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Abstract: This paper presents the design of a Fixed-point Kalman Filter Bank Architecture and its implementation on the 

PYNQ-Z2 FPGA. The proposed architecture comprises Q1.15 fixed-point arithmetic, saturation logic and reciprocal-based 

safe division, which are utilized to ensure numerical stability and hardware efficiency. Initially, the architecture for a single 

filter is designed and simulated for a sinusoidal input, and then replicated 8 times to create a single Kalman filter bank 

module with a span of angular frequencies from 0.001 to 0.029 rad/sample. The constructed Kalman filter bank is created 

as an IP and implemented on the PYNQ Z2 FPGA board. The design communicates via AXI4-DMA interface between the 

Processing System (PS) and Programmable Logic (PL). Experimental results demonstrate effective denoising of sinusoidal 

signals under varying noise levels- low, medium and high noise. The obtained results show an average RMSE below 0.15 

and a correlation coefficient above 0.95. Post place-and-route results on the device indicate a resource utilization of 37,596 

LUTs (70.67%), 124 DSP slices (56.36%), and 2BRAMs (1.79%), with a maximum operating frequency of 21.4 MHz and 

total power consumption of 1.48 W. 
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I. INTRODUCTION 

 

Filters are fundamental components in Digital Signal 
Processing (DSP) used to recover clean signals from noisy 

signals. However, signal denoising becomes challenging 

when dealing with unknown or time-varying frequencies, as 

traditional Finite Impulse Response (FIR) and Infinite Impulse 

Response (IIR) filters rely on fixed coefficients. This static 

nature prevents them from effectively tracking or adapting to 

changes in the signal’s spectral content. 

 

The Kalman filter, introduced by Rudolf E. Kalman in 

1960, provides an optimal framework for recursive state 

estimation using two sequential steps: Prediction and 

Correction. Research has shifted towards fixed-point 
realization to improve efficiency and enable real-time 

performance on resource-constrained platforms. However, 

these designs encounter significant challenges due to 

quantization errors, overflow, and numerical instability, 

especially in recursive operations involving covariance 

matrices and divisions. 

 

Although a few FPGA-based Kalman filter 

implementations exist in the literature, these are not efficient 

in terms of area and power. This work is an attempt to address 

the area and power efficiency by proposing a DSP-optimized 
synchronous fixed-point Kalman filter core implemented 

using Q1.15 arithmetic (1sign bit and 15 fractional bits), 

designed to efficiently use FPGA DSP slices. The proposed 

architecture is first developed as a single filter and then 

replicated eight times to form a Kalman filter bank spanning 

angular frequencies from 0.001 to 0.029 rad/sample, enabling 

automatic frequency selection via a robust winner selection 
logic mechanism. The proposed work included the following 

key architectural features: 

 

 Efficient state and covariance propagation using fixed-

point arithmetic. 

 Saturation logic and variance clamping for improved 

numerical stability. 

 Adaptive measurement noise estimation derived from 

innovation. 

 Parallel filter execution with hysteresis-based winner 

selection to avoid rapid switching. 

 AXI4-stream DMA interface enabling seamless 
communication between the Processing System (PS) and 

Programmable Logic (PL). 

 

The resulting architecture achieves a throughput of one 

sample per cycle, fully leveraging FPGA parallelism while 

maintaining robustness against quantization effects and 

resource efficiency. 

 

Section II reviews the Kalman filter Fundamentals, 

Section III details the proposed FPGA Architecture, Section 

IV presents Implementation & Results, and Section V 
concludes the paper with future work. 
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II. KALMAN FILTER FUNDAMENTALS 

 
The Kalman filter is a recursive estimation algorithm 

that provides optimal state estimates for linear dynamic 

systems in the presence of process and measurement noise. It 

operates in two main steps – prediction and correction – to 
iteratively refine its estimate of the system using both prior 

knowledge and incoming measurements. 

