Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology
https://doi.org/10.38124/ijisrt/25nov415

A Simple Way to Run One
Copy of a Job on Many Servers

Xinyi Lu?
panther Creek High School

Publication Date: 2025/11/14

Abstract: In many school projects or small applications, it is common to run operations such as sending a report or
cleaning old data regularly. If you have only one server, you can handle this efficiently with a cron job. However, if you
have multiple servers, operating the same job simultaneously would be time-consuming. This paper illustrates a simple
solution: let all servers “race” to insert one row into a normal database table. The database’s unique constraint makes
sure only one succeeds. The successful server performs the operation. After it finishes, it removes the row so the process
can be performed repeatedly. We do not need special tools or external help; just one small table and a simple trick.

Keywords: Decentralized Scheduling; Unique Constraint Lock; Lightweight Coordination; Distributed Job Execution; Fault
Tolerance; PostgreSQL.

How to Cite: Xinyi Lu (2025) A Simple Way to Run One Copy of a Job on Many Servers. International Journal of Innovative

Science and Research Technology, 10(11), 388-392. https://doi.org/10.38124/ijisrt/25nov415

I INTRODUCTION

When a system scales from a single sever to multiple
severs, scheduled jobs can become difficult. If you copy the
same cron schedule onto every machine, the job runs
multiple times. Sometimes leads to certain consequences
like double emails, duplicate cleanups, and wasted CPU.

Large organizations solve this problem with complex
schedulers. However, these can be excessive for small teams
or student projects. Our goal was to find a solution that is: -

Easy to explain. - Fast to implement. - Secure and consistent.

So we use a normal relational database (like
PostgreSQL) and a unique constraint as a “soft lock.” All
nodes try the same insert. The one succeed will run the job.

1. BACKGROUND
» Common Patterns Includes:

e Single Machine + Cron: Functioning until that single
machine fails, at which point scheduled jobs stop
running

e Central scheduler: the control point that manages the
execution of jobs across other severs, which is critical
and necessary. If it fails, the whole system stalls.

We aim to eliminate the need for a central scheduler

process. Every sever should be able to attempt to operate the
job, but only one sever should actually success to do.

INISRT25NOV415

1. CORE IDEA

We make a table named job_lock with a primary key
on the job name.

Analogy: Imagine five students trying to grab a single
labeled seat in the library when the hour starts. Whoever sits
first uses the seat and does the job. When finished, they
leave. Next hour, the seat is free again.

How it works: - At the scheduled time, every server
tries: INSERT a row (job_name = 'hourly_report’). - The
database only lets the first one succeed (because of the
unique key). - That server runs the operation. - It deletes the
row afterward.

As a result, there will be no need for polling loops,
leader election of the central scheduler, since the database
already solves the race efficiently.

V. ADVANTAGES

o Decentralized: No central schedular as the control point

¢ Reliable and Consistent: If one machine fails or crashed
somehow, another machine can continue to run the next
operation.

e Minimal setup: Most systems already have a database.
We only need to add ONE small table (job_lock). So we
do not need Redis, ZooKeeper, or special locking service.

e Handles long jobs: It is not tied to a network session like
advisory locks.

e Easy to explain: “Try the insert; if it works, run the job.”

WWW.ijisrt.com 388

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov415

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

V. IMPLEMENTATION
» The Table

CREATE TABLE job_lock (
job_name VARCHAR(255) PRIMARY KEY,
created_at TIMESTAMP DEFAULT CURRENT_TIME
STAMP

);
» Lock Helper (Python + SQLAIchemy)

from contextlib import contextmanager

from datetime import datetime

from sglalchemy import Column, String, DateTime

from sqlalchemy.orm import declarative_base, sessionmak
er

Base = declarative_base()
SessionLocal = sessionmaker(bind=engine) # assume engin
e defined elsewhere

class JobLock(Base):
__tablename__ ="job_lock"
job_name = Column(String(255), primary_key=True)
created_at = Column(DateTime, default=datetime.utcnow)

@contextmanager
def session_scope():
session = SessionLocal()
try:
yield session
session.commit()
except:
session.rollback()
raise
finally:
session.close()

@contextmanager
def acquire_job_lock(job_name: str):
Try to insert. If row exists, someone else is running the j
ob.
with session_scope() as session:
existing = session.query(JobLock).filter_by(job_name=
job_name).first()
if existing:
raise RuntimeError("Lock held")
session.add(JobLock(job_name=job_name))
try:
yield
finally:
Clean up so next run can happen
with session_scope() as session:
row = session.query(JobLock).filter_by(job_name=j
ob_name).first()
if row:
session.delete(row)
(You could also use a single INSERT ... ON CONFLICT
DO NOTHING and check row count. We kept it simple for
clarity.)

