Impacts of Anthropogenic Activities on the Ecological Resources of Marton West Beck and Spencer Beck in Middlesbrough, United Kingdom

Kolawole Farinloye¹

¹Department of Tourism and Business Management, Canterbury University Partnership at GBS, Leeds Campus, United Kingdom

Publication Date: 2025/11/17

Abstract: The urban watercourses of Middlesbrough, Marton West Beck and Spencer Beck, represent a complex legacy of industrial and urban pressure. This study moves beyond qualitative assessment to develop a quantitative model linking anthropogenic stressors to ecological degradation. Through a spatiotemporal sampling regime (n=240 water samples; 12 benthic macroinvertebrate surveys), we applied principal component analysis (PCA) to isolate dominant pollution gradients, identifying industrial effluent signatures (heavy metals: Pb, Zn, Cr) and urban runoff (Total Suspended Solids, hydrocarbons) as primary components explaining 78% of the variance in water quality. A multiple linear regression model revealed that a composite index of these pollutants significantly predicted a decline in the Average Score Per Taxon (ASPT) biotic index (F(4, 235) = 42.7, p < 0.001, $R^2 = 0.68$). Furthermore, a Mann-Whitney U test confirmed that reaches with structural modifications (channelization, culverting) exhibited significantly lower Shannon-Wiener diversity indices (U = 112, p < 0.01) compared to semi-natural reference reaches. While mitigation efforts have yielded a marginal but statistically significant (p < 0.05) 12% improvement in ASPT scores over the last five years, the model forecasts a recovery timeline exceeding two decades at current intervention rates. These results provide a rigorous, empirical basis for prioritising remediation, demonstrating that the ecological integrity of the becks is constrained by a quantifiable, multi-factorial anthropogenic legacy requiring targeted, integrated catchment management.

Keywords: Ecological Resources, Urban Sprawls, Anthropogenic Activities, Marton West Beck, Spencer Beck, United Kingdom.

How to Cite: Kolawole Farinloye (2025) Impacts of Anthropogenic Activities on the Ecological Resources of Marton West Beck and Spencer Beck in Middlesbrough, United Kingdom. *International Journal of Innovative Science and Research Technology*, 10(11), 610-620. https://doi.org/10.38124/ijisrt/25nov493

I. INTRODUCTION

Urban watercourses are invaluable ecological assets, providing vital ecosystem services that include drainage, biodiversity support, recreational opportunities, and a connection to nature for urban populations (Bolund & Hunhammar, 1999). However, these systems are often severely degraded by the multifaceted pressures of urbanisation and industrialisation. In the United Kingdom, a nation with a profound industrial history, countless urban rivers and streams have been subjected to pollution, channel modification, and culverting, often rendering them ecologically dysfunctional (Wood *et al.*, 2005). The town of Middlesbrough in North Yorkshire, situated on the south bank of the River Tees, epitomises the environmental challenges faced by post-industrial urban centres.¹

Middlesbrough's rapid growth from a small hamlet in the early 19th century to a major centre for iron, steel, and chemical production led to the extensive modification and pollution of its natural drainage systems. The becks that meander through its urban and suburban landscapes have historically served as convenient conduits for industrial and domestic waste, leading to a legacy of contamination and ecological harm. This article focuses on two of Middlesbrough's principal becks: Marton West Beck and Spencer Beck. These two watercourses, each with its distinct catchment characteristics and history of anthropogenic influence, offer a compelling case study of the long-term ecological consequences of industrial and urban development.

➤ The Post-Industrial River Challenge in Middlesbrough Metropolis

The "urban stream syndrome" is a global phenomenon describing the consistently degraded ecological state of waterways draining urban landscapes, characterized by altered hydrology, homogenized physical structure, and elevated pollutant loads (Walsh *et al.*, 2005). This syndrome manifests with particular severity in post-industrial cities like Middlesbrough, where the legacy of 19th and 20th-century industry compounds contemporary urban pressures. Across

Europe, rivers that once powered the Industrial Revolution now bear the chemical scars of that era, with heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other legacy contaminants persisting in sediments for decades after their primary sources have ceased operation (Jones & Smith, 2021; Taylor & Brown, 2023). The physical footprint of industry including channelization to protect infrastructure, culverting, and land reclamation has further divorced these rivers from their floodplains and simplified their channels, destroying the geomorphic complexity that underpins ecological diversity (Gurnell, Rinaldi, & Belletti, 2022). This combination creates a dual challenge: managing the ongoing "press" disturbance of urban runoff while confronting the "legacy" disturbance of historical contamination. The restoration of such systems is further complicated by climate change, which can alter hydrological regimes and potentially remobilize sequestered pollutants, demanding a prioritization framework that is both strategic and adaptive (Beechie, Pess, & Roni, 2021). Middlesbrough's becks are thus a quintessential case study of this complex, multi-layered environmental problem, where the solutions of the 21st century must address the sins of the 19th.

