ISSN No:-2456-2165

Spirulina Platensis: A Natural Product with many Biological Properties

Priya Dixit¹; Israr Ahmad²; Tabrez Jafar*³

^{1,2,3}Department of Biotechnology, Era University, Lucknow-226003, Uttar Pradesh, India,

Correspondence Author: Dr. Tabrez Jafar Associate Professor Department of Biotechnology, Era University, Lucknow-226003, India

Publication Date: 2025/11/17

Abstract: The human population are continuously increasing; the concern about food, global warming, outbreak of diseases, and other environmental issues are also increased but thanks to nature which provides a viable solution and a good resource which are cyanobacteria (blue-green algae). Spirulina platensis is spiral coil blue-green algae, free-floating filamentous undifferentiated cyanobacterium that live both in the sea and freshwater and belong to the family of Oscillatoriaceae. They are non-heterocyst found in warm bodies of water in tropical and subtropical regions with high elevated pH, salinity, carbonate & bicarbonate content. Spirulina has different pigments such as carotenes, phycobilins, chlorophylls, phycocyanin and phycoerythrin. It contains high protein, chemicals, vitamins and various bioactive compounds used as food supplements, therapeutics, and diagnostics. Spirulina has antioxidant, antimicrobial, antibacterial, anti-inflammatory, and antiparasitic properties which play an important role in human life. Spirulina is used as a model organism in a variety of studies in medical sciences, environmental science, and biotechnology. The aim of this review is to summarize the importance of cyanobacterial species on human health.

Keywords: Cyanobacteria, Natural Product, Spirulina platensis, Therapeutics.

How to Cite: Priya Dixit; Israr Ahmad; Tabrez Jafar (2025) Spirulina Platensis: A Natural Product with many Biological Properties. *International Journal of Innovative Science and Research Technology*, 10(11), 569-576. https://doi.org/10.38124/ijisrt/25nov468

I. INTRODUCTION

Spirulina is a free-floating planktonic belonging to the oxygenic photosynthetic cyanobacteria and is largely distributed in nature. It has been producing oxygen in Earth's atmosphere for 3 billion years [1]. Spirulina is found naturally in warm water bodies, alkaline lakes, volcanic lakes, seawater, and freshwater but under favourable conditions, it is synthetically produced in the ponds of the greenhouse and outdoors. These algal biomasses are a rich source of biologically active compounds and metabolites. It contains various food supplements such as essential amino acids, protein, vitamins (vitamin B12 and provitamin A), minerals, and fatty acid such as γ – linolenic acid, and sulfolipid [2]. S. platensis produces primary and secondary metabolites which are bioactive compounds used in the drug industry [3-5]. It also has anticancer, antiinflammatory, antioxidant, antibacterial, antifungal, and antiparasite properties [6]. S. platensis pigment chromophore phycocyanin has hepatoprotective and neuroprotective characteristics [7-12]. Spirulina works as an immunomodulator it enhances the immune system that can stimulate the production of antibodies. It initiates B-cells, T-cells, natural killer cells and macrophages to produce interferon γ and stimulate expression of different types of cytokines. It acts as an inhibitor against enveloped viruses including influenza A, Herpes Simplex Virus Type I (HSV-1), Human Immunodeficiency Virus-1 (HIV-1), Human Cytomegalovirus, and Measles virus, by blocking replication of viruses after probing in the cell and it also stops the virus to enter in the cell [13]. It has various unique characteristics which encourage scientists for its industrial advantage. Cyanobacterial bioactive molecules hold a bright and promising future in scientific research and a great opportunity for drug discovery and prevalence in the future for clinical application.

https://doi.org/10.38124/ijisrt/25nov468

II. PROPERTIES OF SPIRULINA

> Nutritional Properties

Spirulina is blue-green algae which is an ideal food and is used as nutraceutical dietary supplements in the 21st century [14]. It is known as the future food with various constituents and high energy. Some constituents are polysaccharides like glycogen and essential fats like Gamma linolenic acid (GLA) which are readily consumed by human cells and release energy. Studies found that spirulina in intestine extend lactobacillus which produces vitamin B6 [15]. Spirulina contains approximately 70% protein content and has 18 amino acids [16]. It is a potential source of vitamins such as provitamin A and vitamin B₁₂ [17, 18]. In spirulina, lipid comprises 4-7%, Carbohydrates 13.6%, Water 5%, RNA (Ribonucleic Acid) 2.2%-3.5% and DNA (Deoxyribonucleic Acid) is about 0.6 %-1% [19-20]. Spirulina has calcium content approx. 700-1000 mg /100g which is higher than vegetables and dairy products so it also involves in bone probity. Spirulina is also used as a diet as it provides sufficient iron which reduces the prevalence of anaemia during pregnancy and lactation [Figure 1] [21-22].

