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Abstract: Radiomics has rapidly evolved as a transformative approach in medical imaging, enabling the extraction of high-

dimensional quantitative features from routine scans to identify imaging patterns beyond human perception[1]. By 

converting standard medical images into mineable data, radiomics bridges the gap between imaging science and 

personalized medicine[13][14]. Recent advances in machine and deep learning have further expanded its potential, allowing 

for the decoding of complex tumor phenotypes and facilitating non-invasive prediction of treatment response, prognosis, 

and clinical outcomes[3]. 

 

Radiomic models have demonstrated strong predictive and prognostic value across various malignancies, including 

lung, glioblastoma, and prostate cancers[9]. However, multicenter investigations have emphasized the necessity for 

methodological standardization and reproducibility in image processing, feature extraction, and model validation[15]. 

Despite significant progress, persistent challenges remain concerning data harmonization, feature stability, and model 

interpretability[20]. Initiatives such as the Image Biomarker Standardisation Initiative and ComBat harmonization have 

been instrumental in improving cross-platform and cross-center reliability[16]. 

 

Looking ahead, the integration of radiomics with genomic, molecular, and clinical data—so-called radiogenomics—is 

expected to advance precision oncology, enabling more accurate, patient-specific therapeutic strategies[10]. Radiomics thus 

represents a crucial step toward realizing the promise of data-driven, personalized medicine. 
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I. INTRODUCTION 
 

Over the past decade, oncology has progressively 

advanced toward precision medicine, emphasizing therapies 

tailored to the molecular and biological characteristics of each 

patient’s tumor. Within this paradigm, there is an increasing 

demand for non-invasive tools capable of providing detailed 

biological insights. Radiomics has emerged as a powerful 

approach to meet this need. By extracting a multitude of 

quantitative features from standard medical images, radiomics 

quantifies tumor shape, texture, and intensity patterns that 

extend far beyond what can be discerned visually[1]. 

 
Transforming images into high-dimensional data enables 

radiomics to capture intratumoral heterogeneity and reveal 

underlying biological processes. These imaging-derived 

biomarkers can enhance tumor detection, classification, 

treatment monitoring, and prognostic modeling[24]. In tumor 
types where repeated tissue sampling is challenging—such as 

those of the brain, lung, or pancreas—radiomics offers a 

valuable, non-invasive means of assessing disease dynamics. 

 

A key advancement in this field is radiogenomics, which 

integrates radiomic signatures with genomic, pathological, 

and clinical data to connect imaging phenotypes with 

molecular profiles [12]. This convergence is steering oncology 

toward truly personalized care, where both genetic and 

imaging information inform therapeutic decisions. With the 

accelerating adoption of artificial intelligence and machine 

learning, radiomics is increasingly positioned as part of 
intelligent decision-support systems that guide individualized 

treatment planning [6]. 
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Although still an evolving discipline, radiomics 

represents a pivotal shift toward data-driven oncology. As 

computational techniques mature and methodological 
standards solidify, radiomics may ultimately bridge imaging, 

molecular pathology, and clinical practice—offering a non-

invasive window into the biological behavior of cancer. 

 

II. METHOD 

 

This study followed a standardized radiomics workflow 

comprising image acquisition, preprocessing, feature 

extraction, and model development in accordance with 

established guidelines [6]. 

 

Imaging data were obtained from institutional and public 
cancer imaging archives across CT, MRI, and PET modalities 

[1]. Scans were preprocessed with voxel resampling, intensity 

normalization, and noise reduction to minimize scanner 

variability, followed by ComBat harmonization to standardize 

features across centers [16]. 

 

Tumor regions of interest were manually or semi-

automatically delineated by experienced radiologists [15]. 

Radiomic features describing shape, intensity, and texture 

(e.g., GLCM, GLRLM) were extracted using IBSI-compliant 

software to ensure reproducibility [24]. 
 

Redundant and unstable features were removed through 

test–retest analysis, LASSO regression, and recursive feature 

elimination [20]. Selected features were used to train random 

forest and support vector machine models to predict clinical 

outcomes such as survival and treatment response [4]. 

 

Performance was evaluated via k-fold cross-validation 

and an independent test set using AUC, sensitivity, and 

specificity metrics. Calibration and decision curve analyses 

assessed clinical utility, following TRIPOD and RQS 
guidelines [18]. 