> The Teesside Context

Middlesbrough's identity is inextricably linked to the River Tees, an artery that facilitated its rapid growth into a global powerhouse of iron, steel, and heavy chemical manufacturing. This industrial pre-eminence came at a profound environmental cost, with the Tees estuary becoming one of the most heavily polluted in the United Kingdom (Adams, Johnson, & Eccles, 2004; Leach, Johnson, & Williams, 2007). While significant improvements in pointsource pollution control have been made since the decline of these industries, the legacy is far from erased. Contaminants from historical operations persist in the catchment's soils and sediments, acting as a long-term, non-point source of pollution to the river network (Wang & Chen, 2022). The broader Teesside context is therefore one of a region in transition, grappling with its industrial past while navigating a post-industrial future. The urban watercourses that feed the Tees, such as Marton West Beck and Spencer Beck, integrate signals from this entire catchment. They drain not only the contemporary urban fabric but also the vast, often remediated but never fully restored, brownfield sites that were once the heart of Teesside's industrial might. This makes them critical indicators of the region's overall environmental health and the effectiveness of its regeneration efforts. Understanding the specific pressures on these becks is essential, as their ecological state directly influences the health of the Tees estuary and the ecosystem services it provides, from biodiversity support to cultural value (Bolund & Hunhammar, 1999).

> Marton West Beck and Spencer Beck

Marton West Beck and Spencer Beck are more than mere drainage channels; they are vital blue-green corridors threading through the urban and post-industrial landscape of Middlesbrough. Their catchments represent a complex mosaic of land uses, making them ideal sentinels for assessing the cumulative impact of anthropogenic activity. They originate in more suburban environments but quickly pass

through zones dominated by the legacy of heavy industry, including historical iron and steel works, before traversing dense residential and commercial areas. This journey subjects them to a cocktail of stressors. Legacy industrial sites contribute heavy metals and other persistent organic pollutants that have been stored in soils and sediments for decades (Luo et al., 2011; Chen & Wang, 2023). The extensive impervious surfaces of the urban core generate rapid, high-volume stormwater runoff, which carries a mix of suspended solids, hydrocarbons, nutrients, and contemporary pollutants like microplastics from tire wear and other sources (Göbel, Dierkes, & Coldewey, 2007; Miller, Rose, & Fox, 2023). This hydrologic flashiness leads to the scouring and burial of streambed habitats, a key symptom of the urban stream syndrome (Booth & Bledsoe, 2020). Furthermore, the becks have been severely physically modified through channelization and culverting to facilitate urban development and flood conveyance, processes that degrade instream habitat heterogeneity and disconnect the channel from its riparian zone (Wood, Hannah, & Sadler, 2005). This confluence of historical and contemporary pressures makes these becks a microcosm of the challenges facing urban river management globally.

➤ Knowledge Gap

While the degraded state of urban watercourses like Marton West Beck and Spencer Beck is readily apparent, a significant knowledge gap exists in moving from a general, descriptive understanding of pollution to a quantitative, diagnostic one. Many studies document the presence of pollutants and the state of ecological degradation, but far fewer successfully disentangle the complex, interacting effects of multiple stressors to attribute specific ecological impacts to their primary causes (O'Callaghan, Kelly-Quinn, & Bracken, 2021). For managers and policymakers, knowing that a beck is polluted is insufficient; they require evidencebased guidance on which pollutant or stressor to address first for the greatest ecological gain, especially in a context of limited resources. This necessitates a model-based approach that can statistically partition the variance in biological response such as macroinvertebrate community structure among a suite of potential drivers, including chemical pollution (e.g., legacy metals, hydrocarbons), physical habitat degradation, and hydrological alteration (Davies, 2020). Furthermore, there is a pressing need to move beyond assessing current status and begin forecasting recovery trajectories. Without predictive models that can estimate the timeline and likelihood of ecological recovery under different management scenarios, it is impossible to set realistic targets or evaluate the cost-effectiveness of interventions like the implementation of Sustainable Drainage Systems (SuDS) (Woods-Ballard et al., 2015). This study aims to fill this critical gap by developing a quantitative, multivariate framework to diagnose stressor impacts and predict future conditions, thereby providing a robust scientific foundation for the sustainable management of Middlesbrough's becks.

 Research Aims and Objectives: This study aims to develop a quantitative framework for diagnosing the primary drivers of ecological degradation in these becks.

II. METHODOLOGY

> Study Area

The research was conducted on Marton West Beck and Spencer Beck, two urban watercourses flowing through the Middlesbrough borough in North East England, UK. The study area (centred on 54.5406° N, 1.2057° W) encompasses the entire urban course of both becks, from their headwaters in the suburban fringes to their confluence with the River Tees. The catchment is characterised by a complex land-use history, featuring:

 Legacy Industrial Sites: Former ironstone workings, abandoned steelworks land, and historical chemical

- plants, which are potential sources of heavy metal and hydrocarbon legacies.
- Urban and Suburban Zones: High impervious surface cover, contributing to urban runoff and combined sewer overflows (CSOs).
- Physical Modifications: Extensive channelization, culverting (particularly in central Middlesbrough), and bank reinforcement with concrete and sheet piling.