> Antimicrobial Property

Invitro studies say that spirulina has 15 volatile components (Tetradecane, Isophytol, Phytol etc.) which are responsible for the antibacterial effect. The extract of volatile components inhibits the microorganism growth. Spirulina platensis exhibits activity against both Gram positive and Gram-negative bacteria. The ethanol extract of spirulina platensis inhibits the infection of Enterococcus faecalis. The methanol extract of spirulina shows antibacterial activity against Streptococcus faecalis, Staphylococcus epidermidis Salmonella typhi and Pseudomonas aeruginosa [23-24]. The culture of cyanobacteria spirulina platensis inhibits the activity of various vibrio strains such as Vibrio splendidus, Vibrio lentus [25]. It reduces the activity of E. coli, Klebsiella Pneumonia, which has drug-resistant capability [26]. So, spirulina platensis is antibacterial as well as it works against drug- resistant bacteria.

A wide range of human illness is caused by 100 enteric virus species such as hepatitis, influenza etc. Recently pharmaceutical industry has worked on the new bioactive component which work as an antiviral agent. Spirulina is one of the natural products which have antiviral activity. It has the ability to work against the genetic material (RNA and DNA) of enteric viruses. Invitro Studies found that Braun-type lipoproteins from spirulina platensis ethanol extracts have effect on monocyte and macrophage cells and activate innate immunity and are involved in immunostimulation. It also has antiviral activity against foot and mouth disease virus strains (A, O, SAT2) [27].

The cold-water extract of spirulina platensis inhibits the replication of virus, blocks the viral plaque formation and decreases the viability and pathogenicity of several influenza. Spirulina platensis have substances like calcium spirulan (Ca-SP), that have the ability to inhibit some enveloped virus such as the type 1 human immunodeficiency virus (HIV-1), influenza A virus, type 1 herpes simplex virus (HSV-1), mumps virus, measles virus replication and infection [28-31]. The aqueous extract of spirulina through immunomodulation prevents the replication of HIV- 1 in human T-cells, Langerhans cells and peripheral blood mononuclear cells [32]. The methanol extract of spirulina reduces the growth of adenovirus type 40 [33] and it also blocks the entry of Human simplex virus -1 in cells and reduce infection [28]. Spirulina platensis contains calcium spirulan which is also known as sulphated polysaccharide & is the major components that reduces the replication of HIV-1 and cytomegalovirus [29]. Spirulina is a natural antifungal compound which is cost-effective and more beneficial to health as compared to regular drugs. The ethanol extract of spirulina reduces the infection of Candida albicans which causes infections in oral and genital area in human [34]. The blue-green algae activate natural killer cells, T-cells, B-cells, macrophages, and many cytokines which are involved in immunostimulation and show antiviral, antifungal, antiparasitic, and antibacterial activity.

> Anti-Inflammatory, Antioxidant, Immunomodulator Properties

Atherosclerosis, heart failure, hypertension and many other diseases are caused by oxidative anxiety. The oxidative stress attacks and destroys molecules in the biological system. Thus, the extract of spirulina has multiple therapeutic effects including anti-inflammatory and antioxidant. Spirulina prevents oxidative stresses and reduces muscle injury. Spirulina also produces antibodies that induce anti-inflammatory and immunomodulator responses because these antibodies express the cytokinecoding genes. Spirulina has major phycobiliprotein known as chromophore phycocyanin that shows a broad effect such as neuroprotective, anti-inflammatory and antioxidative features [12, 24, 35-37]. The chromophore phycocyanin inhibits the exhibition of iNOS (inducible nitric oxide synthase) and COX-2 (Cyclooxigenase-2) which are inflammatory factors in lung tissue and macrophage and decrease inflammation activity [38-41]. It has a hepatoprotective effective. Phycocyanin exhibited activity against OH radical which is produced by ascorbate or iron or H₂O₂ (Hydrogen Peroxide) [42]. The increasing level of H₂O₂ significantly improves the function of antioxidant enzymes Catalase (CAT), peroxidase (PX), Superoxide dismutase (SOD), and ascorbate peroxidise (APx) in spirulina [43]. The aggregation of free radical's damages neurons in the brain and is responsible for neurodegenerative diseases, thus because of antioxidant activity of spirulina platensis it also used for the treatment of neurodegenerative diseases such as Alzheimer's or Parkinson's disease [43]. Spirulina has PC12 cells which protect against neurodegenerative diseases by inhibiting iron-induced free radicals [44]. Spirulina shows various benefits in human health, it works against hyperlipidemia, diabetes, ischemic disease, malignancy, heavy metal chemical-induced toxicity, anaemia, and radiation [45-48]. Phycocyanin and allophycocyanin also inhibit oxygen stress action against diabetic nephropathy [49]. Spirulina

