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Abstract: Crop diseases cause large yield losses worldwide and represent a serious threat to food security. Traditional 

detection methods rely on manual inspection, which is time-consuming and error-prone. The AI-driven Crop Disease 

Detection and Management System presented in this paper combines environmental data analytics utilizing Random Forest 

regression for disease risk predictions with Convolutional Neural Networks (CNNs) for image-based disease identification. 

A carefully selected portion of the PlantVillage dataset, with an emphasis on the crops maize, tomato, and potato, is used to 

train the model. The hybrid approach leverages temperature, humidity, and rainfall data to increase prediction reliability. 

When compared to traditional CNN-only methods, experimental evaluation shows an accuracy of 94.33% and enhanced 

early disease prediction skills. The system, which offers real-time disease monitoring, is implemented as a mobile application 

and web platform. detection, forecasting, and treatment suggestions. This hybrid approach promotes sustainable agriculture 

through proactive disease management and optimized resource use. 
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I. INTRODUCTION 

 
Agriculture is the cornerstone of global food security. 

However, the growing incidence of agricultural diseases 

threatens farmers' livelihoods around the world by reducing 

production by 20–40% every year. Traditional identification 

techniques mostly rely on agricultural specialists' visual 

inspections, which are time-consuming, arbitrary, and out of 

reach for small farmers. 

 

Traditional agriculture is changing as a result of data-

driven solutions brought about by the quick developments in 

artificial intelligence (AI) and machine learning (ML). In leaf 

image-based disease classification, deep learning—in 
particular, Convolutional Neural Networks, or CNNs—has 

demonstrated impressive performance, providing precise and 

scalable early detection systems. 

 

However, environmental variables like rainfall, 

humidity, and temperature can affect the occurrence of 

disease. Therefore, combining image-based algorithms with 

environmental data can improve prediction accuracy and 

offer early disease outbreak alerts. 

 

 Problem Statement 
Current methods for detecting plant diseases mostly use 

image data and frequently overlook environmental factors 

that can affect the spread of the disease. Moreover, farmers 

lack real-time and field-level diagnostic support technologies 

that integrate predictive analytics and management 
recommendations. 

 

 Objectives 

This study aims to: 

 

 Create a hybrid AI system that combines environmental 

modeling and CNN-based image classification. 

 Make mobile and web apps usable in real time for field 

use. 

 Analyze how the incorporation of environmental data 

affects the accuracy of predictions. 

 Provide a decision-support tool delivering treatment 

suggestions and risk forecasts. 

 

 Contributions 

 

 CNN and Random Forest regression are used in this 

innovative hybrid deep learning architecture. 

 disease risk modeling that incorporates environmental 

variables (temperature, humidity, and rainfall). 

 creation of a web platform for real-time detection and 

management using Flask and ReactJS. 

 Better performance is shown in comparison to the most 

advanced CNN models. 
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II. LITERATURE REVIEW 

 

Early studies by Mohanty et al. (2016) shown the 
promise of deep learning for crop disease identification by 

employing CNNs to reach 99.35% accuracy on the 

PlantVillage dataset. This dataset was increased in later 

studies, such as Ferentinos (2018), which attained 99.53% 

accuracy. 

 

In order to improve feature extraction, Brahimi et al. 

(2017) and Too et al. (2019) incorporated deeper 

architectures (VGG, DenseNet). Transfer learning was used 

for field adaptability in recent studies such as Singh et al. 

(2023) and Selvaraj et al. (2020). 
 

However, these models ignore environmental 

relationships and only concentrate on image-based diagnosis. 

By combining environmental data modeling and CNN 

classification, the suggested approach overcomes this 

drawback. 

 

III. PROPOSED METHODOLOGY 

 

 System Overview 

Two modules comprise the suggested AI-driven 

framework: 

 

 Using pictures of leaves, the Image Classification Module 

(CNN) can identify crop diseases. 

 Using meteorological data, the Random Forest 

Environmental Prediction Module predicts the likelihood 

of disease. 