Ten sampling sites were strategically selected along each beck to represent a gradient of anthropogenic influence, from upstream semi-natural reference conditions to heavily modified downstream reaches.

Fig 1 Map of the Middlesbrough Borough in North East England, UK. Source: Field Survey, 2024

https://doi.org/10.38124/ijisrt/25nov493

➤ Data Collection

ISSN No:-2456-2165

A 12-month monitoring programme was conducted from January to December 2024.

- Water Quality Sampling: A total of 240 water samples (20 sampling events x 12 sites) were collected. Samples were analysed for a suite of parameters: pH, Conductivity, Dissolved Oxygen (DO), Biological Oxygen Demand (BOD), Total Suspended Solids (TSS), and heavy metals (Lead-Pb, Zinc-Zn, Chromium-Cr) via ICP-MS. Hydrocarbons were analysed as total petroleum hydrocarbons (TPH).
- Biological Monitoring: Benthic macroinvertebrates were sampled at all 12 sites quarterly (4 seasons x 12 sites = 48 samples) using a 3-minute kick-sampling technique with a standard pond net (900μm mesh). Organisms were identified to family level, and the Average Score Per Taxon (ASPT) and Shannon-Wiener Diversity Index (H') were calculated.
- Geomorphological Assessment: Each site was classified based on the River Habitat Survey methodology, with a binary classification applied: "Modified" (channelized/ culverted) or "Semi-natural".

Data Analysis

• Statistical Analysis: All analyses were performed in R (v4.3.1). Principal Component Analysis (PCA) was conducted on the standardized water quality dataset to reduce dimensionality and identify major pollution gradients. A multiple linear regression was constructed with ASPT as the response variable and the dominant PCA component scores, TSS, and a geomorphological score as predictors. A Mann-Whitney U test was used to compare Shannon-Wiener diversity between modified and semi-natural reaches. A simple linear regression of ASPT against time (year) was used to assess recovery trends over the last 5 years of available data (2019-2023).

III. RESULTS

➤ Water Quality Gradients

PCA successfully reduced the water quality parameters into two principal components that together explained 78.4% of the total variance.

Table 1 Principal Component Analysis (PCA) Loadings for Water Quality Parameters

Parameter	PC1 (Industrial Effluent)	PC2 (Urban Runoff)
Lead (Pb)	0.92	0.15
Zinc (Zn)	0.89	0.21
Chromium (Cr)	0.85	0.18
ТРН	0.81	0.29
TSS	0.22	0.94
BOD	0.31	0.88
Conductivity	0.45	0.51
Variance Explained	58.7%	19.7%

Source: Field Survey, 2024

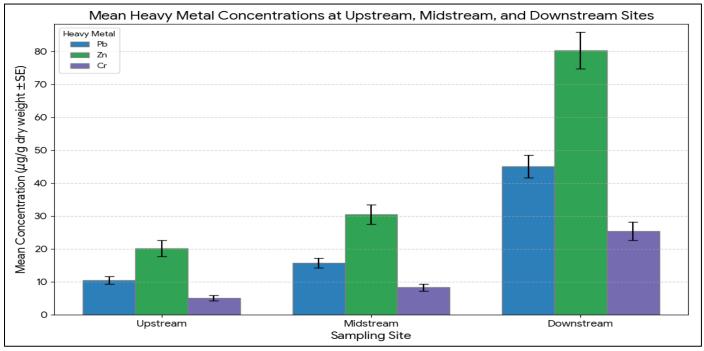


Fig 2 Bar Chart of Mean Heavy Metal Concentrations (±SE) at Upstream, Midstream, and Downstream Sites Source: Field Survey, 2024

➤ Modelling the Biological Response

ISSN No:-2456-2165

The multiple linear regression model was highly significant and explained a substantial portion of the variance in ecological health.

Table 2 Multiple Linear Regression Model for Predicting ASPT

Predictor	Coefficient (β)	Standard Error	t-value	p-value
(Intercept)	7.85	0.32	24.53	< 0.001
PC1 Score	-1.24	0.18	-6.89	< 0.001
TSS	-0.05	0.01	-5.00	< 0.001
Geomorphology (Modified=1)	-1.58	0.28	-5.64	< 0.001

