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Abstract: Radiomics has rapidly evolved as a transformative approach in medical imaging, enabling the extraction of high-
dimensional quantitative features from routine scans to identify imaging patterns beyond human perception[1]. By
converting standard medical images into mineable data, radiomics bridges the gap between imaging science and
personalized medicine[13][14]. Recent advances in machine and deep learning have further expanded its potential, allowing
for the decoding of complex tumor phenotypes and facilitating non-invasive prediction of treatment response, prognosis,
and clinical outcomes[3].

Radiomic models have demonstrated strong predictive and prognostic value across various malignancies, including
lung, glioblastoma, and prostate cancers[9]. However, multicenter investigations have emphasized the necessity for
methodological standardization and reproducibility in image processing, feature extraction, and model validation[15].
Despite significant progress, persistent challenges remain concerning data harmonization, feature stability, and model
interpretability[20]. Initiatives such as the Image Biomarker Standardisation Initiative and ComBat harmonization have
been instrumental in improving cross-platform and cross-center reliability[16].

Looking ahead, the integration of radiomics with genomic, molecular, and clinical data—so-called radiogenomics—is
expected to advance precision oncology, enabling more accurate, patient-specific therapeutic strategies[10]. Radiomics thus
represents a crucial step toward realizing the promise of data-driven, personalized medicine.

Keywords: Radiomics; Medical Imaging; Machine Learning; Deep Learning; Precision Oncology; Feature Extraction; Data
Harmonization; Model Interpretability; Radiogenomics; Personalized Medicine.

How to Cite: Manjima Sunil; Hamlin Joseph Antony; Gowtham Rajkumar (2025) Radiomics in Oncology: A Non-Invasive Tool
for Predicting Tumor Aggressiveness and Guiding Personalized Therapy. International Journal of Innovative Science and Research
Technology, 10(11), 597-601. https://doi.org/10.38124/ijisrt/25nov515

l. INTRODUCTION treatment monitoring, and prognostic modeling[24]. In tumor
types where repeated tissue sampling is challenging—such as

Over the past decade, oncology has progressively
advanced toward precision medicine, emphasizing therapies
tailored to the molecular and biological characteristics of each
patient’s tumor. Within this paradigm, there is an increasing
demand for non-invasive tools capable of providing detailed
biological insights. Radiomics has emerged as a powerful
approach to meet this need. By extracting a multitude of
quantitative features from standard medical images, radiomics
quantifies tumor shape, texture, and intensity patterns that
extend far beyond what can be discerned visually[1].

Transforming images into high-dimensional data enables
radiomics to capture intratumoral heterogeneity and reveal
underlying biological processes. These imaging-derived
biomarkers can enhance tumor detection, classification,
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those of the brain, lung, or pancreas—radiomics offers a
valuable, non-invasive means of assessing disease dynamics.

A key advancement in this field is radiogenomics, which
integrates radiomic signatures with genomic, pathological,
and clinical data to connect imaging phenotypes with
molecular profiles [12]. This convergence is steering oncology
toward truly personalized care, where both genetic and
imaging information inform therapeutic decisions. With the
accelerating adoption of artificial intelligence and machine
learning, radiomics is increasingly positioned as part of
intelligent decision-support systems that guide individualized
treatment planning [6].
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Although still an evolving discipline, radiomics
represents a pivotal shift toward data-driven oncology. As
computational techniques mature and methodological
standards solidify, radiomics may ultimately bridge imaging,
molecular pathology, and clinical practice—offering a non-
invasive window into the biological behavior of cancer.

1. METHOD

This study followed a standardized radiomics workflow
comprising image acquisition, preprocessing, feature
extraction, and model development in accordance with
established guidelines [6].

Imaging data were obtained from institutional and public
cancer imaging archives across CT, MRI, and PET modalities
[1]. Scans were preprocessed with voxel resampling, intensity
normalization, and noise reduction to minimize scanner
variability, followed by ComBat harmonization to standardize
features across centers [16].

Tumor regions of interest were manually or semi-
automatically delineated by experienced radiologists [15].
Radiomic features describing shape, intensity, and texture
(e.g., GLCM, GLRLM) were extracted using IBSI-compliant
software to ensure reproducibility [24].

Redundant and unstable features were removed through
test—retest analysis, LASSO regression, and recursive feature
elimination [20]. Selected features were used to train random
forest and support vector machine models to predict clinical
outcomes such as survival and treatment response [4].