influences antioxidant enzymes and suppresses damaging of DNA and lipid Peroxidation [50]. So, spirulina is an important agent used in the treatment of cardiovascular diseases and chronic obstructive pulmonary disease (COPD) [51-53]. Spirulina modulates cytokines such as tumour necrosis factor (TNF)- α and interleukin (IL-1 β , IL-2, IL-4, IL-6, IL-10) and show anti-inflammatory and immunomodulatory effects [54-57]. Cyclooxygenase-2 (COX-2) is an enzyme produced by prostaglandins which play a key role in inflammation [58]. Phycocyanin inhibits COX-2 and shows anti-inflammatory effects [59]. Phycocyanin and β-carotene which are involved in monitoring the ERK1/2(extracellular signal-regulated protein kinase 1/2), Arch Toxicol 1 3 JNK, IkB, and p38 signaling pathways and show immunomodulator activity [60,61].

➤ Antitumour & Anticancer properties

Some studies also revealed that spirulina also contains anti-tumour and anti-cancer properties. Radachlorin is a new chlorine photosensitizer molecule present in spirulina and it has tumour regression properties [62]. The unique type of complex polysaccharides found in Spirulina reduces the growth of glioma cells by decreasing the production of interleukin-17 [63]. Spirulina platensis contain acidic polysaccharides which enhance the production of tumour necrosis factor- α (TNF- α) in macrophages [64]. Spirulina has a special type of polysaccharide that initiates the enzyme activity present in the cell nucleus and involved in the unification of DNA repair [65]. Chromophore phycocyanin represses cyclooxygenase-2 and promotes program cell death in lipopolysaccharide-stimulated RAW 264.7 macrophages, which shows anti-inflammatory as well as anticancer activity [66].

It also has tumour elimination property which plays a key role in cancer treatment. According to the research, adding supplements of Spirulina in the diet for a year completely overcomes leukoplakia [67-70].

➤ Effect on Lower Cholesterol and Diabetes

Mostly heart diseases like atherosclerosis are caused by high cholesterol levels in the body. Spirulina reduces low-density lipoprotein cholesterol and shows a significant effect on atherogenic and diabetes [71, 72].

> Bioremediation and Anti Pollutant

For the last few years, reports have found that industrial cities' rivers, lakes, and soil are very polluted, which is harmful to human health. Hundreds of agents, including crude oil, aliphatic, aromatic, phenol, pesticide, herbicide, insecticide, and various chemical substances contaminate the environment of Earth [73]. Spirulina is a potential candidate for eliminating pollutants from soil and water. Pesticide is applied for pest control in the agriculture field and enhances better crop production. The data show that about 90% of pesticides are used in Asian rice paddy fields, 80% in Bangladesh and Vietnam, and 47% in the Phillippines [74] but in the ecosystem, pesticides are one of the chemical pollutants that accumulate in water and soil causing a serious environmental issue. Spirulina can absorb

the extra pesticide from crops and work as an antipesticide. Spirulina has large amounts of enzymes, peptides, etc., that help bind the toxic compound and then eliminate it. DDT(Dichlorodiphenyltrichloroethane) is an insecticide that has chemical stability so it stays in the environment for a long time. It enters humans through the digestive tract or skin which is harmful to nervous tissue [75]. Spirulina can adsorb and remove DDT, TNT(Trinitrotoluene)and Cs+ by cellular lipopolysaccharides from polluted water [76,77]. In the presence of the chelating compound, spirulina removes Cs+ ions from polluted water and works as an antipollutant. Spirulina is a key substance for the removal of toxic agents and also eliminates nitrogen from wastewater [78]. Glyphosate is used as an herbicide in the agriculture field but it harms the crops so spirulina is used as an antiherbicide for removing glyphosate herbicide.

➤ Miscellaneous Properties

Cyanobacteria produced various compounds which provide protection against asthma, allergic rhinitis and many allergic responses [79]. Spirulina reduce the ischemic brain damage because it has also neuroprotective ability [80]. Spirulina produced a special type of compound, polyhydroxyalkanoates which play an important role in therapeutic. Evidence exhibit that polyhydroxyalkanoates, and 4- hydroxybutyrate are used for the treatment of alcohol withdrawal syndrome [81].