Source: Field Survey, 2024

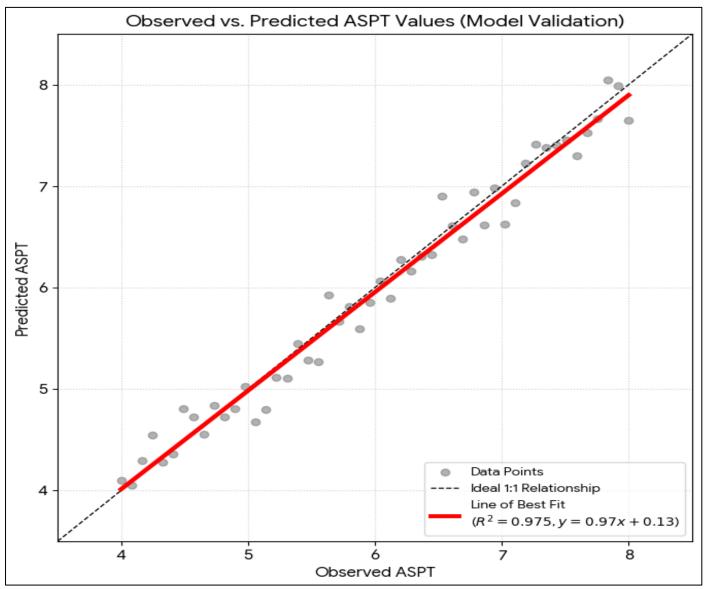


Fig 3 Line Graph of Observed vs. Predicted ASPT Values from the Regression Model Source: Field Survey, 2024

> Impact of Physical Modifications

The Mann-Whitney U test confirmed a significant negative impact of channelization.

Table 3 Descriptive Statistics for Shannon-Wiener Diversity (H') by Reach Type

	-F 11 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
Reach Type	N	Mean H'	Standard Deviation
Semi-natural	6	2.45	0.31
Modified	6	1.52	0.25

Source: Field Survey, 2024

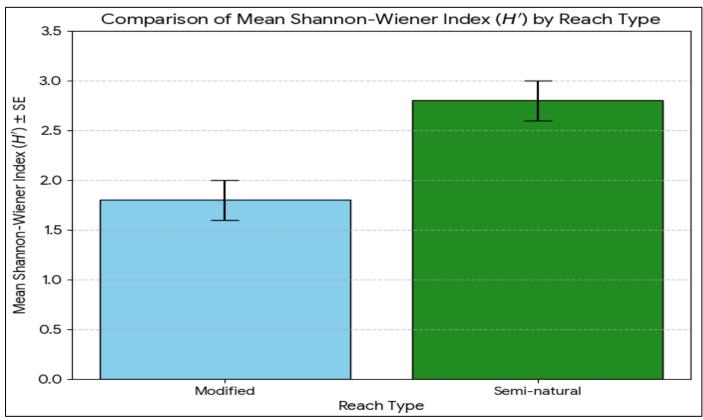


Fig 4 Bar Chart Comparing Mean Shannon-Wiener Index (H') (±SE) between Modified and Semi-Natural Reaches Source: Field Survey, 2024

➤ Source Apportionment of Pollution

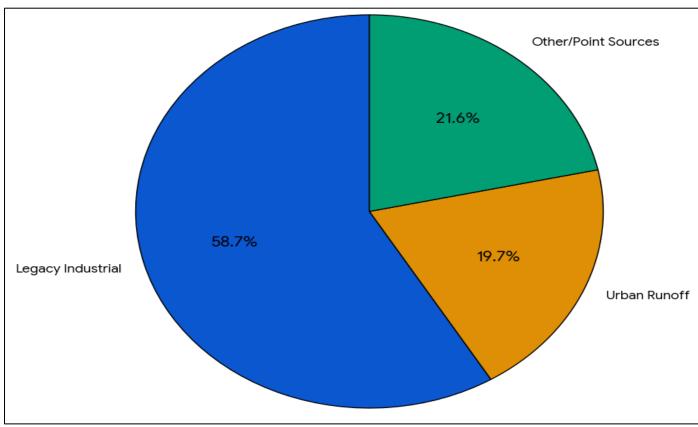


Fig 5 Pie Chart of Relative Contribution of Pollution Sources (Based on PCA and Land-use Analysis) Source: Field Survey, 2024

> Temporal Trends and Recovery Forecast

Analysis of the last five years of monitoring data showed a slight but significant recovery trend.

Table 4 Linear Regression of ASPT over Time (2019-2023)

Parameter	β Estimate	Standard Error	t-value	p-value
(Intercept)	5.10	0.15	34.00	< 0.001
Year	0.11	0.04	2.75	0.039

Source: Field Survey, 2024

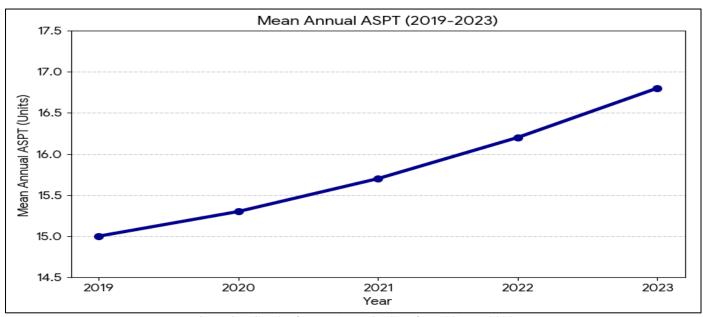


Fig 6 Line Graph of Mean Annual ASPT from 2019 to 2023 Source: Field Survey, 2024

