
Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov578

IJISRT25NOV578 www.ijisrt.com 602

Architectural Evaluation of Subword

Tokenization and Compact Language Models

(CLMs) for Resource-Constrained NLP Deployment

Arnab Sen1

1(Finance, Birla Institute of Technology and Science, Pilani), India)

Publication Date: 2025/11/17

Abstract:

 Background

The advancement of Natural Language Processing (NLP) is constrained by a fundamental dilemma: the immense resource

requirements of Large Language Models (LLMs) versus the demand for efficient, high-performance deployment in resource-

limited settings, such as edge computing.1 This work establishes a necessary comparison between efficient deep learning

alternatives and classical statistical methods.1

 Materials and Methods

A structural and performance analysis is conducted, comparing two distinct model classes: traditional statistical N-gram

models and modern Transformer-based Compact Language Models (CLMs).1 The methodology critically evaluates core

architectural differences, efficiency metrics, and the transformative impact of tokenization strategies. Key quantitative metrics,

including Perplexity (PPL), and qualitative measures, such as semantic coherence and visual embedding consistency (via t-SNE),

are employed.1

 Results

CLMs, achieved through rigorous optimization techniques like pruning and quantization, exhibit superior representational

capacity and drastically faster development cycles compared to resource-intensive LLMs.1 N-gram models are fundamentally

hindered by the exponential challenge of data sparsity and the inability to capture context beyond a fixed, narrow window.1

Crucially, the CLM's implementation of subword tokenization (specifically Byte Pair Encoding, BPE) structurally solves the

Out-of-Vocabulary (OOV) problem, preserving semantic information that N-gram models invariably destroy by collapsing

unseen words into a generic $\langle \text{unk} \rangle$ token.1

 Conclusion

The architectural stability, efficiency, and deep contextual fidelity afforded by optimized Compact Language Models

position them as the definitive, operationally feasible choice for high-accuracy, specialized NLP tasks at the network edge.1

While N-gram models may serve as simple baselines for modeling localized statistical distributions, their severe architectural

limitations make them unsuitable for modern applications requiring complex semantic understanding.1

Keywords: Compact Language Models (CLMs); Subword Encoding; Byte Pair Encoding (BPE); Edge Computing; Perplexity;

Transformer.

How to Cite: Arnab Sen (2025) Architectural Evaluation of Subword Tokenization and Compact Language Models (CLMs) for

Resource-Constrained NLP Deployment. International Journal of Innovative Science and Research Technology, 10(11), 602-609.

https://doi.org/10.38124/ijisrt/25nov578

http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/25nov578

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov578

IJISRT25NOV578 www.ijisrt.com 603

I. INTRODUCTION: THE EFFICIENCY

IMPERATIVE IN NLP

 The Evolution of Language Modeling and Resource

Demands

Language Models (LMs) serve as foundational systems

within Natural Language Processing (NLP), designed explicitly
to calculate the probability of word sequences.1 The field has

undergone a dramatic transformation, shifting from early

statistical approaches relying on counting techniques to

complex, attention-based deep learning frameworks.1 The latest

generation of Large Language Models (LLMs), often featuring

hundreds of billions of parameters, has successfully redefined

state-of-the-art performance across a wide array of cognitive

tasks.1

However, this unprecedented capability introduces a

restrictive logistical and architectural challenge: the massive
requirements for computational resources, training duration,

and energy consumption.1 These factors severely restrict their

deployment and development primarily to large organizations

possessing proprietary, specialized infrastructure.1 This

infrastructural centralization necessitates a strategic shift

toward highly efficient, specialized alternatives. These

alternatives, referred to as Compact Language Models (CLMs),

are critical for operational feasibility in resource-constrained

environments, including mobile devices, embedded systems,

and edge computing, where parameters such as operational

speed, low energy use, and data privacy take precedence.1 The

capacity to train and fine-tune these specialized models in a
timeframe measured in days or weeks on smaller GPU clusters

offers a significantly more cost-effective and accessible

development path compared to the commitment of months

required for LLMs.1

 Literature Context: The Transition to Representation-Based

Architectures

For several decades, the dominant NLP methodology

relied heavily upon statistical N-gram models.1 These models

calculate measurable sequence likelihoods using Maximum

Likelihood Estimation (MLE) derived from word count
frequencies within a training corpus.1 Their core limitation,

which eventually forced architectural evolution, is the finite

context window, which fundamentally prevents the capture of

linguistic dependencies extending beyond the preceding $N-1$

words.1 The resultant exponential increase in computational

cost as the context window (N) expands forced the field to

explore more advanced, representation-based models.1

The definitive architectural breakthrough that resolved

these context limitations was the introduction of the

Transformer model.1 By relying exclusively on a multi-head

self-attention mechanism, the Transformer eliminated the need
for recurrent units, thereby enabling superior parallel

computation and dramatically enhanced performance in

capturing global contextual relationships across long

sequences.1 Compact Language Models (CLMs) specifically

leverage this powerful architectural foundation. They achieve

high performance while being stringently optimized for

efficiency, effectively bridging the high-performance

expectations set by LLMs with the logistical realities of

practical, real-world deployment scenarios.1

 Research Focus and Contribution

This study provides a detailed, comparative evaluation of

statistical N-gram models and modern Transformer-based

Compact Language Models (CLMs).1 The primary contribution

of this work is a rigorous assessment of their core mechanisms,

specific resource efficiency metrics, and resultant performance

when subjected to the stringent deployment conditions typical

of edge computing environments.1

The paper asserts that the architectural robustness,

inherent efficiency, and superior representational capacity
offered by resource-optimized CLMs make them the