 

 
Fig 1 Block Representation of Kalman Filter Algorithm 

 

In the first prediction step, the filter projects the 

previous state estimate and its covariance forward in time 

using the system’s dynamic model: 
 

𝑥𝑘|𝑘−1 = 𝐹𝑥𝑘−1|𝑘−1                                                           (1) 

 

𝑃𝑘|𝑘−1  =  𝐹𝑃𝑘−1|𝑘−1𝐹𝑇 + 𝑄                                             (2) 

 

Where 𝑥𝑘|𝑘−1 is the predicted state, F represents the 

state transition matrix, 𝑃𝑘|𝑘−1 is the predicted covariance, Q 

denotes the process noise covariance, H is the observation 

matrix, and R represents the measurement noise covariance. 

 

In the second correction step, the filter updates its 

prediction using the new measurement. 𝑧𝑘, where H maps the 

state to the measurement. the 𝐾𝑘 Kalman gain determines the 

relative weight between the prediction and the measurement: 

 

𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑇(𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅)
−1

                                 (3) 

 

The updated state and covariance are given by: 

 

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑥𝑘|𝑘−1)                                   (4) 

 

𝑃𝑘|𝑘  = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘|𝑘−1                                                   (5) 

 

The Innovation term represents the discrepancy 

between the predicted and actual measurements: 

 

𝑦𝑘  = 𝑧𝑘 − 𝐻𝑥𝑘|𝑘−1                                                           (6) 

Where 𝑧𝑘 is the actual measurement at time k, and 

𝐻𝑥𝑘|𝑘−1 is the predicted measurement. These recursive 

equations ensure that innovation is minimized in a least-

squares sense over time. 

 

The Kalman filter is particularly effective for dynamic 
signal estimation where both the system model and noise 

statistics vary with time. In this work, the filter is adapted for 

sinusoidal state estimation, where the system matrix F 

encodes a rotational model parameterized by cosine and sine 

components of the signal’s angular frequency. Efficient 

FPGA implementation of these equations requires fixed-point 

arithmetic, saturation logic and variance clamping to 

maintain numerical stability – explained in section III. 

 

III. PROPOSED ARCHITECTURE 

 

The proposed hardware architecture implements a fixed-
point Kalman filter bank optimized for FPGA deployment on 

the PYNQ-z2 platform. The design translates the 

mathematical Kalman filter equations into pipelined and 

parallel Verilog modules using Q1.15 fixed-point arithmetic 

to balance computation precision and hardware efficiency. 

 

 The Architecture Comprises Two Hierarchical 

Components: 

 

 single Kalman filter core that estimates one sinusoidal 

component, shown in Fig.2 and 
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 A top-level filter array that spans multiple angular 

frequencies and automatically selects the best-performing 
filter in real time, shown in Fig.3. 

 

 Kalman Filter Core 

Each filter core shown in Fig.2 corresponds to one target 

angular frequency, defined by the state-transition matrix. Each 

clock cycle processes one new input sample and updates the 

estimated state. The filter implements the standard prediction 

and correction equations shown in Fig.1. 

 

 Fixed Point Implementation:  

All arithmetic operations use 16-bit signed fixed-point 
(Q1.15) format with parameters: defining the number 

representation as width=16, frac_bits=15, COS_DT_PARAM 

and SIN_DT_PARAM as precomputed constants for each 

frequency. Q_val and R_base as the process and measurement 

noise covariance. Dedicated DSP48 slices perform multiply–

accumulate operations for state and covariance propagation. 

 

The helper functions used ensure numerical stability, 

and saturation logic limits all results within the 16-bit signed 
range. Variance clamping limits the covariance values to 

prevent overflow or divergence. Fixed-point division and 

square root approximation are used for the computation of the 

kalman gain and signal amplitude. 

 

 Adaptive Measurement Noise Estimation:  

Each core includes an adaptive measurement noise 

estimator derived from innovation. The absolute magnitude 

|𝑦𝑘|  = |𝑧𝑘 − 𝐻𝑥𝑘|𝑘−1| is smoothed using an exponential 

moving average (EMA): 

 

𝐸𝑀𝐴𝑘 =  
7.𝐸𝑀𝐴𝑘−1+|𝑦𝑘|

8
                                                       (7) 

 

𝑅𝑘 = 1.25 × 𝐸𝑀𝐴𝑘                                                          (8) 
 

 

 

 
Fig 2 Kalman Filter Architecture 

 

Here, consider the first 50 samples,𝑅𝑘 remains fixed at 

𝑅𝑏𝑎𝑠𝑒  To allow convergence. Afterward,𝑅𝑘 Adapts 

dynamically to reflect measurement noise while avoiding 

overreaction to transients. 
 