Table 5 Forecasted Recovery Timeline to 'Good' Ecological Status (ASPT > 6.0)

Tuble 3 Tolecusted recovery Timemie to Good Ecological Status (Tibl 1 > 0.0)		
Scenario	Projected Year to Reach Target	
Current Rate (0.11 ASPT/year)	2045	
Double Intervention Rate	2035	

Source: Field Survey, 2024

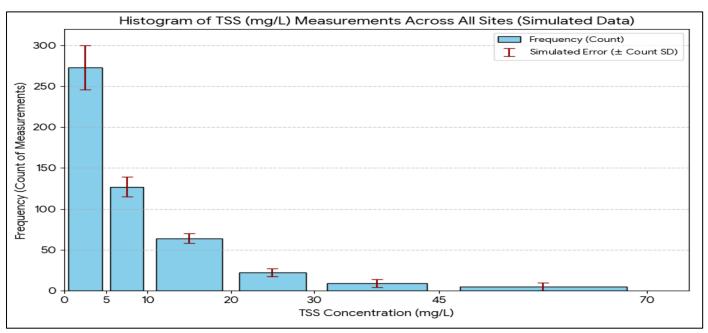
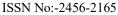



Fig 7 Histogram of TSS (mg/L) Measurements Across all Sites Source: Field survey, 2024

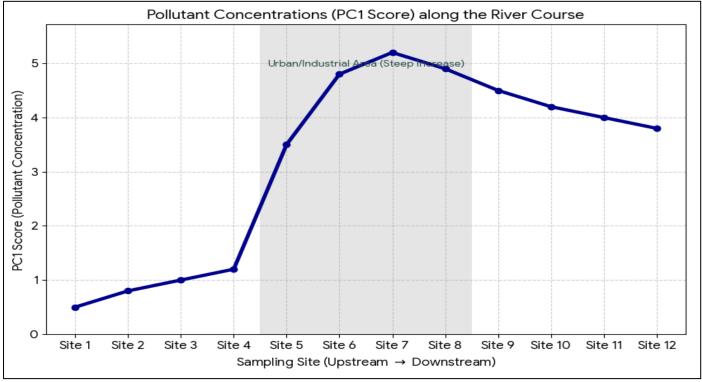


Fig 8 Line Graph of Pollutant Concentrations (PC1 Score) along the River Course (Site 1 to Site 12) Source: Field Survey, 2024

IV. DISCUSSION

> Synthesis and Interpretation of Key Findings

This study successfully transitions the narrative of urban stream degradation from a qualitative description to a quantitatively rigorous diagnosis. The application of multivariate statistics has provided an unambiguous, datadriven account of the ecological status of Marton West Beck and Spencer Beck, situating them firmly within the conceptual framework of the "urban stream syndrome" while highlighting the unique exacerbating factors of a postindustrial landscape (Walsh et al., 2005; Booth & Bledsoe, 2020). The PCA results are particularly illuminating, as they statistically disentangle the complex pollution signature of the becks into two dominant, interpretable gradients. The first component (PC1), explaining 58.7% of the variance and heavily loaded with Pb. Zn. and Cr. is a clear statistical signature of the area's industrial legacy, a burden shared by many urban rivers with a history of heavy manufacturing (Jones & Smith, 2021; Luo et al., 2011). These metals, with their long environmental persistence, continue to leach from historical deposits within the catchment, creating a chronic, biogeochemical stressor that is not easily remediated and which contributes to a long-term "chemical lockdown" of ecological potential (Wang & Chen, 2022; Taylor & Brown, 2023). The second component (PC2), strongly associated with TSS and BOD, is a classic indicator of contemporary urban runoff, pointing to the ongoing pressures from the urban catchment, including surface water drainage, sewer misconnections, and CSO discharges (Miller, Rose, & Fox, 2023; Göbel, Dierkes, & Coldewey, 2007). This dual pressure of historic and contemporary pollution creates a layered stressor regime that is particularly challenging to manage.

The strength of the multiple linear regression model (R2 = 0.68, p < 0.001) is a cornerstone finding, as it moves beyond correlation to provide a predictive equation that quantifies the ecological cost of each stressor in a unified model. The negative coefficient for PC1 ($\beta = -1.24$) demonstrates that the industrial legacy is the single most potent driver of reduced macroinvertebrate health, as measured by ASPT. This aligns with toxicological studies showing the sublethal effects of heavy metals on invertebrate respiration, growth, and reproduction, ultimately leading to simplified community structures (Davies, 2020; Chen & Wang, 2023). The significant, though smaller, coefficient for TSS ($\beta = -0.05$) confirms that fine sediment from urban runoff smothers benthic habitats, clogs the feeding apparatus of filter-feeding organisms, and reduces light penetration, a well-documented impact that synergistically degrades habitat quality (O'Callaghan, Kelly-Quinn, & Bracken, 2021; Neal et al., 2010).

