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Abstract: This paper presents the design of a Fixed-point Kalman Filter Bank Architecture and its implementation on the
PYNQ-Z2 FPGA. The proposed architecture comprises Q1.15 fixed-point arithmetic, saturation logic and reciprocal-based
safe division, which are utilized to ensure numerical stability and hardware efficiency. Initially, the architecture for a single
filter is designed and simulated for a sinusoidal input, and then replicated 8 times to create a single Kalman filter bank
module with a span of angular frequencies from 0.001 to 0.029 rad/sample. The constructed Kalman filter bank is created
as an IP and implemented on the PYNQ Z2 FPGA board. The design communicates via AXI4-DMA interface between the
Processing System (PS) and Programmable Logic (PL). Experimental results demonstrate effective denoising of sinusoidal
signals under varying noise levels- low, medium and high noise. The obtained results show an average RMSE below 0.15
and a correlation coefficient above 0.95. Post place-and-route results on the device indicate a resource utilization of 37,596
LUTSs (70.67%), 124 DSP slices (56.36%0), and 2BRAMs (1.79%), with a maximum operating frequency of 21.4 MHz and
total power consumption of 1.48 W.
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I INTRODUCTION

Filters are fundamental components in Digital Signal
Processing (DSP) used to recover clean signals from noisy
signals. However, signal denoising becomes challenging
when dealing with unknown or time-varying frequencies, as
traditional Finite Impulse Response (FIR) and Infinite Impulse
Response (lIR) filters rely on fixed coefficients. This static
nature prevents them from effectively tracking or adapting to
changes in the signal’s spectral content.

The Kalman filter, introduced by Rudolf E. Kalman in
1960, provides an optimal framework for recursive state
estimation using two sequential steps: Prediction and
Correction. Research has shifted towards fixed-point
realization to improve efficiency and enable real-time
performance on resource-constrained platforms. However,
these designs encounter significant challenges due to
quantization errors, overflow, and numerical instability,
especially in recursive operations involving covariance
matrices and divisions.

Although a few FPGA-based Kalman filter
implementations exist in the literature, these are not efficient
in terms of area and power. This work is an attempt to address
the area and power efficiency by proposing a DSP-optimized
synchronous fixed-point Kalman filter core implemented
using Q1.15 arithmetic (1sign bit and 15 fractional bits),
designed to efficiently use FPGA DSP slices. The proposed
architecture is first developed as a single filter and then
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replicated eight times to form a Kalman filter bank spanning
angular frequencies from 0.001 to 0.029 rad/sample, enabling
automatic frequency selection via a robust winner selection
logic mechanism. The proposed work included the following
key architectural features:

> Efficient state and covariance propagation using fixed-
point arithmetic.

» Saturation logic and variance clamping for improved
numerical stability.

» Adaptive measurement noise estimation derived from
innovation.

> Parallel filter execution with hysteresis-based winner
selection to avoid rapid switching.

» AXl4-stream DMA interface enabling seamless
communication between the Processing System (PS) and
Programmable Logic (PL).

The resulting architecture achieves a throughput of one
sample per cycle, fully leveraging FPGA parallelism while
maintaining robustness against quantization effects and
resource efficiency.

Section Il reviews the Kalman filter Fundamentals,
Section 11 details the proposed FPGA Architecture, Section
IV presents Implementation & Results, and Section V
concludes the paper with future work.
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1. KALMAN FILTER FUNDAMENTALS

The Kalman filter is a recursive estimation algorithm
that provides optimal state estimates for linear dynamic
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systems in the presence of process and measurement noise. It
operates in two main steps — prediction and correction — to
iteratively refine its estimate of the system using both prior
knowledge and incoming measurements.

[ Kalman Filter Algorithm |

Time Update (Prediction)

xn|n—1 = Fxn—l[n—l

Pn|n-1 - Fpn—lln—lFT + Q

Initial estimates x,,

LI

Measurement Update (Correction)

Kn = Pn[u-l ilr(}lpnhl—l }IT + R)_l
xnln — xn]n—-l + K,,(Z,, - Hxnin—l)

Pnln — (I = KuH)Puln—l

Fig 1 Block Representation of Kalman Filter Algorithm

In the first prediction step, the filter projects the
previous state estimate and its covariance forward in time
using the system’s dynamic model:

Kere-1 = FRy—1jk—1 €))

Pejg—1 = FPe_q—1FT +Q (2)

Where X, is the predicted state, F represents the
state transition matrix, Py .4 is the predicted covariance, Q
denotes the process noise covariance, H is the observation
matrix, and R represents the measurement noise covariance.