 

III. DISCUSSION 

 

Over the past decade, oncology has increasingly 

embraced precision medicine, emphasizing therapies tailored 

to the unique molecular and biological characteristics of each 

patient’s tumor. Within this paradigm, there is a growing need 

for non-invasive approaches capable of providing detailed 

biological insights beyond conventional imaging. Radiomics 

has emerged as a transformative tool in this regard, offering a 

quantitative framework for tumor characterization that 
surpasses the limits of visual interpretation. By extracting 

high-dimensional features—encompassing shape, intensity, 

texture, and peritumoral characteristics—from routine CT, 

MRI, and PET scans, radiomics transforms medical images 

into rich, mineable datasets [1]. This approach rests on the 

premise that macroscopic imaging patterns mirror underlying 

tumor biology, including cellularity, angiogenesis, necrosis, 

and stromal responses. Consequently, radiomics functions as 

a “virtual biopsy,” enabling non-invasive evaluation of tumor 

heterogeneity, longitudinal monitoring of disease, and 

individualized treatment planning. 
 

Evidence from multiple cancer types supports the 

biological and clinical validity of radiomic biomarkers. In 

non-small cell lung cancer (NSCLC), CT-based radiomics has 
achieved an AUC of 0.78–0.85 in predicting the Ki-67 

proliferation index, correlating imaging heterogeneity with 

cellular proliferation [9]. In glioblastoma, multiparametric 

MRI radiomics has distinguished true progression from 

pseudo-progression with over 90% accuracy, addressing a 

major diagnostic challenge in post-treatment imaging [12]. 

Similarly, in prostate cancer, models based on PSMA-PET and 

MRI radiomics have accurately predicted ISUP grade groups 

and extracapsular extension, showing strong concordance with 

histopathology. Collectively, these studies affirm that 

radiomic phenotypes reflect tumor aggressiveness not simply 

through size metrics but through subtle microarchitectural 
features such as vascular proliferation, necrosis, and stromal 

remodeling. 

 

Radiomics also shows promise in therapy 

personalization and outcome prediction. In head and neck 

squamous cell carcinoma, radiomics-based models have 

outperformed traditional imaging in predicting 

chemoradiotherapy response (AUC > 0.9), while in NSCLC, 

pretreatment CT features have been linked to metastatic 

potential and radiotherapy sensitivity [2]. The emergence of 

radiogenomics, which integrates radiomic, genomic, and 
clinical data, has further strengthened these predictive 

capabilities—linking imaging phenotypes with molecular 

signatures such as EGFR, KRAS, and IDH mutations [12]. 

This integration offers a path toward fully personalized, 

image-informed oncology, where both genotype and 

phenotype guide clinical decisions. 

 

Nonetheless, technical and methodological challenges 

continue to hinder widespread adoption. Variability in 

imaging acquisition parameters—scanner models, slice 

thickness, and reconstruction algorithms—can significantly 
affect feature reproducibility [24]. Tumor segmentation 

introduces additional uncertainty: manual delineation is 

operator-dependent, while automated algorithms may struggle 

with infiltrative margins or peritumoral edema. Feature 

instability due to acquisition noise necessitates harmonization 

techniques such as ComBat to ensure cross-institutional 

consistency [16]. Biological variability, tumor motion, and 

limited population diversity in retrospective datasets further 

challenge generalizability, increasing the risk of overfitting. 

 

Historically, early radiomics studies relied on 

handcrafted features and single imaging modalities, yielding 
moderate predictive power. The advent of machine learning 

(ML) and deep learning (DL) has markedly improved model 

performance by enabling automatic extraction of complex 

hierarchical features. Deep neural networks now achieve 

superior accuracy in treatment response prediction, as seen in 

head and neck cancer models with >90% predictive accuracy 

[4]. Moreover, multimodal radiogenomic frameworks are 

expanding, integrating imaging and molecular data to enhance 

prognostication and therapy guidance. 
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Beyond its diagnostic and predictive value, radiomics is 

reshaping therapeutic planning. Radiomics-guided radiation 

therapy (RGRT) uses imaging features to personalize dose 
escalation, adaptive planning, and avoidance of overtreatment 

(Radiomics-guided radiation therapy, 2022). Recent work in 

lung cancer immunotherapy demonstrates how intratumoral 

and peritumoral radiomic signatures can predict response to 

immune checkpoint inhibitors, aiding personalized therapy 

selection (Cancer Imaging, 2024). For clinicians, radiomics 

thus serves as a non-invasive complement to histopathology—

a digital “virtual biopsy” that may inform risk stratification, 

surveillance intensity, and referral decisions [5]. 