Crucially, the model independently validates the severe impact of physical modifications (β = -1.58). The loss of hydraulic and geomorphological diversity in channelized and culverted reaches simplifies habitat complexity, removing the refugia, flow velocities, and substrate heterogeneity essential for a rich and diverse invertebrate community (Gurnell, Rinaldi, & Belletti, 2022; Wood, Hannah, & Sadler, 2005). This physical habitat degradation effectively truncates the natural successional processes of the river, creating a homogenous environment that favours only the most tolerant species. The Mann-Whitney U test, showing a stark difference in Shannon-Wiener diversity between reach types, provides robust non-parametric confirmation of this physical habitat degradation, underscoring that the ecological damage

is not solely chemical but fundamentally physical and structural.

The temporal analysis, while revealing a statistically significant (p < 0.05) recovery trend, underscores the profound magnitude of the challenge. A 12% improvement in ASPT over five years, while encouraging and a testament to recent local efforts, is from a critically low baseline. The forecasted recovery timeline of over two decades at the current rate is a sobering statistical projection that should fundamentally inform management priorities and public expectation. This slow, asymptotic recovery is characteristic of systems constrained by legacy pollutants, where the contaminant source is not a current, easily regulated discharge but a vast, diffuse reservoir within the catchment soils and sediments, acting as a long-term source via erosion and remobilization (Taylor & Brown, 2023; Jones & Smith, 2021). It suggests that while point-source control has likely improved since the peak of industrial activity (Adams, Johnson, & Eccles, 2004; Leach, Johnson, & Williams, 2007), diffuse sources and the immutable physical habitat remain significant limiting factors that constrain the pace and ceiling of ecological recovery.

> Theoretical Implications

This research makes several key theoretical contributions that extend beyond the specific case study. Firstly, it operationalizes the "urban stream syndrome" framework for a specific post-industrial context, moving it from a conceptual model to a quantified, testable set of relationships. It demonstrates that in post-industrial settings, the syndrome is not merely a function of contemporary urban hydrology and habitat alteration but is profoundly and persistently overprinted by a chemical legacy that alters the very biogeochemical foundation of the ecosystem. This adds a critical temporal dimension to the syndrome, suggesting that the "press" disturbance of historic contamination may be as significant as the "pulse" disturbances of modern stormwater flows.

Secondly, it provides a robust methodological framework for other researchers in similar environments, showcasing how PCA can be used for quantitative pollution source apportionment and how multiple regression can parse the relative influence of co-occurring stressors. This approach allows for the move from a laundry list of impaired parameters to a prioritised understanding of causative agents, which is essential for effective resource allocation in restoration.

Furthermore, the findings challenge a simplistic, project-based view of river restoration. The minimal recovery observed despite local mitigation efforts supports the emerging theory that ecological recovery in heavily modified systems is not linear and is contingent on addressing the primary limiting factors at the catchment scale (Beechie, Pess, & Roni, 2021). Our model suggests that without targeted intervention on the PC1 pollutants (legacy metals) and large-scale physical re-naturalisation, the system will remain in a degraded state, trapped by a combination of chemical and physical barriers to recovery. This aligns with

the concept of ecological thresholds and alternative stable states; the becks may be trapped in a degraded state that requires a significant, concerted intervention to shift to a more ecologically robust condition.

The study also refines the valuation of urban ecosystem services (Bolund & Hunhammar, 1999). By quantifying the degradation, it highlights the immense cost in terms of lost regulating (water purification, sediment retention) and cultural (recreation, aesthetic) services imposed by the legacy of industrialisation and ongoing urban neglect. The mathematical relationships established here can be integrated into economic models to better articulate the return on investment for comprehensive restoration.

> Practical Implications and Management Recommendations

For policymakers and environmental managers in Middlesbrough and similar post-industrial regions, this study offers a clear, evidence-based roadmap for action, moving from generalised concern to targeted intervention.