Performance was evaluated via k-fold cross-validation
and an independent test set using AUC, sensitivity, and
specificity metrics. Calibration and decision curve analyses
assessed clinical utility, following TRIPOD and RQS
guidelines [18].

I11.  DISCUSSION

Over the past decade, oncology has increasingly
embraced precision medicine, emphasizing therapies tailored
to the unique molecular and biological characteristics of each
patient’s tumor. Within this paradigm, there is a growing need
for non-invasive approaches capable of providing detailed
biological insights beyond conventional imaging. Radiomics
has emerged as a transformative tool in this regard, offering a
quantitative framework for tumor characterization that
surpasses the limits of visual interpretation. By extracting
high-dimensional features—encompassing shape, intensity,
texture, and peritumoral characteristics—from routine CT,
MRI, and PET scans, radiomics transforms medical images
into rich, mineable datasets [1]. This approach rests on the
premise that macroscopic imaging patterns mirror underlying
tumor biology, including cellularity, angiogenesis, necrosis,
and stromal responses. Consequently, radiomics functions as
a “virtual biopsy,” enabling non-invasive evaluation of tumor
heterogeneity, longitudinal monitoring of disease, and
individualized treatment planning.
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Evidence from multiple cancer types supports the
biological and clinical validity of radiomic biomarkers. In
non-small cell lung cancer (NSCLC), CT-based radiomics has
achieved an AUC of 0.78-0.85 in predicting the Ki-67
proliferation index, correlating imaging heterogeneity with
cellular proliferation [9]. In glioblastoma, multiparametric
MRI radiomics has distinguished true progression from
pseudo-progression with over 90% accuracy, addressing a
major diagnostic challenge in post-treatment imaging [12].
Similarly, in prostate cancer, models based on PSMA-PET and
MRI radiomics have accurately predicted ISUP grade groups
and extracapsular extension, showing strong concordance with
histopathology. Collectively, these studies affirm that
radiomic phenotypes reflect tumor aggressiveness not simply
through size metrics but through subtle microarchitectural
features such as vascular proliferation, necrosis, and stromal
remodeling.

Radiomics also shows promise in therapy
personalization and outcome prediction. In head and neck
squamous cell carcinoma, radiomics-based models have
outperformed  traditional ~ imaging in  predicting
chemoradiotherapy response (AUC > 0.9), while in NSCLC,
pretreatment CT features have been linked to metastatic
potential and radiotherapy sensitivity [2]. The emergence of
radiogenomics, which integrates radiomic, genomic, and
clinical data, has further strengthened these predictive
capabilities—Ilinking imaging phenotypes with molecular
signatures such as EGFR, KRAS, and IDH mutations [12].
This integration offers a path toward fully personalized,
image-informed oncology, where both genotype and
phenotype guide clinical decisions.

Nonetheless, technical and methodological challenges
continue to hinder widespread adoption. Variability in
imaging acquisition parameters—scanner models, slice
thickness, and reconstruction algorithms—can significantly
affect feature reproducibility [24]. Tumor segmentation
introduces additional uncertainty: manual delineation is
operator-dependent, while automated algorithms may struggle
with infiltrative margins or peritumoral edema. Feature
instability due to acquisition noise necessitates harmonization
techniques such as ComBat to ensure cross-institutional
consistency [16]. Biological variability, tumor motion, and
limited population diversity in retrospective datasets further
challenge generalizability, increasing the risk of overfitting.

Historically, early radiomics studies relied on
handcrafted features and single imaging modalities, yielding
moderate predictive power. The advent of machine learning
(ML) and deep learning (DL) has markedly improved model
performance by enabling automatic extraction of complex
hierarchical features. Deep neural networks now achieve
superior accuracy in treatment response prediction, as seen in
head and neck cancer models with >90% predictive accuracy
[4]. Moreover, multimodal radiogenomic frameworks are
expanding, integrating imaging and molecular data to enhance
prognostication and therapy guidance.
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Beyond its diagnostic and predictive value, radiomics is
reshaping therapeutic planning. Radiomics-guided radiation
therapy (RGRT) uses imaging features to personalize dose
escalation, adaptive planning, and avoidance of overtreatment
(Radiomics-guided radiation therapy, 2022). Recent work in
lung cancer immunotherapy demonstrates how intratumoral
and peritumoral radiomic signatures can predict response to
immune checkpoint inhibitors, aiding personalized therapy
selection (Cancer Imaging, 2024). For clinicians, radiomics
thus serves as a non-invasive complement to histopathology—
a digital “virtual biopsy” that may inform risk stratification,
surveillance intensity, and referral decisions [5].