In the second correction step, the filter updates its
prediction using the new measurement. z,, where H maps the

state to the measurement. the K,, Kalman gain determines the
relative weight between the prediction and the measurement:

Ki = Pejet HT (HP et HT +R) 3)
The updated state and covariance are given by:

Rk = Zipe—1 + Ky (z — ka|k—1) 4)
Py = (I = Ky H)Pyjie—q (5)

The Innovation term represents the discrepancy
between the predicted and actual measurements:

Yk = 2 — ka|k—1 (6)
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Where z, is the actual measurement at time k, and
HZXy -1 Is the predicted measurement. These recursive
equations ensure that innovation is minimized in a least-
squares sense over time.

The Kalman filter is particularly effective for dynamic
signal estimation where both the system model and noise
statistics vary with time. In this work, the filter is adapted for
sinusoidal state estimation, where the system matrix F
encodes a rotational model parameterized by cosine and sine
components of the signal’s angular frequency. Efficient
FPGA implementation of these equations requires fixed-point
arithmetic, saturation logic and variance clamping to
maintain numerical stability — explained in section III.

1. PROPOSED ARCHITECTURE

The proposed hardware architecture implements a fixed-
point Kalman filter bank optimized for FPGA deployment on
the PYNQ-z2 platform. The design translates the
mathematical Kalman filter equations into pipelined and
parallel Verilog modules using Q1.15 fixed-point arithmetic
to balance computation precision and hardware efficiency.

» The Architecture  Comprises Two  Hierarchical
Components:

¢ single Kalman filter core that estimates one sinusoidal
component, shown in Fig.2 and
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o A top-level filter array that spans multiple angular
frequencies and automatically selects the best-performing
filter in real time, shown in Fig.3.

» Kalman Filter Core

Each filter core shown in Fig.2 corresponds to one target
angular frequency, defined by the state-transition matrix. Each
clock cycle processes one new input sample and updates the
estimated state. The filter implements the standard prediction
and correction equations shown in Fig.1.
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The helper functions used ensure numerical stability,
and saturation logic limits all results within the 16-bit signed
range. Variance clamping limits the covariance values to
prevent overflow or divergence. Fixed-point division and
square root approximation are used for the computation of the
kalman gain and signal amplitude.

e Adaptive Measurement Noise Estimation:
Each core includes an adaptive measurement noise
estimator derived from innovation. The absolute magnitude

[yl = |z — HXyp—1| is smoothed using an exponential
o Fixed Point Implementation: moving average (EMA):
All arithmetic operations use 16-bit signed fixed-point
(Q1.15) format with parameters: defining the number EMA, = 7EMAj—1+|yl 7)

representation as width=16, frac_bits=15, COS_DT_PARAM
and SIN_DT_PARAM as precomputed constants for each

8

frequency. Q val and R_base as the process and measurement Ry =1.25 X EMA, ®
noise covariance. Dedicated DSP48 slices perform multiply—
accumulate operations for state and covariance propagation.
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Fig 2 Kalman Filter Architecture

Here, consider the first 50 samples,R,, remains fixed at
Ryuse TO allow convergence. Afterward,R, Adapts
dynamically to reflect measurement noise while avoiding
overreaction to transients.

(estimated signal amplitude) and R, (adaptive measurement
noise estimate).

» Kalman Filter Bank

The top-level module instantiates N=8 parallel Kalman
filter cores, each tuned to a distinct angular frequency
spanning 0.001 — 0.029 rad/sample. All filters receive the
same input and process it concurrently, exploiting FPGA
parallelism to achieve one sample per clock throughput.

Each core outputs represented as:%, X, ,(State
estimates),y, (innovation),P, 1, (posterior variance), A
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Fig 3 Kalman Bank Architecture

¢ Innovation-Based Scoring:

Each candidate filter of the filter bank computes a
normalized innovation score that balances prediction error
and confidence, where is the innovation and is the posterior
variance.

2

score; = %Lz 9

The filter with the lowest average score over a defined
observation window is considered the most reliable estimator
for the given input.

Winner selection logic: A winner selection logic is a
hysteresis-based selection mechanism that prevents rapid
switching between filters. A candidate filter must maintain
the lowest score for several consecutive samples before being
declared the winner. This logic outputs: index of the
dominant frequency, corresponding state estimates,
amplitude estimate and normalized innovation score.
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» Output Timing and Interface

When valid data are available, the selected state and
amplitude are flagged with output_valid=1. All computations
from input sample acquisition to state update are completed
in a single clock cycle per filter. The system integrates with
an AXIl4-stream DMA interface to facilitate real-time data
exchange between the processing system (PS) and
programming logic (PL) on the PYNQ-Z2 platform.