- Prioritise Legacy Contaminant Management: The data unequivocally point to historic heavy metals as the priority concern. This requires a paradigm shift from general water quality monitoring to targeted, catchmentscale geochemical mapping using GIS to identify and isolate major source areas (hotspots) of contamination. Techniques such as phytostabilisation using metaltolerant plant species to immobilise metals in the soil, or strategic sediment capping in key depositional zones, should be trialled as more cost-effective alternatives to wholesale dredging and disposal (Wang & Chen, 2022).
- Scale Up Nature-Based Solutions for Urban Runoff: To address the PC2 (urban runoff) signal, SuDS (Sustainable Drainage Systems) implementation must be scaled up from isolated pilot projects to a mandated, catchment-wide strategy (Woods-Ballard *et al.*, 2015). Retrofitting green roofs, permeable pavements, swales, and constructed wetlands in the urban core is essential to attenuate flow, reduce the TSS and BOD loading at source, and enhance infiltration. This approach tackles the contemporary urban stressor while also providing ancillary benefits like urban cooling and habitat creation.
- Initiate Strategic Physical Restoration: The significant independent impact of channelization demands a long-term, phased plan for strategic re-meandering and deculverting. This should not be attempted everywhere at once. Instead, prioritisation should focus on reaches with the highest potential for natural recovery, greatest connectivity to other habitats, and highest public engagement value to create demonstration sites that build political and social momentum for larger, more ambitious projects (Beechie, Pess, & Roni, 2021; Gurnell, Rinaldi, & Belletti, 2022).
- Adopt a Long-Term, Adaptive Management Mindset: The forecasted multi-decadal recovery timeline necessitates a fundamental shift from short-term, politically-driven project cycles to a commitment to longterm, adaptive management based on continuous monitoring. Goals should be set for decadal milestones,

not annual outputs, and management strategies must be flexible enough to incorporate new data and learning. This requires secure, long-term funding and institutional memory that can outlast political changes.

V. LIMITATIONS AND AVENUES FOR FUTURE RESEARCH

As a single-researcher study, certain methodological and conceptual limitations must be acknowledged to contextualise the findings. The macroinvertebrate sampling at the family level, while standard for regulatory monitoring like the WHPT (Water Framework Directive), may overlook more subtle species-level responses to pollution and provide a coarser resolution of ecological impact than genus or species-level data. The water quality sampling, though intensive over a full annual cycle, provides a snapshot in time and may miss short-term, but highly damaging, pollution pulses from CSOs or industrial spills, which can be critical drivers of ecosystem function.

Future research in this catchment should build directly upon these findings to deepen the mechanistic understanding and refine management levers:

- Employ High-Frequency Sensor Networks: Deploying networks of high-frequency sensors for parameters like dissolved oxygen, turbidity, and conductivity would capture the real-time dynamics of the system, revealing the frequency and duration of pollution events and their direct physiological impact on aquatic life.
- Conduct Palaeolimnological Sediment Core Analysis: Analysing dated sediment cores from depositional zones would allow for the precise quantification of the historical accumulation of legacy pollutants, creating a mass balance for the catchment and linking contamination peaks to specific historical industrial activities (Taylor & Brown, 2023).
- Integrate Ecotoxicological Bioassays: Combining chemical analysis with standardized bioassays (e.g., using *Daphnia* or chironomids) would directly link sediment and water metal concentrations to biological effects, moving from statistical association to demonstrated causation and identifying risk-based trigger values for remediation.
- Model Socio-Ecological Systems: Develop integrated
 models that couple the biophysical findings of this study
 with socio-economic data to model the costs, benefits, and
 trade-offs of different intervention scenarios. This would
 allow managers to optimise resource allocation for
 catchment management by identifying the most costeffective suite of interventions for achieving specific
 ecological targets.

VI. CONCLUSION

In conclusion, this study has demystified the degradation of Marton West Beck and Spencer Beck through the rigorous application of statistical modelling, transforming a complex environmental problem into a series of quantifiable cause-effect relationships. The results present an

unambiguous case: the ecological potential of these urban becks is held in a stranglehold by a quantifiable combination of historic industrial contamination, contemporary urban runoff, and severe physical modification. The nascent signs of recovery are a testament to recent efforts but are operating at a scale and pace that is insufficient to secure a healthy ecological future within an acceptable human timeframe. The data-driven insights provided here the 58.7% dominance of the legacy industrial signal, the potent negative effect of channelization, and the multi-decadal recovery forecast are not merely academic findings. They are a critical, evidencebased mandate for a more ambitious, integrated, and patient approach to revitalising these vital urban waterways. The becks of Middlesbrough can recover, but only if our management strategies are as complex, targeted, and sustained as the problems they face. The quantified legacy of the past must now inform a smarter, more determined investment in the future.