INISRT25NOV415

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25nov415
» Example Job Runner
e Script (hourly_job.py)

import time

import logging

from acquire_lock_module import acquire_job_lock # pret
end import

logger = logging.getLogger(__name_)

def run_distributed_job(job_name, fn, *args, **kwargs):
try:
with acquire_job_lock(job_name):
start = time.perf_counter()
has_error = False
try:
fn(*args, **kwargs)
except Exception:
logger.exception(*'Job failed™)
has_error = True
duration = time.perf_counter() - start
logger.info("Job finished in %.2fs error=%s", duratio
n, has_error)
except RuntimeError:
logger.info("Skipped; another node is running '%s", jo
b_name)

Example usage

if _name_ ==" main__":
run_distributed_job("hourly_report", lambda: print("Gen

erate report™))

e Cron Line (Put on Every Server)

Minute 0 every hour
0 * * * * [usr/bin/env python3 /opt/app/hourly_job.py >> /va
r/log/hourly_job.log 2>&1

All machines run the script. Only one keeps going past
lock setup.

VI. EVALUATION

This section evaluates the decentralized lock
acquisition with 10 servers (threads) over 100 rounds. In
each round all servers attempt to insert the same key;
exactly one succeeds, giving us one winner and its lock
acquisition time cost.

> Per-Round Lock Acquisition

We launched 10 worker threads simultaneously for 100
rounds. Each round records: - Round number - Winning
server (server that acquired the lock and able to execute the
job) - Lock acquisition time (seconds)

Most acquisition times cluster near 0.10-0.12 seconds,
with a few outliers (e.g. 0.50-0.90 s) likely due to transient
scheduling or thread wake delays.

WWW.ijisrt.com 389

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov415
e Summary Statistics (Computed from Table 1): v' 90th percentile = 0.147 s

v’ Mean=0.134 s This overhead is tiny compared to typical job runtimes
v' Median = 0.111 s (minutes or even hours), so the approach adds negligible
v Min=0.0942 s scheduling cost.

v" Max =0.8992 s

Table 1 Per-Round Lock Winner and Acquisition Time (100 Rounds).

Round Node Lock Cost (s)
1 Server_6 0.8992
2 Server_3 0.1151
3 Server_6 0.1056
4 Server_5 0.1099
5 Server 9 0.1615
6 Server_2 0.1076
7 Server_4 0.1064
8 Server_3 0.0984
9 Server_2 0.1474

10 Server_3 0.0977
11 Server_5 0.1033
12 Server_3 0.1114
13 Server_8 0.8430
14 Server_0 0.1243
15 Server_5 0.1082
16 Server_4 0.1091
17 Server 0 0.5008
18 Server_9 0.1089
19 Server_5 0.1065
20 Server_9 0.1020
21 Server_1 0.4904
22 Server_2 0.1170
23 Server_9 0.1320
24 Server_6 0.1041
25 Server_9 0.1317
26 Server_5 0.1167
27 Server 0 0.1351
28 Server_3 0.1189
29 Server_8 0.1091
30 Server_9 0.1165
31 Server_8 0.1193
32 Server_9 0.1405
33 Server_0 0.1057
34 Server_5 0.1168
35 Server_9 0.1275
36 Server_1 0.1143
37 Server_5 0.2196
38 Server_1 0.1052
39 Server_2 0.1298
40 Server_5 0.1342
41 Server_2 0.1088
42 Server 0 0.1064
43 Server_6 0.1470
44 Server_8 0.1157
45 Server 5 0.1072
46 Server_1 0.1147
47 Server_2 0.1202
48 Server_4 0.1153
49 Server_8 0.1087

INISRT25NOV415 WWW.ijisrt.com 390

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov415
Round Node Lock Cost (s)
50 Server_1 0.1072
51 Server_6 0.1011
52 Server 4 0.1037
53 Server_3 0.0942
54 Server_5 0.1043
55 Server 0 0.0975
56 Server_6 0.0957
57 Server_5 0.1082
58 Server_6 0.1014
59 Server_3 0.1320
60 Server_4 0.1146
61 Server_2 0.1104
62 Server_5 0.1149
63 Server_6 0.1221
64 Server_2 0.1247
65 Server_6 0.1037
66 Server_5 0.1108
67 Server_1 0.1189
68 Server_6 0.1091
69 Server_3 0.1087
70 Server 9 0.1209
71 Server_2 0.1228
72 Server_8 0.1092
73 Server_2 0.1083
74 Server_5 0.1027
75 Server_8 0.1418
76 Server 0 0.1152
77 Server_9 0.1501
78 Server_4 0.1298
79 Server_5 0.1031
80 Server 0 0.1163
81 Server_9 0.1324
82 Server_6 0.1190
83 Server_1 0.1120
84 Server_2 0.1223
85 Server_5 0.1048
86 Server_9 0.1027
87 Server_5 0.1088
88 Server_6 0.1196
89 Server_3 0.1102
90 Server_9 0.1405
91 Server_6 0.1168
92 Server_3 0.1025
93 Server_4 0.1166
94 Server_0 0.1055
95 Server_3 0.0951
96 Server_6 0.1026
97 Server_3 0.1145
98 Server_1 0.1086
99 Server_9 0.1114
100 Server_5 0.1125
» Distribution of Winners 0 wins—suggesting its thread never successfully entered the
Table 2 aggregates wins per server. If all 10 servers race or was not active. More rounds (e.g. 1,000) or ensuring
participate uniformly, the expected share per server is 10%. thread readiness typically reduces these deviations, trending
We observe natural variation: Server_5 (18%) and Server_6 toward balanced distribution.