V. IMPLEMENTATION & RESULTS

> Vivado Simulation

A discrete-time noisy sinusoid was generated in the
behavioral testbench to verify the Kalman filter’s ability to
track the frequency encoded in its state-transition matrix.
Each core received the same noisy input, and the predicted
and corrected state outputs are monitored to confirm
convergence and noise suppression. The simulation was run
for 2000 samples using a 100MHz clock, generating the
waveform.
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Fig 4 Vivado Simulation Waveform

Fig.4 shows the behavioral simulation output of the
Kalman filter bank in Vivado. The signals x1_est, x2_est, and
A _est converge smoothly after initialization, demonstrating
that each filter tracks the true sinusoidal state. The
best_filter_idx

The output indicates the winning filter corresponding to
the frequency closest to the input signal. (w = 0.025rad/
sample). The innovation term y_tilde reduces over time,

conforming to the filter’s convergence and effective noise
suppression.

> RTL Elaboration

The design is elaborated in Xilinx Vivado 2023.2,
producing the RTL schematic that expands parameterized
instances and reveals inter-module connectivity before
synthesis.

Fig 5 RTL Analysis of Kalman Filter Bank
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Fig.5 illustrates the elaborated RTL schematic
generated by Vivado 2023.2 before synthesis. The schematic
highlights the hierarchical structure with eight Kalman filter
cores connected in parallel to the input stream, feeding into
the winner-selection block that computes normalized
innovation scores and selects the active filter. The
visualization confirms correct structural mapping and
interconnections across the design hierarchy.
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» Synthesis Report

The design targets the PYNQ-Z2 (XC72020-
1CLG400C) platform using Xilinx Vivado 2023.2. Post-
implementation resource utilization is summarized in Table
1.

Table 1 Resource Utilization

Resources TUsed Aaovailable TTtilization (o)
LTUTs 375906 53200 TO.7
ILTUTR . AN G300 - 3.6
Flip-flops T354 1 OGS40 o9
DSP48 slices 124 220 56.4
Block RANT 2 140 1.8

» Vivado Block Design

Computation is divided between the processing system
(PS) and programmable logic (PL). The PL hosts the parallel
Kalman filter bank in Q1.15 arithmetic, while the PS manages
data and visualization through a Jupyter interface.

An AXI DMA engine provides the streaming transfer:
MMZ2S channel sends noisy inputs from PS memory to PL.
S2MM channel returns filtered outputs for storage and
plotting.

Handshake signals of AXI4 stream - tvalid/tready
synchronize the dataflow, preventing underrun or overflow.
The block design is illustrated in Fig. 6.

> Bitstream Deployment & Testing

After synthesis and implementation, a bitstream for the
block design is generated and loaded via overlay(“bitfile.bit”)
on the pyng-z2. Data transfers were initiated using dma_send.
Send channel.  transfer(input_buf) and dma_recv.
recvchannel. transfer(output_buf) to enable the filtering.

» Performance Metrics

Tracking accuracy was evaluated using root mean
square error (RMSE) and correlation coefficient (r) between
true and estimated signals. A low RMSE and high (r) indicate
precise tracking and effective noise suppression, while
degraded RMSE and r values reveal frequency mismatch or
transient overload during estimation.
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Fig 6 Vivado Block Design
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Where x; and X, Denote the true and Kalman estimated

samples, ¥ and % represent their respective means, and N is
the total number of samples.
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Fig 7 Kalman Filtering for Different Noise Levels

Fig.7 shows the time domain tracking performance of
the filter bank for sinusoidal estimation under varying noise
levels. The true signal (green), noisy input (red), and Kalman

filter maintains phase coherence and accurate tracking even
under severe noise conditions with correlation coefficients
above 0.95 in all cases.

output(blue) are plotted for (a)low noise (0=0.03), (b)
medium noise (o =0.35) and (c) high noise (¢ =0.60). The
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Fig 8 Innovation and Adaptive Noise Covariance Plot
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Fig.8 illustrates the temporal evolution of the
innovation term and adaptive noise covariance across
different noise conditions. Under low noise, both signals
remain  stable, confirming strong confidence in
measurements. As the input noise increases, the innovation
magnitude and adaptive noise estimate grow, demonstrating
the filter’s capability to adaptively tune its gain and maintain
robustness under varying noise environments.

V. CONCLUSION & FUTURE SCOPE

This work presented a fixed-point Kalman filter bank
written in Verilog and implemented on the PYNQ-Z2 FPGA
for denoising the noisy sinusoidal signals. The proposed
architecture combines adaptive measurement noise
estimation, saturation and variance clamping, and winner
selection logic mechanism across eight parallel filters
operating in Q1.15 arithmetic. The hardware results
demonstrated RMSE<0.15 and correlation coefficients>0.95,
conforming to accurate estimation and noise suppression with
moderate resource utilization and real-time throughput. These
results validate the effectiveness of the fixed-point Kalman
filtering for FPGA systems.

Future work will investigate dynamic partial
reconfiguration on an FPGA to swap Kalman filter variants
at runtime, allowing the system to adapt automatically to
changing signal conditions. This flexibility would make the
design suitable for audio and speech denoising.
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