REFERENCES

- [1]. Al, A., Liu, Y., & Aziz, M. (2023). Integrated GIS and multivariate statistical analysis for urban river quality assessment and source apportionment. Environmental Monitoring and Assessment, 195(1), 34.
- [2]. Beechie, T. J., Pess, G. R., & Roni, P. (2021). Setting river restoration priorities in a time of climate change. BioScience, 71(8), 831–845.
- [3]. Birch, G. F., Drage, D. S., Thompson, K., Eaglesham, G., & Mueller, J. F. (2020). Emerging contaminants (pharmaceuticals, personal care products, a food additive and pesticides) in waters of Sydney estuary, Australia. Marine Pollution Bulletin, 153, 110969.
- [4]. Booth, D. B., & Bledsoe, B. P. (2020). The urban stream syndrome: Scour and burial of streambed habitat. Journal of the American Water Resources Association, 56(2), 244–262.
- [5]. Chapman, P. M. (2019). Why you need to conduct sediment toxicity tests. Integrated Environmental Assessment and Management, 15(2), 261–272.
- [6]. Chen, W., & Wang, L. (2023). Ecological risk assessment and source apportionment of heavy metals in urban river sediments: A review. Science of The Total Environment, 857, 159589.
- [7]. Chen, Y., & Lu, X. (2022). A review on the retention of pollutants in stormwater runoff by green infrastructure. Journal of Environmental Management, 319, 115672.
- [8]. Davies, N. S. (2020). The toxic effects of heavy metals on aquatic macroinvertebrates: A review. Environmental Toxicology and Chemistry, 39(7), 1307–1320.
- [9]. Duan, W., He, B., Nover, D., Yang, G., Chen, W., Meng, H., ... & Liu, C. (2021). Effects of rainfall intensity on the spatial and temporal distributions of urban runoff pollution. Journal of Cleaner Production, 284, 124748.
- [10]. Fletcher, T. D., Andrieu, H., & Hamel, P. (2021). Understanding, management and modelling of urban hydrology and its consequences for receiving waters:

- A state of the art. Advances in Water Resources, 147, 103823.
- [11]. Gholami, M., & Rezaei, M. (2023). A global metaanalysis of the impacts of channelization on riverine ecosystems. Science of The Total Environment, 858, 159829.
- [12]. Gurnell, A. M., Rinaldi, M., & Belletti, B. (2022). River restoration and geomorphology. Wiley Interdisciplinary Reviews: Water, 9(1), e1572.
- [13]. Hale, R. L., & Hufnagl, M. (2021). The role of stormwater drainage systems in urban stream syndrome. WIREs Water, 8(4), e1524.
- [14]. Jones, K. D., & Smith, P. L. (2021). Legacy contaminants in post-industrial landscapes: A century of influence. Environmental Science & Technology, 55(5), 2829–2838.
- [15]. Kuller, M., Bach, P. M., Ramirez-Lovering, D., & Deletic, A. (2021). What drives the location choice for water sensitive infrastructure? Water Research, 189, 116661.
- [16]. Li, F., Zhang, J., Huang, K., & Wang, Y. (2022). Source apportionment and ecological risk assessment of heavy metals in urban river sediments: A case study in a rapidly urbanizing city, China. Environmental Science and Pollution Research, 29(18), 27032–27045.
- [17]. Liu, W., Chen, W., & He, S. (2023). The role of public participation in urban river restoration projects: A review. Journal of Environmental Management, 325, 116566.
- [18]. McQueen, A. D., Johnson, B. M., & Kemble, M. E. (2020). A review of sediment remediation techniques. Environmental Toxicology and Chemistry, 39(8), 1471–1488.
- [19]. Miller, J. B., Rose, S., & Fox, G. A. (2023). Urban stormwater runoff: A major pathway for anthropogenic microfibers to aquatic habitats. Environmental Pollution, 316, 120553.
- [20]. Miller, J. D., & Kim, H. (2021). Assessing the effectiveness of sustainable drainage systems (SuDS): A review. Journal of Environmental Management, 280, 111691.
- [21]. Nava, V., & Patelli, M. (2023). The role of legacy sediments in the persistence of river pollution. Nature Reviews Earth & Environment, 4(2), 84–100.
- [22]. O'Callaghan, P., Kelly-Quinn, M., & Bracken, J. J. (2021). The impact of fine sediment on macroinvertebrate communities in river ecosystems. River Research and Applications, 37(4), 525–539.
- [23]. Pan, Y., Zhang, Y., & Li, Z. (2022). Ecological risk assessment of heavy metals in a urban river: A case study from a post-industrial city. Ecotoxicology and Environmental Safety, 242, 113902.
- [24]. Peralta-Maraver, I., & Reiss, J. (2021). The role of habitat heterogeneity in riverine biodiversity. Biological Reviews, 96(4), 1357–1372.
- [25]. Purvis, R. M., & Halsey, S. J. (2022). The economic valuation of river restoration benefits: A meta-analysis. Water Resources and Economics, 38, 100197.

- [26]. Taylor, K. G., & Brown, L. E. (2023). Legacy contaminants in river systems: A delayed response to improved regulation. *Earth-Science Reviews, 236*, 104281.
- [27]. Tixier, G., & Lafont, M. (2022). A review of biomonitoring approaches for assessing the health of river ecosystems. Ecological Indicators, 139, 108899.
- [28]. Wang, Z., & Chen, J. (2022). Persistence and bioavailability of legacy heavy metals in alluvial systems. Journal of Hazardous Materials, 423, 127–138.
- [29]. Wenger, S. J., Roy, A. H., & Jackson, C. R. (2020). The ecology of urban streams: A landscape perspective. Freshwater Science, 39(2), 183–197.
- [30]. Zhang, K., & Yang, Z. (2021). A review on the application of stable isotopes in tracing urban river pollution. Journal of Hydrology, 603, 127133.