III. FUTURE PLAN

Spirulina is a natural product, that rapidly grow, has high photosynthetic activity, has high tolerance ability and various properties which open the way to producing useful products by synthetic biology. It is an excellent bioremediator which removes heavy metals, pesticides, and herbicides and cleans the environment. It has lots of potential so scientists can use genetic engineering tools and perform strain improvement to obtain high productivity. Researchers must explore the enhancement of cell potential for adaptation in extremely stressful conditions.

IV. CONCLUSION

This Literature provides a new approach of using spirulina in several applications such as nutritional agent, therapeutic drug, and environmental involvement. Spirulina is non-toxic and has many nutritional compounds and metabolites [Figure 2]. Various medicinal compounds found in spirulina are used as alternative medicine without any side effects. Its bioactive product is beneficial for human health. Based on the possibility of cyanobacteria, it can be used by industrialists for various product development. It provides an aim for researchers and scientists to investigate different cyanobacterial studies.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ISSN No:-2456-2165

REFERENCES

- [1]. Rasmussen B, Fletcher I, Brocks J, Kilburn M. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature. 2008; 455(7216):1101-1104.
- [2]. Mendes R, Nobre B, Cardoso M, Pereira A, Palavra A. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta.2003; 356:328-334.
- [3]. Febles C.I., Arias A., Gill-Rodriguez M.C. In vitro study of antimicrobial activity in algae (Chlorophyta, Phaeophyta and Rhodophyta) collected from coast of Tenerife (in Spanish) Anu. Estud. Canarios.1995; 34:181–192.
- [4]. Ely R, Supriya T, Naik C. Antimicrobial activity of marine organisms collected off the coast of South East India. Journal of Experimental Marine Biology and Ecology. 2004; 309(1):121-127.
- [5]. Kumar V., Tirumalai P.S., Singh A., Bhatnagar A.K., Shrivastava J.N. Natural compounds from algae and S. platensis & its antimicrobial activity. Indo Glob. J. Pharm. Sci. 2013;3(3):212–223.
- [6]. Khan M, Ather A, Thompson K, Gambari R. Extracts and molecules from medicinal plants against herpes simplex viruses. Antiviral Research. 2005; 67(2):107-119.
- [7]. Ozdemir G, Ulku Karabay N, Dalay M, Pazarbasi B. Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytotherapy Research. 2004; 18(9):754-757.
- [8]. Henrikson R. Earth food Spirulina. Laguna Beach, CA: Ronore Enterprises Inc. 1989.
- [9]. Romay C, GonzaAlez R, LedoAn N, Remirez D, Rimbau V. C-Phycocyanin. A Biliprotein with Antioxidant, Anti-Inflammatory and Neuroprotective Effects. Curr Protein and Pep Sci. 2003; 4(3): 207-216.
- [10]. Girardin-AndreÂani C. Spiruline: système sanguin, système immunitaire et cancer. Phytotherapie. 2005; 3(4): 158-161.
- [11]. Riss J, DeÂcorde K, Sutra T, Delage M, Baccou JC, Jouy N, et al. Phycobiliprotein C- phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem. 2007; 55(17):7962-7967
- [12]. Løbner M, Walsted A, Larsen R, Bendtzen K, Nielsen CH. Enhancement of human adaptive immune responses by administration of a high-molecular-weight polysaccharide extract from the cyanobacterium Arthrospira platensis. J Med Food. 2008; 11(2):313-322.
- [13]. Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T et al. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a bluegreen alga, Spirulina platensis. Clinical & Experimental Metastasis. 1998; 16(6):541-550.