However, translating radiomics into real-world clinical
practice requires overcoming substantial barriers. Variations
in imaging protocols, limited multicenter validation, and
absence of regulatory frameworks impede standardization[7].
Ethical and social considerations are equally pressing:
disparities in access to imaging infrastructure risk widening
global inequities; data sharing raises privacy and consent
concerns; and reliance on opaque Al models challenges
interpretability and accountability. Clearer governance is
needed to ensure algorithmic transparency, patient autonomy,
and responsible integration into clinical workflows.

Looking ahead, progress will depend on prospective
multicenter trials, standardized image acquisition and analysis
pipelines, and comprehensive external validation [24].
Expanding applications into immunotherapy, theranostics, and
adaptive treatment will further enhance clinical relevance.
Integration with genomics, proteomics, and clinical data will
refine multi-omic precision models, while automation and
real-time analytics will improve scalability. Additionally,
cost-effectiveness and health-economic analyses are essential
to demonstrate clinical and system-level value.

In conclusion, radiomics stands at the forefront of
precision oncology, bridging imaging, biology, and data
science. Its ability to non-invasively quantify tumor
heterogeneity and predict outcomes represents a paradigm
shift toward individualized cancer care. Yet, its promise will
only be realized through rigorous validation, ethical oversight,
and equitable implementation—ensuring that radiomics
evolves from a research innovation to a reliable clinical
instrument in the era of data-driven medicine.

IV. CONCLUSION

Radiomics is redefining the role of medical imaging in
oncology. No longer limited to visual diagnosis, imaging is
increasingly recognized as a source of rich quantitative
information capable of characterizing tumor biology in
unprecedented detail. Through the extraction and analysis of
complex imaging features that extend beyond human
perception, radiomics enables the assessment of tumor
aggressiveness, prediction of treatment response, and
estimation of clinical outcomes [6]. These insights align
closely with the principles of precision medicine, where
patient management is informed by both imaging-derived and
molecular data.
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For radiomics to achieve reliable clinical adoption, key
challenges must be addressed. Standardization of image
acquisition, preprocessing, and feature extraction is essential
to ensure reproducibility, while predictive models must
undergo rigorous external validation and demonstrate
interpretability and transparency [24]. Advancing the field will
also require sustained collaboration among radiologists,
oncologists, computer scientists, and engineers to integrate
radiomics into routine workflows.

With the rapid evolution of artificial intelligence and
large-scale data analytics, radiomics is poised to become an
integral component of precision oncology. When coupled with
robust validation and interdisciplinary collaboration, it holds
the promise of bridging imaging and molecular diagnostics—
offering a non-invasive, data-driven approach to truly
personalized cancer care.

V. LIMITATION

Despite its significant promise, radiomics still faces several
barriers that hinder its routine implementation in clinical
practice. A major limitation lies in the lack of standardization
throughout the imaging and analysis pipeline. Differences in
scanner types, acquisition  protocols, reconstruction
algorithms, and segmentation methods can substantially alter
extracted radiomic features, leading to inconsistencies across
studies and institutions [24]. Such variability undermines the
reproducibility and generalizability of radiomics-based
findings.

Another persistent challenge is the predominance of
retrospective studies with relatively small sample sizes. These
limitations increase the risk of overfitting, reducing model
performance when applied to independent datasets [20].
Moreover, the limited number of test-retest and phantom
studies restricts understanding of which features remain robust
under repeated scanning conditions. Without rigorous external
validation, even the most promising models may fail to
achieve clinical reliability.

Interpretability also remains a key concern. Although
deep learning—driven radiomics models often yield high
predictive accuracy, their decision-making processes are
frequently opaque, making it difficult for clinicians to relate
outputs to underlying tumor biology [21]. In addition,
inconsistent reporting standards, selective feature inclusion,
and inadequate statistical correction can introduce bias and
exaggerate performance metrics [17][18].

Transparency and data accessibility further limit
progress. Many published studies lack open-source code,
publicly available datasets, or reproducible workflows,
hindering independent verification and collaborative
advancement. To bridge the gap between research and
practice, the field must prioritize open science, standardized
methodologies, and large-scale multicenter validation. Only
through such coordinated efforts can radiomics evolve from a
promising research tool into a reliable component of everyday
oncology.
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