
Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov415

IJISRT25NOV415 www.ijisrt.com 388

A Simple Way to Run One

Copy of a Job on Many Servers

Xinyi Lu1

1Panther Creek High School

Publication Date: 2025/11/14

Abstract: In many school projects or small applications, it is common to run operations such as sending a report or

cleaning old data regularly. If you have only one server, you can handle this efficiently with a cron job. However, if you

have multiple servers, operating the same job simultaneously would be time-consuming. This paper illustrates a simple

solution: let all servers “race” to insert one row into a normal database table. The database’s unique constraint makes

sure only one succeeds. The successful server performs the operation. After it finishes, it removes the row so the process

can be performed repeatedly. We do not need special tools or external help; just one small table and a simple trick.

Keywords: Decentralized Scheduling; Unique Constraint Lock; Lightweight Coordination; Distributed Job Execution; Fault

Tolerance; PostgreSQL.

How to Cite: Xinyi Lu (2025) A Simple Way to Run One Copy of a Job on Many Servers. International Journal of Innovative
Science and Research Technology, 10(11), 388-392. https://doi.org/10.38124/ijisrt/25nov415

I. INTRODUCTION

When a system scales from a single sever to multiple

severs, scheduled jobs can become difficult. If you copy the

same cron schedule onto every machine, the job runs

multiple times. Sometimes leads to certain consequences

like double emails, duplicate cleanups, and wasted CPU.

Large organizations solve this problem with complex
schedulers. However, these can be excessive for small teams

or student projects. Our goal was to find a solution that is: -

Easy to explain. - Fast to implement. - Secure and consistent.

So we use a normal relational database (like

PostgreSQL) and a unique constraint as a “soft lock.” All

nodes try the same insert. The one succeed will run the job.

II. BACKGROUND

 Common Patterns Includes:

 Single Machine + Cron: Functioning until that single

machine fails, at which point scheduled jobs stop

running

 Central scheduler: the control point that manages the

execution of jobs across other severs, which is critical

and necessary. If it fails, the whole system stalls.

We aim to eliminate the need for a central scheduler

process. Every sever should be able to attempt to operate the

job, but only one sever should actually success to do.

III. CORE IDEA

We make a table named job_lock with a primary key

on the job name.

Analogy: Imagine five students trying to grab a single

labeled seat in the library when the hour starts. Whoever sits

first uses the seat and does the job. When finished, they

leave. Next hour, the seat is free again.

How it works: - At the scheduled time, every server

tries: INSERT a row (job_name = 'hourly_report'). - The

database only lets the first one succeed (because of the

unique key). - That server runs the operation. - It deletes the

row afterward.

As a result, there will be no need for polling loops,

leader election of the central scheduler, since the database

already solves the race efficiently.

IV. ADVANTAGES

 Decentralized: No central schedular as the control point

 Reliable and Consistent: If one machine fails or crashed

somehow, another machine can continue to run the next

operation.

 Minimal setup: Most systems already have a database.

We only need to add ONE small table (job_lock). So we

do not need Redis, ZooKeeper, or special locking service.

 Handles long jobs: It is not tied to a network session like

advisory locks.

 Easy to explain: “Try the insert; if it works, run the job.”

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov415

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov415

IJISRT25NOV415 www.ijisrt.com 389

V. IMPLEMENTATION

 The Table

CREATE TABLE job_lock (

 job_name VARCHAR(255) PRIMARY KEY,

 created_at TIMESTAMP DEFAULT CURRENT_TIME

STAMP
);

 Lock Helper (Python + SQLAlchemy)

from contextlib import contextmanager

from datetime import datetime

from sqlalchemy import Column, String, DateTime

from sqlalchemy.orm import declarative_base, sessionmak

er

Base = declarative_base()
SessionLocal = sessionmaker(bind=engine) # assume engin

e defined elsewhere

class JobLock(Base):

 __tablename__ = "job_lock"

 job_name = Column(String(255), primary_key=True)

 created_at = Column(DateTime, default=datetime.utcnow)

@contextmanager

def session_scope():

 session = SessionLocal()

 try:
 yield session

 session.commit()

 except:

 session.rollback()

 raise
 finally:

 session.close()

@contextmanager

def acquire_job_lock(job_name: str):

 # Try to insert. If row exists, someone else is running the j
ob.

 with session_scope() as session:

 existing = session.query(JobLock).filter_by(job_name=

job_name).first()

 if existing:

 raise RuntimeError("Lock held")

 session.add(JobLock(job_name=job_name))

 try:

 yield
 finally:

 # Clean up so next run can happen

 with session_scope() as session:
 row = session.query(JobLock).filter_by(job_name=j

ob_name).first()

 if row:

 session.delete(row)

(You could also use a single INSERT ... ON CONFLICT

DO NOTHING and check row count. We kept it simple for

clarity.)