 

However, translating radiomics into real-world clinical 

practice requires overcoming substantial barriers. Variations 
in imaging protocols, limited multicenter validation, and 

absence of regulatory frameworks impede standardization[7]. 

Ethical and social considerations are equally pressing: 

disparities in access to imaging infrastructure risk widening 

global inequities; data sharing raises privacy and consent 

concerns; and reliance on opaque AI models challenges 

interpretability and accountability. Clearer governance is 

needed to ensure algorithmic transparency, patient autonomy, 

and responsible integration into clinical workflows. 

 

Looking ahead, progress will depend on prospective 
multicenter trials, standardized image acquisition and analysis 

pipelines, and comprehensive external validation [24]. 

Expanding applications into immunotherapy, theranostics, and 

adaptive treatment will further enhance clinical relevance. 

Integration with genomics, proteomics, and clinical data will 

refine multi-omic precision models, while automation and 

real-time analytics will improve scalability. Additionally, 

cost-effectiveness and health-economic analyses are essential 

to demonstrate clinical and system-level value. 

 

In conclusion, radiomics stands at the forefront of 
precision oncology, bridging imaging, biology, and data 

science. Its ability to non-invasively quantify tumor 

heterogeneity and predict outcomes represents a paradigm 

shift toward individualized cancer care. Yet, its promise will 

only be realized through rigorous validation, ethical oversight, 

and equitable implementation—ensuring that radiomics 

evolves from a research innovation to a reliable clinical 

instrument in the era of data-driven medicine. 

 

IV. CONCLUSION 

 

Radiomics is redefining the role of medical imaging in 
oncology. No longer limited to visual diagnosis, imaging is 

increasingly recognized as a source of rich quantitative 

information capable of characterizing tumor biology in 

unprecedented detail. Through the extraction and analysis of 

complex imaging features that extend beyond human 

perception, radiomics enables the assessment of tumor 

aggressiveness, prediction of treatment response, and 

estimation of clinical outcomes [6]. These insights align 

closely with the principles of precision medicine, where 

patient management is informed by both imaging-derived and 

molecular data. 
 

 

For radiomics to achieve reliable clinical adoption, key 

challenges must be addressed. Standardization of image 

acquisition, preprocessing, and feature extraction is essential 
to ensure reproducibility, while predictive models must 

undergo rigorous external validation and demonstrate 

interpretability and transparency [24]. Advancing the field will 

also require sustained collaboration among radiologists, 

oncologists, computer scientists, and engineers to integrate 

radiomics into routine workflows. 

 

With the rapid evolution of artificial intelligence and 

large-scale data analytics, radiomics is poised to become an 

integral component of precision oncology. When coupled with 

robust validation and interdisciplinary collaboration, it holds 

the promise of bridging imaging and molecular diagnostics—
offering a non-invasive, data-driven approach to truly 

personalized cancer care. 

 

V. LIMITATION 
 

Despite its significant promise, radiomics still faces several 

barriers that hinder its routine implementation in clinical 

practice. A major limitation lies in the lack of standardization 

throughout the imaging and analysis pipeline. Differences in 

scanner types, acquisition protocols, reconstruction 

algorithms, and segmentation methods can substantially alter 
extracted radiomic features, leading to inconsistencies across 

studies and institutions [24]. Such variability undermines the 

reproducibility and generalizability of radiomics-based 

findings. 

 

Another persistent challenge is the predominance of 

retrospective studies with relatively small sample sizes. These 

limitations increase the risk of overfitting, reducing model 

performance when applied to independent datasets [20]. 

Moreover, the limited number of test–retest and phantom 

studies restricts understanding of which features remain robust 
under repeated scanning conditions. Without rigorous external 

validation, even the most promising models may fail to 

achieve clinical reliability. 

 

Interpretability also remains a key concern. Although 

deep learning–driven radiomics models often yield high 

predictive accuracy, their decision-making processes are 

frequently opaque, making it difficult for clinicians to relate 

outputs to underlying tumor biology [21]. In addition, 

inconsistent reporting standards, selective feature inclusion, 

and inadequate statistical correction can introduce bias and 

exaggerate performance metrics [17][18]. 
 

Transparency and data accessibility further limit 

progress. Many published studies lack open-source code, 

publicly available datasets, or reproducible workflows, 

hindering independent verification and collaborative 

advancement. To bridge the gap between research and 

practice, the field must prioritize open science, standardized 

methodologies, and large-scale multicenter validation. Only 

through such coordinated efforts can radiomics evolve from a 

promising research tool into a reliable component of everyday 

oncology. 
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