- [14]. Pelizer L, Danesi E, Rangel C, Sassano C, Carvalho J, Sato S et al. Influence of inoculums age and concentration in Spirulina platensis cultivation. Journal of Food Engineering. 2003; 56(4):371-375.
- [15]. Baicus C, Baicus A. Spirulina did not ameliorate idiopathic chronic fatigue in four N-of-1 randomized controlled trials. Phytotherapy Research. 2007; 21(6):570-573.
- [16]. Moreira M. Spirulina platensis biomass cultivated in Southern Brazil as a source of essential minerals and other nutrients. African Journal of Food Science. 2013; 7(12):451-455.
- [17]. A. Belay. Mass Culture of Spirulina Outdoors: The Earthrise Farms Experience. In: A. Vonshak, Ed., Spirulina platensis (Arthrospira), Physiology, Cell Biology and Biotechnology. Taylor & Francis, London. 1997:131-158.
- [18] Becker, E.W. Nutritional Properties of Microalgal Potentials and Constraints. In: Handbook of Microalgal Mass Culture, Richmond, A. (Ed.). CRC Press, Boca Raton. 1984: 339-408.
- [19]. Shekharam K, Venkataraman L, Salimath P. Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry. 1987; 26(8):2267-2269.
- [20]. Ciferri O. Spirulina, the edible microorganism. Microbiological Reviews. 1983; 47(4):551-578.
- [21]. Tietze, H.W. Spirulina Micro Food Macro Blessing. 4th Edition, Harald W. Tietze Publishing, Australia. 2004.
- [22]. Kapoor R, Mehta U. Supplementary effect of spirulina on hematological status of rats during pregnancy and lactation. Plant Foods for Human Nutrition. 1998; 52(4):315-324.
- [23]. Kaushik P, Chauhan A. In vitro antibacterial activity of laboratory grown culture of Spirulina platensis.Indian J Microbiol.2008; 48(3): 348-352.
- [24]. Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B. Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res. 2004; 18(9): 754-757.
- [25] F. Kokou, P. Makridis, M. Kentouri, and P. Divanach. Antibacterial activity in microalgae cultures. Aquaculture Research. 2012; 43(10): 1520–1527.
- [26]. D. V. L. Sarada, C. S. Kumar, R. Rengasamy.Purified C-phycocyanin from Spirulina platensis (Nordstedt) Geitler: a novel and potent agent against drug resistant bacteria.World Journal of Microbiology and Biotechnology. 2011; 27(4):779–783.
- [27]. Daoud HM, Soliman EM. Evaluation of Spirulina platensis extract as natural antivirus against foot and mouth disease virus strains (A, O, SAT2). Veterinary world. 2015 Oct;8(10):1260.
- [28]. Hayashi K, Hayashi T, Morita N, Kojima I. An extract from Spirulina platensis is a selective inhibitor of herpes simplex virus type 1 penetration into HeLa cells. Phytotherapy Research. 1993; 7(1):76-80.
- [29]. Hayashi T, Hayashi K, Maeda M, Kojima I. Calcium Spirulan, an Inhibitor of Enveloped Virus Replication,

- from a Blue-Green AlgaSpirulina platensis. Journal of Natural Products. 1996; 59(1):83-87.
- [30]. Hayashi K, Hayashi T, Kojima I. A Natural Sulfated Polysaccharide, Calcium Spirulan, Isolated from Spirulina platensis: In Vitro and ex Vivo Evaluation of Anti-Herpes Simplex Virus and Anti-Human Immunodeficiency Virus Activities. AIDS Research and Human Retroviruses. 1996;12(15):1463-1471.
- [31]. Lee J, Srisomporn P, Hayashi K, Tanaka T, Sankawa U, Hayashi T. Effects of Structural Modification of Calcium Spirulan, a Sulfated Polysaccharide from Spirulina Platensis, on Antiviral Activity. Chemical & Pharmaceutical Bulletin. 2001; 49(1):108-110.
- [32]. Ayehunie S, Belay A, Baba T, Ruprecht R. Inhibition of HIV-1 Replication by an Aqueous Extract of Spirulina platensis (Arthrospira platensis). Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology. 1998; 18(1):7-12.
- [33]. Abdo SM, Hetta MH, El-Senousy WM, Salah El Din RA, Ali GH.Antiviral activity of freshwater algae. Journal of Applied Pharmaceutical Science. 2012; 2(2): 21-25.
- [34]. Denfert C, Hube B. Candida: Comparative and Functional Genomics. Caister Academic Press. 2007.
- [35]. Romay C, GonzaÂlez R, LedoÂn N, Remirez D, Rimbau V. C-Phycocyanin: A Biliprotein with Antioxidant, Anti-Inflammatory and Neuroprotective Effects. Curr Protein and Pep Sci. 2003; 4(3): 207-216
- [36]. Girardin-AndreÂani C. Spiruline: système sanguin, système immunitaire et cancer. Phytotherapie. 2005;3(4): 158-161.
- [37]. Riss J, DeÂcorde K, Sutra T, Delage M, Baccou JC, Jouy N, et al. Phycobiliprotein C- phycocyanin from Spirulina platensis is powerfully responsible for reducing oxidative stress and NADPH oxidase expression induced by an atherogenic diet in hamsters. J Agric Food Chem. 2007; 55(19):7962-7967.
- [38]. Cherng S, Cheng S, Tarn A, Chou T. Antiinflammatory activity of c-phycocyanin in lipopolysaccharide-stimulated RAW 264.7 macrophages.Life Sciences. 2007;81(19-20):1431-1435.
- [39]. Leung P, Lee H, Kung Y, Tsai M, Chou T. Therapeutic Effect of C-Phycocyanin Extracted from Blue Green Algae in a Rat Model of Acute Lung Injury Induced by Lipopolysaccharide. Evidence-Based Complementary and Alternative Medicine. 2013; 2013:1-11.
- [40]. Shih C, Cheng S, Wong C, Kuo Y, Chou T. Antiinflammatory and Antihyperalgesic Activity of C-Phycocyanin. Anesthesia & Damp; Analgesia. 2009;108(4):1303-1310.
- [41]. Reddy C, Bhat V, Kiranmai G, Reddy M, Reddanna P, Madyastha K. Selective Inhibition of Cyclooxygenase-2 by C-Phycocyanin, a Biliprotein from Spirulina platensis. Biochemical and Biophysical Research Communications. 2000; 277(3):599-603.
- [42]. J. E. Piero Estrada, P. Bermejo Besc´os, and A. M. Villar del Fresno. Antioxidant activity of different