 Example Job Runner

 Script (hourly_job.py)

import time

import logging

from acquire_lock_module import acquire_job_lock # pret

end import

logger = logging.getLogger(__name__)

def run_distributed_job(job_name, fn, *args, **kwargs):

 try:

 with acquire_job_lock(job_name):

 start = time.perf_counter()

 has_error = False

 try:

 fn(*args, **kwargs)

 except Exception:
 logger.exception("Job failed")

 has_error = True

 duration = time.perf_counter() - start

 logger.info("Job finished in %.2fs error=%s", duratio

n, has_error)

 except RuntimeError:

 logger.info("Skipped; another node is running '%s'", jo

b_name)

Example usage

if __name__ == "__main__":

 run_distributed_job("hourly_report", lambda: print("Gen
erate report"))

 Cron Line (Put on Every Server)

Minute 0 every hour

0 * * * * /usr/bin/env python3 /opt/app/hourly_job.py >> /va

r/log/hourly_job.log 2>&1

All machines run the script. Only one keeps going past

lock setup.

VI. EVALUATION

This section evaluates the decentralized lock

acquisition with 10 servers (threads) over 100 rounds. In

each round all servers attempt to insert the same key;

exactly one succeeds, giving us one winner and its lock

acquisition time cost.

 Per-Round Lock Acquisition

We launched 10 worker threads simultaneously for 100

rounds. Each round records: - Round number - Winning
server (server that acquired the lock and able to execute the

job) - Lock acquisition time (seconds)

Most acquisition times cluster near 0.10–0.12 seconds,

with a few outliers (e.g. 0.50–0.90 s) likely due to transient

scheduling or thread wake delays.

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov415

IJISRT25NOV415 www.ijisrt.com 390

 Summary Statistics (Computed from Table 1):

 Mean ≈ 0.134 s

 Median ≈ 0.111 s

 Min = 0.0942 s

 Max = 0.8992 s

 90th percentile ≈ 0.147 s

This overhead is tiny compared to typical job runtimes

(minutes or even hours), so the approach adds negligible

scheduling cost.

Table 1 Per‑Round Lock Winner and Acquisition Time (100 Rounds).

Round Node Lock Cost (s)

1 Server_6 0.8992

2 Server_3 0.1151

3 Server_6 0.1056

4 Server_5 0.1099

5 Server_9 0.1615

6 Server_2 0.1076

7 Server_4 0.1064

8 Server_3 0.0984

9 Server_2 0.1474

10 Server_3 0.0977

11 Server_5 0.1033

12 Server_3 0.1114

13 Server_8 0.8430

14 Server_0 0.1243

15 Server_5 0.1082

16 Server_4 0.1091

17 Server_0 0.5008

18 Server_9 0.1089

19 Server_5 0.1065

20 Server_9 0.1020

21 Server_1 0.4904

22 Server_2 0.1170

23 Server_9 0.1320

24 Server_6 0.1041

25 Server_9 0.1317

26 Server_5 0.1167

27 Server_0 0.1351

28 Server_3 0.1189

29 Server_8 0.1091

30 Server_9 0.1165

31 Server_8 0.1193

32 Server_9 0.1405

33 Server_0 0.1057

34 Server_5 0.1168

35 Server_9 0.1275

36 Server_1 0.1143

37 Server_5 0.2196

38 Server_1 0.1052

39 Server_2 0.1298

40 Server_5 0.1342

41 Server_2 0.1088

42 Server_0 0.1064

43 Server_6 0.1470

44 Server_8 0.1157

45 Server_5 0.1072

46 Server_1 0.1147

47 Server_2 0.1202

48 Server_4 0.1153

49 Server_8 0.1087

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov415

IJISRT25NOV415 www.ijisrt.com 391

Round Node Lock Cost (s)

50 Server_1 0.1072

51 Server_6 0.1011

52 Server_4 0.1037

53 Server_3 0.0942

54 Server_5 0.1043

55 Server_0 0.0975

56 Server_6 0.0957

57 Server_5 0.1082

58 Server_6 0.1014

59 Server_3 0.1320

60 Server_4 0.1146

61 Server_2 0.1104

62 Server_5 0.1149

63 Server_6 0.1221

64 Server_2 0.1247

65 Server_6 0.1037

66 Server_5 0.1108

67 Server_1 0.1189

68 Server_6 0.1091

69 Server_3 0.1087

70 Server_9 0.1209

71 Server_2 0.1228

72 Server_8 0.1092

73 Server_2 0.1083

74 Server_5 0.1027

75 Server_8 0.1418

76 Server_0 0.1152

77 Server_9 0.1501

78 Server_4 0.1298

79 Server_5 0.1031

80 Server_0 0.1163

81 Server_9 0.1324

82 Server_6 0.1190

83 Server_1 0.1120

84 Server_2 0.1223

85 Server_5 0.1048

86 Server_9 0.1027

87 Server_5 0.1088

88 Server_6 0.1196

89 Server_3 0.1102

90 Server_9 0.1405

91 Server_6 0.1168

92 Server_3 0.1025

93 Server_4 0.1166

94 Server_0 0.1055

95 Server_3 0.0951

96 Server_6 0.1026

97 Server_3 0.1145

98 Server_1 0.1086

99 Server_9 0.1114

100 Server_5 0.1125

 Distribution of Winners

Table 2 aggregates wins per server. If all 10 servers

participate uniformly, the expected share per server is 10%.