Each core outputs represented as:𝑥𝑛,1,𝑥𝑛,2(state 

estimates),𝑦𝑛 (innovation),𝑃𝑛,𝑛,11 (posterior variance), 𝐴̂ 

(estimated signal amplitude) and 𝑅𝑒𝑠𝑡 (adaptive measurement 

noise estimate). 

 

 Kalman Filter Bank 

The top-level module instantiates N=8 parallel Kalman 
filter cores, each tuned to a distinct angular frequency 

spanning 0.001 – 0.029 rad/sample. All filters receive the 

same input and process it concurrently, exploiting FPGA 

parallelism to achieve one sample per clock throughput. 
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Fig 3 Kalman Bank Architecture 

 

 Innovation-Based Scoring:  

Each candidate filter of the filter bank computes a 

normalized innovation score that balances prediction error 

and confidence, where is the innovation and is the posterior 

variance. 

 

𝑠𝑐𝑜𝑟𝑒𝑖 =  
𝑦𝑖

2

𝑃𝑖
                                                                       (9) 

 

The filter with the lowest average score over a defined 
observation window is considered the most reliable estimator 

for the given input. 

 

Winner selection logic: A winner selection logic is a 

hysteresis-based selection mechanism that prevents rapid 

switching between filters. A candidate filter must maintain 

the lowest score for several consecutive samples before being 

declared the winner. This logic outputs: index of the 

dominant frequency, corresponding state estimates, 

amplitude estimate and normalized innovation score. 

 

 Output Timing and Interface 

When valid data are available, the selected state and 

amplitude are flagged with output_valid=1. All computations 

from input sample acquisition to state update are completed 

in a single clock cycle per filter. The system integrates with 

an AXI4-stream DMA interface to facilitate real-time data 

exchange between the processing system (PS) and 

programming logic (PL) on the PYNQ-Z2 platform. 

 

IV. IMPLEMENTATION & RESULTS 

 
 Vivado Simulation 

A discrete-time noisy sinusoid was generated in the 

behavioral testbench to verify the Kalman filter’s ability to 

track the frequency encoded in its state-transition matrix. 

Each core received the same noisy input, and the predicted 

and corrected state outputs are monitored to confirm 

convergence and noise suppression. The simulation was run 

for 2000 samples using a 100MHz clock, generating the 

waveform. 
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Fig 4 Vivado Simulation Waveform 

 

Fig.4 shows the behavioral simulation output of the 

Kalman filter bank in Vivado. The signals x1_est, x2_est, and 

A_est converge smoothly after initialization, demonstrating 

that each filter tracks the true sinusoidal state. The 

best_filter_idx 

 

The output indicates the winning filter corresponding to 

the frequency closest to the input signal. (𝜔 = 0.025𝑟𝑎𝑑/
𝑠𝑎𝑚𝑝𝑙𝑒). The innovation term y_tilde reduces over time, 

conforming to the filter’s convergence and effective noise 

suppression. 

 

 RTL Elaboration 

The design is elaborated in Xilinx Vivado 2023.2, 

producing the RTL schematic that expands parameterized 

instances and reveals inter-module connectivity before 

synthesis. 

 

 
Fig 5 RTL Analysis of Kalman Filter Bank 
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Fig.5 illustrates the elaborated RTL schematic 

generated by Vivado 2023.2 before synthesis. The schematic 
highlights the hierarchical structure with eight Kalman filter 

cores connected in parallel to the input stream, feeding into 

the winner-selection block that computes normalized 

innovation scores and selects the active filter. The 

visualization confirms correct structural mapping and 

interconnections across the design hierarchy. 