- fractions of Spirulina platensis protean extract.IL Farmaco. 2001; 56(5-7):497–500.
- [43]. Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology. 2016; 90(8):1817-1840.
- [44]. Agara T, Nishibori N, Kishibuchi R, Itoh M, Morita K. Non-protein components of Arthrospira (Spirulina) platensis protect PC12 cells against iron-evoked neurotoxic injury. Journal of Applied Phycology.2015; 27(2):849-855.
- [45]. Lee J, Hayashi T, Hayashi K, Sankawa U, Maeda M, Nemoto T et al. Further Purification and Structural Analysis of Calcium Spirulan from Spirulina platensis. Journal of Natural Products. 1998; 61(9):1101-1104.
- [46]. Lorenz RT. A review of Spirulina and Haematococcus algae meal as a carotenoid and vitamin supplement for poultry. Spirulina Pacifica Tech Bull.1999; 53:1–14.
- [47]. Hoseini S, Khosravi-Darani K, Mozafari M. Nutritional and Medical Applications of Spirulina Microalgae. Mini-Reviews in Medicinal Chemistry. 2013; 13(8):1231-1237.
- [48]. Kulshreshtha A, J. A, Jarouliya U, Bhadauriya P, Prasad G, Bisen P. Spirulina in Health Care Management. Current Pharmaceutical Biotechnology. 2008; 9(5):400-405.
- [49]. Zheng J, Inoguchi T, Sasaki S, Maeda Y, McCarty M, Fujii M et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2013; 304(2):R110-R120.
- [50]. Abdelkhalek NK, Ghazy EW, Abdel-Daim MM. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res Int. 2015; 22(4):3023–3031.
- [51]. Deng R, Chow TJ. Hypolipidemic, antioxidant and anti-inflammatory activities of microalgae spirulina. Cardiovasc Ther. 2010; 28(4):e33–e45.
- [52]. Kalafati M, Jamurtas AZ, Nikolaidis MG et al. Ergogenic and antioxidant effects of spirulina supplementation in humans.Med Sci Sports Exerc. 2010; 2(1):142–151.
- [53]. Ismail M, Hossain MF, Tanu AR et al. Effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile in chronic obstructive pulmonary disease patients. Biomed Res Int. 2015; 2015:486120.
- [54]. Mao TK, Van De Water J, Gershwin ME.Effect of spirulina on the secretion of cytokines from peripheral blood mononuclear cells. J Med Food. 2000; 3(3):135– 140
- [55]. El Sheikh SM, Shalaby MAM, Hafez RA et al. The immunomodulatory effects of probiotic bacteria on peripheral blood mononuclear cells (PBMCS) of allergic patients. Am J Immunol.2014; 10(3):116– 130.

