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Abstract: Crop diseases cause large yield losses worldwide and represent a serious threat to food security. Traditional
detection methods rely on manual inspection, which is time-consuming and error-prone. The Al-driven Crop Disease
Detection and Management System presented in this paper combines environmental data analytics utilizing Random Forest
regression for disease risk predictions with Convolutional Neural Networks (CNNs) for image-based disease identification.
A carefully selected portion of the PlantVillage dataset, with an emphasis on the crops maize, tomato, and potato, is used to
train the model. The hybrid approach leverages temperature, humidity, and rainfall data to increase prediction reliability.
When compared to traditional CNN-only methods, experimental evaluation shows an accuracy of 94.33% and enhanced
early disease prediction skills. The system, which offers real-time disease monitoring, is implemented as a mobile application
and web platform. detection, forecasting, and treatment suggestions. This hybrid approach promotes sustainable agriculture
through proactive disease management and optimized resource use.
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I INTRODUCTION

Agriculture is the cornerstone of global food security.
However, the growing incidence of agricultural diseases
threatens farmers' livelihoods around the world by reducing
production by 20-40% every year. Traditional identification
techniques mostly rely on agricultural specialists' visual
inspections, which are time-consuming, arbitrary, and out of
reach for small farmers.

Traditional agriculture is changing as a result of data-
driven solutions brought about by the quick developments in
artificial intelligence (Al) and machine learning (ML). In leaf
image-based disease classification, deep learning—in
particular, Convolutional Neural Networks, or CNNs—has
demonstrated impressive performance, providing precise and
scalable early detection systems.

However, environmental variables like rainfall,
humidity, and temperature can affect the occurrence of
disease. Therefore, combining image-based algorithms with
environmental data can improve prediction accuracy and
offer early disease outbreak alerts.

» Problem Statement

Current methods for detecting plant diseases mostly use
image data and frequently overlook environmental factors
that can affect the spread of the disease. Moreover, farmers
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lack real-time and field-level diagnostic support technologies
that integrate predictive analytics and management
recommendations.

» Objectives
This study aims to:

e Create a hybrid Al system that combines environmental
modeling and CNN-based image classification.

e Make mobile and web apps usable in real time for field
use.

e Analyze how the incorporation of environmental data
affects the accuracy of predictions.

e Provide a decision-support tool delivering treatment
suggestions and risk forecasts.

> Contributions

e CNN and Random Forest regression are used in this
innovative hybrid deep learning architecture.

e disease risk modeling that incorporates environmental
variables (temperature, humidity, and rainfall).

e creation of a web platform for real-time detection and
management using Flask and ReactJS.

e Better performance is shown in comparison to the most
advanced CNN models.
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1. LITERATURE REVIEW

Early studies by Mohanty et al. (2016) shown the
promise of deep learning for crop disease identification by
employing CNNs to reach 99.35% accuracy on the
PlantVillage dataset. This dataset was increased in later
studies, such as Ferentinos (2018), which attained 99.53%
accuracy.

In order to improve feature extraction, Brahimi et al.
(2017) and Too et al. (2019) incorporated deeper
architectures (VGG, DenseNet). Transfer learning was used
for field adaptability in recent studies such as Singh et al.
(2023) and Selvaraj et al. (2020).

However, these models ignore environmental
relationships and only concentrate on image-based diagnosis.
By combining environmental data modeling and CNN
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classification,
drawback.

the suggested approach overcomes this

1. PROPOSED METHODOLOGY

» System Overview
Two modules comprise the suggested Al-driven
framework:

e Using pictures of leaves, the Image Classification Module
(CNN) can identify crop diseases.

e Using meteorological data, the Random Forest
Environmental Prediction Module predicts the likelihood
of disease.

e The ensemble model merges both predictions for
improved accuracy and real-time decision support.