 

 Synthesis Report 

The design targets the PYNQ-Z2 (XC7Z020-
1CLG400C) platform using Xilinx Vivado 2023.2. Post-

implementation resource utilization is summarized in Table 

1. 

 

 

 

Table 1 Resource Utilization 

 
 

 Vivado Block Design 

Computation is divided between the processing system 
(PS) and programmable logic (PL). The PL hosts the parallel 

Kalman filter bank in Q1.15 arithmetic, while the PS manages 

data and visualization through a Jupyter interface. 

 

An AXI DMA engine provides the streaming transfer: 

MM2S channel sends noisy inputs from PS memory to PL. 

S2MM channel returns filtered outputs for storage and 

plotting. 

 

Handshake signals of AXI4 stream – tvalid/tready 

synchronize the dataflow, preventing underrun or overflow. 

The block design is illustrated in Fig. 6. 
 

 Bitstream Deployment & Testing 

After synthesis and implementation, a bitstream for the 
block design is generated and loaded via overlay(“bitfile.bit”) 

on the pynq-z2. Data transfers were initiated using dma_send. 

Send channel. transfer(input_buf) and dma_recv. 

recvchannel. transfer(output_buf) to enable the filtering. 

 

 Performance Metrics 

Tracking accuracy was evaluated using root mean 

square error (RMSE) and correlation coefficient (r) between 

true and estimated signals. A low RMSE and high (r) indicate 

precise tracking and effective noise suppression, while 

degraded RMSE and r values reveal frequency mismatch or 

transient overload during estimation. 

 
Fig 6 Vivado Block Design 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥𝑘 − 𝑥𝑘)2𝑁

𝑘=1                                          (10) 

 

𝑟 =
∑ (𝑥𝑘−𝑥̅)𝑁

𝑘−1 (𝑥̂𝑘− 𝑥̅̂)

√∑ (𝑥𝑘−𝑥̅)2 ∑ (𝑥̂𝑘−𝑥̅̂)
2𝑁

𝑘=1
𝑁
𝑘=1

                                              (11) 

Where 𝑥𝑘and 𝑥𝑘Denote the true and Kalman estimated 

samples, 𝑥̅ and 𝑥̅ represent their respective means, and N is 

the total number of samples. 

 

 
Fig 7 Kalman Filtering for Different Noise Levels 

 

Fig.7 shows the time domain tracking performance of 

the filter bank for sinusoidal estimation under varying noise 

levels. The true signal (green), noisy input (red), and Kalman 

output(blue) are plotted for (a)low noise (𝜎=0.03), (b) 

medium noise (𝜎 =0.35) and (c) high noise (𝜎 =0.60). The 

filter maintains phase coherence and accurate tracking even 

under severe noise conditions with correlation coefficients 

above 0.95 in all cases. 

 

 
Fig 8 Innovation and Adaptive Noise Covariance Plot 
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Fig.8 illustrates the temporal evolution of the 

innovation term and adaptive noise covariance across 
different noise conditions. Under low noise, both signals 

remain stable, confirming strong confidence in 

measurements. As the input noise increases, the innovation 

magnitude and adaptive noise estimate grow, demonstrating 

the filter’s capability to adaptively tune its gain and maintain 

robustness under varying noise environments. 

 

V. CONCLUSION & FUTURE SCOPE 

 

This work presented a fixed-point Kalman filter bank 

written in Verilog and implemented on the PYNQ-Z2 FPGA 
for denoising the noisy sinusoidal signals. The proposed 

architecture combines adaptive measurement noise 

estimation, saturation and variance clamping, and winner 

selection logic mechanism across eight parallel filters 

operating in Q1.15 arithmetic. The hardware results 

demonstrated RMSE<0.15 and correlation coefficients>0.95, 

conforming to accurate estimation and noise suppression with 

moderate resource utilization and real-time throughput. These 

results validate the effectiveness of the fixed-point Kalman 

filtering for FPGA systems. 

 

Future work will investigate dynamic partial 
reconfiguration on an FPGA to swap Kalman filter variants 

at runtime, allowing the system to adapt automatically to 

changing signal conditions. This flexibility would make the 

design suitable for audio and speech denoising. 
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