- [56]. Shokri H, Khosravi A, Taghavi M. Efficacy of Spirulina platensis on immune functions in cancer mice with systemic candidiasis. J Mycol Res. 2014; 1(1):7–13.
- [57]. Ali EA, Barakat BM, Hassan R. Antioxidant and angiostatic effect of Spirulina platensis suspension in complete Freund's adjuvant-induced arthritis in rats. PLoS ONE. 2015; 10(4):e0121523.
- [58]. Fournier DB, Gordon GB. COX-2 and colon cancer: potential targets for chemoprevention. J Cell Biochem Suppl. 2000 34:97–102.
- [59]. Reddy CM, Bhat VB, Kiranmai G et al. Selective inhibition of cyclooxygenase-2 by C- phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun. 2000; 277(3):599–603.
- [60]. Khan M, Varadharaj S, Ganesan LP et al. C-phycocyanin protects against ischemia- reperfusion injury of heart through involvement of p38 MAPK and ERK signaling. Am J Physiol Heart Circ Physiol. 2006; 290(5):2136–2145.
- [61]. Yogianti F, Kunisada M, Nakano E et al.Inhibitory effects of dietary Spirulina platensis on UVB-induced skin inflammatory responses and carcinogenesis. J Invest Dermatol. 2014; 134(10):2610–2619.
- [62]. V. A. Privalov, A.V. Lappa,O.V. Seliverstov et al.Clinical trials of a new chlorine photosensitizer for photodynamic therapy of malignant tumors," in Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XI, T. J. Dougherty, Ed., vol. 4612 of Proceedings of SPIE. 2002: 178–189.
- [63]. Y. Kawanishi, A. Tominaga, H. Okuyama et al.Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV-M glioma cells through Toll-like receptor-4," Microbiology and Immunology. 2013; 57(1):63–73.
- [64]. M. L. Parages, R. M. Rico, R. T. Abdala-D'1az, M. Chabrill'on, T. G. Sotiroudis, C. Jim'enez.Acidic polysaccharides of Arthrospira (Spirulina) platensis induce the synthesis of TNF- α in RAW macrophages. Journal of Applied Phycology. 2012; 24:1537–1546.
- [65]. Baojiang G., et al. Study on Effect and Mechanism of Polysaccharides of Spirulina platens is on Body Immune Functions Improvement. Second Asia-Pacific Conference on Algal Biotechnology. 1994:24.
- [66]. M. C. Reddy, J. Subhashini, S. V. K. Mahipal etal.CPhycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharidestimulated RAW 264.7 macrophages.Biochemical and Biophysical Research Communications. 2003; 304(2):385–392.
- [67]. B. Mathew, R. Sankaranarayanan, P. P. Nair et al. Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutrition and Cancer. 1995; 24(2): 197–202.
- [68]. G. Shklar, J. Schwartz.Tumor necrosis factor in experimental cancer regression with alphatocopherol, beta-carotene, canthaxanthin and algae extract.European Journal of Cancer and Clinical Oncology. 1988; 24(5):839–850.

- [69]. J. Schwartz, G. Shklar, S. Reid, D. Trickler.Prevention of experimental oral cancer by extracts of Spirulina-Dunaliella algae.Nutrition and Cancer.1988; 11(2):127–134.
- [70]. J. Schwartz, G. Shklar.Regression of experimental hamster cancer by beta carotene and algae extracts.Journal of Oral and Maxillofacial Surgery. 1987; 45(6):510–515.
- [71]. N. Nakaya, Y. Homa, and Y. Goto. Cholesterol lowering effect of Spirulina. Atherosclerosis. 1988; 37:1329–1337.
- [72]. U. V. Mani, S. Desai, and U. Iyer.Studies on the longterm effect of Spirulina supplementation on serum lipid profile and glycated proteins in NIDDM patients. Journal of Nutraceuticals, Functional and Medical Foods. 2000; 2(3): 25–32.
- [73]. Kvesitadze, G.; Khatisashvili, G.; Sadunishvili, T.; Ramsden, J.J. Biochemical Mechanisms of Detoxification in Higher Plants. Basis of Phytoremediation; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006.
- [74]. Abdullah A, Bajet C, Matin M, Nhan D, Sulaiman A. Ecotoxicology of pesticides in the tropical paddy field ecosystem. Environmental Toxicology and Chemistry. 1997; 16(1):59-70.
- [75]. Kurashvili M, Varazi T, Khatisashvili G, Gigolashvili G, Adamia G, Pruidze M et al. Blue-green alga Spirulina as a tool against water pollution by 1,1'-(2,2,2-trichloroethane-1,1- diyl) bis(4-chlorobenzene) (DDT). Annals of Agrarian Science. 2018; 16(4):405-409.
- [76]. Adamia G, Chogovadze M, Chokheli L, Gigolashvili G, Gordeziani M, Khatisashvili G et al. About possibility of alga Spirulina application for phytoremediation of water polluted with 2,4,6-trinitrotoluene. Annals of Agrarian Science. 2018; 16(3):348-351.
- [77]. Kurashvili, M.; Adamia, G.; Varazi, T.; Khatisashvili, G.; Gigolashvili, G.; Pruidze, M.; Chokheli, L.; Japharashvili, S.Application of Blue-green Alga Spirulina for removing Caesium ions from polluted water. Ann. Agrar. Sci. 2019, in press.
- [78]. Chevalier P, Proulx D, Lessard P, Vincent W, de la Noüe J. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. Journal of Applied Phycology.2000; 12(2):105-112.
- [79]. T.-S. Vo, D.-H. Ngo, and S.-K. Kim.Marine algae as a potential pharmaceutical source for anti-allergic therapeutics. Process Biochemistry. 2012; 47(3):386–394.
- [80]. Y. Wang, C. F. Chang, J. Chou et al. Dietary supplementation with blueberries, spinach, or spirulina reduces ischemic brain damage. Experimental Neurology. 2005; 193(1): 75–84.
- [81]. L. Gallimberti, M. Ferri, S. D. Ferrara, F. Fadda, G.L. Gessa.Gamma-hydroxybutyric acid in the treatment of alcohol dependence: a double-blind study. Alcoholism1992; 16(4): 673–676.