We observe natural variation: Server_5 (18%) and Server_6

/ Server_9 (14%) are above average, while Server_7 shows

0 wins—suggesting its thread never successfully entered the

race or was not active. More rounds (e.g. 1,000) or ensuring

thread readiness typically reduces these deviations, trending

toward balanced distribution.

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov415

IJISRT25NOV415 www.ijisrt.com 392

Table 2 Lock Acquisition Counts and Percentages.

Server Wins Percentage

Server_0 9 9.0%

Server_1 8 8.0%

Server_2 11 11.0%

Server_3 12 12.0%

Server_4 7 7.0%

Server_5 18 18.0%

Server_6 14 14.0%

Server_7 0 0.0%

Server_8 7 7.0%

Server_9 14 14.0%

(Total) 100 100.0%

 Load balance assessment: Except for one inactive (or

unlucky) server, wins are spread across the rest without

systematic bias. The decentralized insert race does not

preferentially favor a single node;

 Script of Above Simulation

def custom_function():

 """A custom function that simulates some work."""

 log.info(f"Thread {threading.current_thread().name} is ex

ecuting custom_function.")

 time.sleep(2)

 log.info(f"Thread {threading.current_thread().name} cust

om_function done.")

def run_job(round: int, job_name: str, func, *args, **kwarg

s):

 try:
 start = time.perf_counter()

 with acquire_job_lock(job_name):

 time_cost = time.perf_counter() - start

 with open("job_run.csv", "a") as f:

 f.write(f"{round},{threading.current_thread().nam

e},{time_cost}\n")

 func(*args, **kwargs)

 except Exception as e:

 log.info("job lock not acquired")

def run_custom_function(round: int):
 run_job(round + 1, "test_job", custom_function)

with open("job_run.csv", "w") as f:

 f.write("round, node id, acquire lock cost(ms)\n")

with ThreadPoolExecutor(max_workers=10, thread_name_

prefix="Server") as executor:

 for round in range(100):

 for i in range(10):

 executor.submit(run_custom_function, round)

 time.sleep(5)

VII. FUTURE IMPROVEMENTS

 Problem: What if the node crashes while running an

operation and never deletes the lock row?

 Fix ideas: Add a timeout mechanism, if the time that a

job run is 200% greater than its average time (e.g.,

applied to rows later than X minutes as stale). - Track

metrics (The average time that each job run). - Write a

script that deletes stale locks.

VIII. CONCLUSION

We showed a small pattern to operate one copy of a

job across many servers. The tactic is a single table + unique

constraint. It works because databases are good at handling

concurrency. This approach is: - Simple & Efficient - Cheap

- Good enough for many student or small team projects.

You don’t always need an enormous scheduler system.

Sometimes one simple and short insert is enough.

REFERENCES

 PostgreSQL Basics

[1]. UNIQUE Constraint https://www.postgresql.org/

docs/current/ddl-constraints.html#DDL-

CONSTRAINTS-UNIQUE-INDEX

[2]. INSERT … ON CONFLICT

https://www.postgresql.org/docs/current/sql-

insert.html#SQL-ON-CONFLICT

[3]. MVCC Intro https://www.postgresql.org/

docs/current/mvcc-intro.html

 Single-Machine Scheduling

[4]. Cron man page https://man7.org/linux/man-

pages/man8/cron.8.html

[5]. Systemd Timers https://www.freedesktop.org/

software/systemd/man/systemd.timer.html

 Larger Systems (for Comparison)

[6]. Celery https://docs.celeryq.dev/en/stable/getting-

started/introduction.html
[7]. Airflow https://airflow.apache.org/docs/apache-

airflow/stable/core-concepts/overview.html

[8]. Sidekiq https://sidekiq.org/

https://doi.org/10.38124/ijisrt/25nov415
http://www.ijisrt.com/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.freedesktop.org/

	Abstract: In many school projects or small applications, it is common to run operations such as sending a report or cleaning old data regularly. If you have only one server, you can handle this efficiently with a cron job. However, if you have multipl...
	I. INTRODUCTION
	II. BACKGROUND
	III. CORE IDEA
	IV. ADVANTAGES
	V. IMPLEMENTATION
	 The Table
	 Lock Helper (Python + SQLAlchemy)
	 Example Job Runner
	 Script (hourly_job.py)
	 Cron Line (Put on Every Server)

	VI. EVALUATION
	 Per-Round Lock Acquisition
	 Distribution of Winners
	 Script of Above Simulation

	VII. FUTURE IMPROVEMENTS
	VIII. CONCLUSION
	REFERENCES
	 PostgreSQL Basics
	 Single-Machine Scheduling
	 Larger Systems (for Comparison)

