targeted tasks rather than general conversational breadth. 
They are finding application across various latency-critical 

and regulated domains, including specialized legal document 

assistance, customized workflows in finance, and on-device 

symptom checking in healthcare.1 

 

This necessary focus on efficiency, however, imposes a 

constraint: SLMs are typically characterized by a narrow 

focus, optimized explicitly for the task for which they were 

fine-tuned.1 A model trained as a specialized legal document 

assistant, for example, is not expected to perform well at 

complex code generation or casual conversation unless 
further, task-specific fine-tuning is performed.1 This narrow 

specialization means SLMs do not possess the broad, zero-

shot generalization capabilities of massive LLMs.1 

Nevertheless, for the targeted enterprise use case, this 

specialization delivers superior accuracy, lower latency, and 

faster development cycles, making them the pragmatic and 

responsible choice for edge computing.1 Crucially, the 

relative cost-effectiveness of SLM development 

democratizes advanced NLP, allowing smaller organizations 

to deploy competitive, task-specific AI solutions without 

requiring access to hyperscale infrastructure. 
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 Future Directions: SLM/LLM Collaboration 

The future trajectory of language modeling is 

increasingly trending toward collaboration and optimization 

across architectural scales, rather than strict competition.1 

SLMs are emerging as essential tools for optimizing the LLM 

ecosystem itself.1 They can be strategically leveraged to 

generate sizable, high-quality training datasets, significantly 

reducing the reliance on laborious and expensive manual 
annotation during the training and fine-tuning phases of 

massive LLMs.1 

 

Furthermore, utilizing SLMs as highly specialized 

agents, data routers, or task orchestrators can mitigate the 

necessity for constant, full-scale fine-tuning or querying of 

massive LLMs.1 This cooperative approach leads to 

substantial reductions in required computational resources 

and helps address critical concerns related to scalability, data 

privacy, and ethical safety often associated with deploying 

the largest foundation models.1 

 

VI. CONCLUSION AND FUTURE WORK 

 

 Conclusion 

This comparative analysis confirms that resource-

optimized Small Language Models (SLMs) represent the 

most effective and architecturally feasible solution for high-

performance natural language tasks deployed in edge 

computing and resource-constrained environments.1 The 

Transformer architecture, optimized through industrial 

techniques such as knowledge distillation, pruning, and 

quantization, grants SLMs superior contextual 
understanding, effectively addressing the fundamental 

limitations of long-range dependency failure and the limited 

context window inherent in statistical N-gram models.1 

 

Moreover, the use of Byte Pair Encoding (BPE) 

subword tokenization by SLMs provides a robust, 

information-preserving solution for Out-of-Vocabulary 

words, crucially avoiding the substantial information loss 

associated with the N-gram’s reliance on the generic $\langle 

\text{unk} \rangle$ token approach.1 While highly optimized 

N-gram models can still offer fast, compact, and high-
precision baselines for specific, localized probability 

distributions, their severe storage constraints and inherent 

data sparsity issues relegate them to niche or legacy 

applications.1 Ultimately, the selection between these two 

architectures is dictated by the available resource budget and 

the required scope of linguistic generalization; the confluence 

of efficiency, depth of comprehension, and operational 

feasibility decisively favors the SLM architecture for modern 

decentralized applications.1 

 

 Future Work 

Future research must transition from theoretical 
architectural comparisons to rigorous empirical 

implementation and verification within simulated edge 

computing parameters.1 This necessitates conducting 

quantitative side-by-side performance tests of a state-of-the-

art compressed N-gram model (employing advanced 

smoothing such as Kneser-Ney) against a highly pruned and 

aggressively quantized SLM (e.g., a small-scale decoder-only 

Transformer).1 

 

These experiments must integrate a comprehensive suite 

of metrics, balancing the traditional intrinsic measure of 

Perplexity with crucial semantic measures, including 

Coherence and BERTScore, to accurately quantify the 

genuine performance trade-off relative to the architectural 

resource footprint.1 Additionally, focused efforts should be 
directed toward refining distillation and pruning 

methodologies to maximize the knowledge transfer 

effectiveness from LLMs to SLMs, specifically optimizing 

the resultant models for ultra-low-power, highly specialized 

domain deployment efficiency.1 
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