» Flowchart of Proposed System

Input Leaf Image

4

Image Preprocessing
(Resize, Normalize,
Augment Data)

4

CNN-Based Classification
(Temp, Humidity, Rain)

y

Random Forest Forecast
(Disease Risk Score)

L

Ensemble Decision Layer
(Result + Treatment)

!

Web/Mobile Interface
(Result + Treatment)

Fig 1 Proposed System Flowchart
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Image Data: PlantVillage collection, which includes

» Dataset e Input: Leaf image I[t], Environmental parameters E[t]

Output: Disease class D[t], Risk score R[t+h]

54,000 photos of 17 different potato, tomato, and maize v" Preprocess image I[t] (resize, normalize, augment)
disease classes. v" CNN_Model «— Train CNN on PlantVillage dataset
Environmental Data: Weekly averages of temperature, v" Pred CNN « CNN_Model.predict(I[t])
humidity, and precipitation from the OpenWeatherMap v/ Train RandomForest on (Temperature, Humidity,
API. Rainfall)
v' Pred_RF « RandomForest.predict(E[t])
» Model Design v Ensemble Score < wl * Pred CNN + w2 * Pred RF
v’ Display (Disease Type, Risk Level, Recommended
e CNN: 4 Conv2D layers (32-512 filters), MaxPooling2D, Treatment)
Flatten, Dense (128, ReLU), Softmax output (17 classes).
e Optimizer: Adam (learning rate = 0.0001), Batch size = v. EXPERIMENTAL RESULTS
32, Epochs = 50.
e Environmental Model: Random Forest regression for > Setup
disease risk estimation.
e Ensemble: Weighted averaging of CNN probability and e Hardware: NVIDIA Tesla T4 GPU (16 GB RAM)
RF forecast. o Frameworks: TensorFlow/Keras, Flask (backend),
ReactJS (frontend)
» Algorithm (Proposed Hybrid Model) e OS: Ubuntu 22.04 LTS
e Algorithm 1: Al-driven Crop Disease Detection and > Performance Metrics

Forecasting

Table 1 Performance Metrics

Metric Value
Classification Accuracy 94.33%
Precision 93.87%
Recall 94.10%
F1-score 94.01%

» Comparative Analysis with Prior Works

Table 2 Comparative Analysis with Prior Works

Model / Method Author Key Feature / Finding
CNN Mohanty, Hughes & Salathé 99.35% accuracy in classifying 14 crop
species & 26 diseases
CNN Ferentinos 99.53% accuracy across 25 plants, 58
classes
CNN Sladojevic et al. 91-98% precision, avg. 96.3%
CNN Brahimi et al. 99.18% accuracy, automatic feature
extraction
VGG16, Inception V4, Res Net, Dense Net Too et al. Dense Net achieved 99.75% accuracy
Faster R-CNN, R-FCN, SSD Fuentes et al. Accurate detection in complex
VGG/Res Net environment
Res Net (adapted) Picon et al. Balanced accuracy up to 0.96
in field tests
ResNet50, InceptionV2, MobileNetV1 Selvaraj et al. >90% accuracy in most models tested

> Visualization
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Visualization of Accuracy Result

— Training Accuracy
0.95 validation Accuracy —

0.920 +

0.85 +

0.80 +

0.75 4

0.70 -~

0.85

0.60 -

2 4 L] 8 10
Mo. of Epochs

Fig 2 Accuracy Graph
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Fig 3 Confusion Matrix
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The confusion matrix showed strong prediction
consistency across all 17 disease classes.

V. CONCLUSION AND FUTURE WORK

This work introduces a hybrid Al-driven system that
combines environmental predictions and CNN-based
classification for crop disease diagnosis and control. The
method's accuracy of 94.33% shows how crucial
environmental data fusion is for increased dependability and
early illness detection.

» Future Enhancements:

o Extend to additional crops and datasets.

o Develop a mobile real-time camera-based app for farmers.

e Integrate loT sensors (soil moisture, humidity) for
continuous monitoring.

e Implement Explainable Al (XAI) to enhance model
transparency.
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