FIGURE CAPTIONS

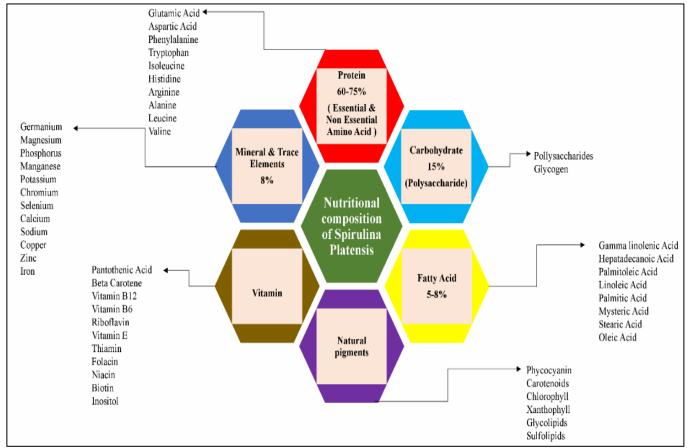


Fig 1. Nutritional Component of Spirulina

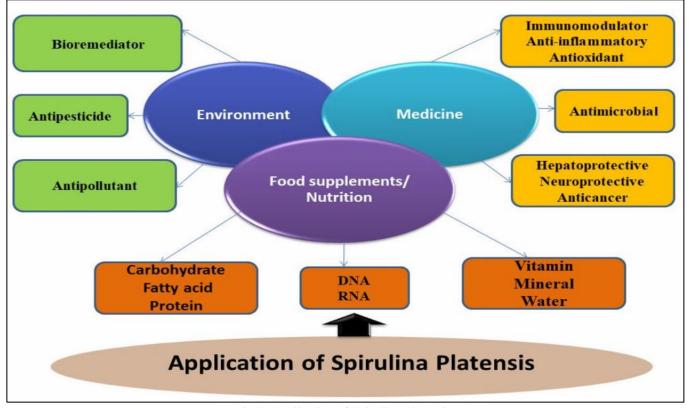


Fig 2: Application of Spirulina Platensis

Table 1. Biological Properties of Spirulina Platensis				
S.	Properties	Cellular Component	Application	References
No.				
1.	Nutritional Properties	Protein, Vitamin B6, Provitamin A	Bone weaking, Anaemia	15-22
		and Vitamin B12, Lipid,		
		Carbohydrates, Water, RNA, DNA,		
	A 49 4 1 1D 41	Calcium content, Iron	I Live a way I o Co at i a w	22.24
2.	Antibacterial Properties	Ethanol Extract	Urinary Infection	23-24
		Methanol Extract	Typhoid Fever	27
3.	Antiviral properties	Extract	Foot and Mouth Disease	27
		Cold water Extract	Influenza	28-31
		Calcium Spirulan	HIV-1, Influenza, Herpes,	
			Mumps, Measles	
		Aqueous Extract	HIV- 1	32
		Methanol Extract	Adenovirus infection,	33,28
			Human simplex virus	
			infection	
4.	Antifungal Properties	Ethanol Extract	Oral and Genital infection	34
5.	Immunomodulator	Chromophore Phycocyanin	Neuroprotective, Anti-	12, 24, 35-
	properties		inflammatory, Anti-	37
			oxidative Features	
		PC12 cells	Neurodegenerative Diseases	44
		Phycocyanin and Allophycocyanin	Diabetic Nephropathy	49
		Phycocyanin and β-carotene	Immunomodulator Activity	60,61
6.	Anticancer properties	Radachlorin	Tumour regression Property	62
		Polysaccharide	Decreases the growth of	63,65
			glioma cell and DNA repair	
		Acidic Polysaccharide	Enhance the production of	64
			TNF-α	
		Chromophore Phycocyanin	Anticancer	66
7.	Bioremediation properties	Cellular Lipopolysaccharides	Remove DDT, TNT	76,77
8.	Miscellaneous properties	Polyhydroxyalkanoates and 4-	Alcohol withdrawal	81
		Hydroxybutyrate	syndrome	