/ Server_9 (14%) are above average, while Server_7 shows

INISRT25NOV415 WWW.ijisrt.com 391

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/

Volume 10, Issue 11, November — 2025
ISSN No:-2456-2165

International Journal of Innovative Science and Research Technology

https://doi.org/10.38124/ijisrt/25nov415

Table 2 Lock Acquisition Counts and Percentages.

Server Wins Percentage
Server_0 9 9.0%
Server 1 8 8.0%
Server_2 11 11.0%
Server_3 12 12.0%
Server_4 7 7.0%
Server_5 18 18.0%
Server_6 14 14.0%
Server_7 0 0.0%
Server_8 7 7.0%
Server_9 14 14.0%

(Total) 100 100.0%

e Load balance assessment: Except for one inactive (or
unlucky) server, wins are spread across the rest without
systematic bias. The decentralized insert race does not
preferentially favor a single node;

» Script of Above Simulation

def custom_function():

""'A custom function that simulates some work."""

log.info(f"Thread {threading.current_thread().name} is ex
ecuting custom_function.")

time.sleep(2)

log.info(f"Thread {threading.current_thread().name} cust
om_function done.")

def run_job(round: int, job_name: str, func, *args, **kwarg
s):
try:
start = time.perf_counter()
with acquire_job_lock(job_name):
time_cost = time.perf_counter() - start
with open(“job_run.csv", "a") as f:
f.write(f"{round},{threading.current_thread().nam
e}, {time_cost}\n")
func(*args, **kwargs)
except Exception as e:
log.info("job lock not acquired™)

def run_custom_function(round: int):
run_job(round + 1, "test_job", custom_function)
with open("job_run.csv", "w") as f:
f.write("round, node id, acquire lock cost(ms)\n")

with ThreadPoolExecutor(max_workers=10, thread_name_
prefix="Server") as executor:
for round in range(100):
for i in range(10):
executor.submit(run_custom_function, round)
time.sleep(5)

VILI. FUTURE IMPROVEMENTS

e Problem: What if the node crashes while running an
operation and never deletes the lock row?

INISRT25NOV415

e Fix ideas: Add a timeout mechanism, if the time that a
job run is 200% greater than its average time (e.g.,
applied to rows later than X minutes as stale). - Track
metrics (The average time that each job run). - Write a
script that deletes stale locks.

VIII. CONCLUSION

We showed a small pattern to operate one copy of a
job across many servers. The tactic is a single table + unique
constraint. It works because databases are good at handling
concurrency. This approach is: - Simple & Efficient - Cheap
- Good enough for many student or small team projects.

You don’t always need an enormous scheduler system.
Sometimes one simple and short insert is enough.

REFERENCES
» PostgreSQL Basics

[1]. UNIQUE Constraint https://www.postgresql.org/
docs/current/ddl-constraints.htmI#DDL-
CONSTRAINTS-UNIQUE-INDEX

[2]. INSERT ON CONFLICT
https://www.postgresgl.org/docs/current/sql-
insert.html#SQL-ON-CONFLICT

[3. MVCC Intro https://www.postgresql.org/
docs/current/mvcc-intro.html

» Single-Machine Scheduling

[4]. Cron man page
pages/man8/cron.8.html

[5]. Systemd Timers https://www.freedesktop.org/
software/systemd/man/systemd.timer.html

https://man7.org/linux/man-

> Larger Systems (for Comparison)

[6]. Celery https://docs.celeryq.dev/en/stable/getting-
started/introduction.html

[7]. Airflow https://airflow.apache.org/docs/apache-
airflow/stable/core-concepts/overview.html

[8]. Sidekiq https://sidekiq.org/

WWW.ijisrt.com 392

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.freedesktop.org/

	Abstract: In many school projects or small applications, it is common to run operations such as sending a report or cleaning old data regularly. If you have only one server, you can handle this efficiently with a cron job. However, if you have multipl...
	I. INTRODUCTION
	II. BACKGROUND
	III. CORE IDEA
	IV. ADVANTAGES
	V. IMPLEMENTATION
	 The Table
	 Lock Helper (Python + SQLAlchemy)
	 Example Job Runner
	 Script (hourly_job.py)
	 Cron Line (Put on Every Server)

	VI. EVALUATION
	 Per-Round Lock Acquisition
	 Distribution of Winners
	 Script of Above Simulation

	VII. FUTURE IMPROVEMENTS
	VIII. CONCLUSION
	REFERENCES
	 PostgreSQL Basics
	 Single-Machine Scheduling
	 Larger Systems (for Comparison)