 The ensemble model merges both predictions for 

improved accuracy and real-time decision support. 

 

 Flowchart of Proposed System 

 

 
Fig 1 Proposed System Flowchart 
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 Dataset 

 

 Image Data: PlantVillage collection, which includes 
54,000 photos of 17 different potato, tomato, and maize 

disease classes. 

 Environmental Data: Weekly averages of temperature, 

humidity, and precipitation from the OpenWeatherMap 

API. 

 

 Model Design 

 

 CNN: 4 Conv2D layers (32–512 filters), MaxPooling2D, 

Flatten, Dense (128, ReLU), Softmax output (17 classes). 

 Optimizer: Adam (learning rate = 0.0001), Batch size = 
32, Epochs = 50. 

 Environmental Model: Random Forest regression for 

disease risk estimation. 

 Ensemble: Weighted averaging of CNN probability and 

RF forecast. 

 

 Algorithm (Proposed Hybrid Model) 

 

 Algorithm 1: AI-driven Crop Disease Detection and 

Forecasting 

 Input: Leaf image I[t], Environmental parameters E[t] 

 Output: Disease class D[t], Risk score R[t+h] 

 
 Preprocess image I[t] (resize, normalize, augment) 

 CNN_Model ← Train CNN on PlantVillage dataset 

 Pred_CNN ← CNN_Model.predict(I[t]) 

 Train RandomForest on (Temperature, Humidity, 

Rainfall) 

 Pred_RF ← RandomForest.predict(E[t]) 

 Ensemble_Score ← w1 * Pred_CNN + w2 * Pred_RF 

 Display (Disease Type, Risk Level, Recommended 

Treatment) 

 

IV. EXPERIMENTAL RESULTS 

 

 Setup 

 

 Hardware: NVIDIA Tesla T4 GPU (16 GB RAM) 

 Frameworks: TensorFlow/Keras, Flask (backend), 

ReactJS (frontend) 

 OS: Ubuntu 22.04 LTS 

 

 Performance Metrics 

 

 
Table 1 Performance Metrics 

Metric Value 

Classification Accuracy 94.33% 

Precision 93.87% 

Recall 94.10% 

F1-score 94.01% 

 

 Comparative Analysis with Prior Works 

 

Table 2 Comparative Analysis with Prior Works 

Model / Method Author Key Feature / Finding 

CNN Mohanty, Hughes & Salathé 99.35% accuracy in classifying 14 crop 

species & 26 diseases 

CNN Ferentinos 99.53% accuracy across 25 plants, 58 

classes 

CNN Sladojevic et al. 91–98% precision, avg. 96.3% 

CNN Brahimi et al. 99.18% accuracy, automatic feature 

extraction 

VGG16, Inception V4, Res Net, Dense Net Too et al. Dense Net achieved 99.75% accuracy 

Faster R-CNN, R-FCN, SSD 

VGG/Res Net 

Fuentes et al. Accurate detection in complex 

environment 

Res Net (adapted) Picon et al. Balanced accuracy up to 0.96 

in field tests 

ResNet50, InceptionV2, MobileNetV1 Selvaraj et al. >90% accuracy in most models tested 

 

 Visualization 
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Fig 2 Accuracy Graph 

 

 
Fig 3 Confusion Matrix 
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The confusion matrix showed strong prediction 

consistency across all 17 disease classes. 

 

V. CONCLUSION AND FUTURE WORK 

 

This work introduces a hybrid AI-driven system that 

combines environmental predictions and CNN-based 

classification for crop disease diagnosis and control. The 

method's accuracy of 94.33% shows how crucial 

environmental data fusion is for increased dependability and 

early illness detection. 

 

 Future Enhancements: 

 

 Extend to additional crops and datasets. 

 Develop a mobile real-time camera-based app for farmers. 

 Integrate IoT sensors (soil moisture, humidity) for 

continuous monitoring. 

 Implement Explainable AI (XAI) to enhance model 

transparency. 
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