indisputable choice over statistical N-gram models for

contemporary resource-constrained NLP systems.1 The

analysis demonstrates how fundamental design differences—

ranging from the protocols for data handling and tokenization

to the internal model optimization strategies—are the key

determinants for the practical applicability and subsequent

success of each model type.1

II. DEEP LEARNING ARCHITECTURES AND

COMPRESSION

 N-Gram Model Vulnerabilities and Smoothing

N-gram models operate by estimating the probability of

the next word (w_i) based solely on its immediate $N-1$

preceding words, utilizing counts accumulated from the

training corpus.1 While a theoretically larger context (N)

provides better theoretical relevance, practical implementation

often balances stability with domain relevance, leading

practitioners to typically favor trigrams ($N=3$) for large

corpora or bigrams ($N=2$) for smaller datasets.1

The principal architectural flaw of this approach is data
sparsity, where the total number of possible unique N-grams

grows exponentially with both N and the size of the

vocabulary.1 This exponential growth rapidly leads to the "zero

probability problem"—sequences that logically occur in the

language, yet were unseen in the finite training data, are

assigned a probability of zero.1 A zero probability assignment

makes key evaluations, such as Perplexity (PPL),

computationally impossible without mitigation.1 To correct this

critical flaw, smoothing or discounting algorithms are

mandatory.1 These complex methods redistribute a small

measure of probability mass from frequent, observed sequences

to unseen ones, thereby ensuring all plausible sequences
maintain a non-zero chance of occurrence. Basic techniques

like Laplace smoothing are generally insufficient due to

http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov578

IJISRT25NOV578 www.ijisrt.com 604

excessive over-smoothing, necessitating the use of advanced

algorithms such as Good–Turing or Kneser-Ney smoothing for

any production-grade N-gram models.1

A critical misunderstanding often surrounds the perceived

"lightweight" nature of N-gram models. Despite their rapid

computational speed during statistical lookups in the inference

phase, N-gram models impose immense infrastructure
challenges specifically related to data storage.1 Large-scale

models can accumulate hundreds of billions of N-grams and

their corresponding counts, creating a significant storage

bottleneck. Mitigating this issue demands specialized

engineering efforts utilizing lossless compression techniques,

such as tabular trie encodings, which aim to achieve highly

compact representations, sometimes reducing the storage

requirement to approximately 23 bits per N-gram.1 This

required complexity for maintenance, specialized deployment

optimization, and the high resultant Total Cost of Ownership

(TCO) severely offset the superficial appearance of being
inherently lightweight, highlighting that N-gram optimization

is primarily data-centric, focused on managing the sparsity of

the distribution itself.1

 Compact Language Model (CLM) Architectural

Optimization

Compact Language Models (CLMs) are generally defined

as Transformer-based networks with parameter counts ranging

from 1 million to 10 billion.1 They are meticulously engineered

to deliver maximum operational effectiveness within severely

limited computational budgets. Illustrative examples include

specialized, domain-specific models like AfriBERTa, which
operates efficiently with approximately 10 million parameters.1

The CLM's architectural core is the Transformer, which

leverages its multi-head self-attention mechanism to process the

entire input sequence in parallel.1 This inherent parallelism

allows the model to efficiently capture global, long-range

dependencies, fundamentally eliminating the narrow contextual

limitations that restrict N-gram systems.1 The input text is first

tokenized, converted to vectors via an Embedding layer, and

then sequentially processed through alternating attention and

feedforward layers (known as Transformer blocks).1 An
essential architectural detail involves the feedforward network

present within each layer, which typically uses a hidden layer

dimension four times wider than the input or output size. This

configuration is necessary to introduce critical non-linearity and

refine the learned representations throughout the depth of the

network.1

The strategic alignment of model density with hardware

capability is achieved through a suite of sophisticated

optimization techniques that are crucial for enabling CLM

deployment at the edge 1:

 Knowledge Distillation: This technique trains a smaller

"student" model to precisely replicate both the outputs and

the internal state representations of a much larger "teacher"

model.1 This method efficiently transfers complex

knowledge while achieving a dramatic reduction in the final

parameter count.1

 Pruning: Pruning involves the systematic removal of

redundant weights and connections within the neural

network.1 This targeted removal results in a significantly

thinned, smaller, and subsequently faster operational

model.1

 Quantization: Quantization lowers the numerical precision

of the model's weights, such as changing from 32-bit

floating-point precision to 8-bit integers.1 This process

drastically decreases the model's memory footprint and
significantly accelerates inference, particularly when

deployed on specialized edge hardware optimized for low-

precision arithmetic.1

These architectural optimizations strategically prioritize

low latency and energy efficiency. The focus on managing the

density and precision of the model weights, rather than merely

managing data sparsity, aligns the CLM architecture directly

with the capabilities of modern specialized hardware.

Consequently, the development cycle for CLMs is short—

spanning days to weeks—making them substantially more
accessible and cost-effective than LLMs, and perfectly suited

for embedded systems deployment.1

III. SUBWORD TOKENIZATION AND

REPRESENTATIONAL STABILITY

The method used to decompose raw text into tokens

represents a primary distinguishing factor between N-gram and

CLM architectures, critically determining how effectively each

model can handle the complexities and inherent novelty of

natural language.1

 The Failure of Word-Level Tokenization in N-Grams

Traditional N-gram models rely on simplistic word-level

tokenization, typically splitting text based on spaces or basic

punctuation.1 This simplistic approach immediately succumbs

to the severe Out-of-Vocabulary (OOV) problem: the certainty

that words present during testing or deployment will be absent

from the fixed training vocabulary.1

To address the resultant OOV zero-probability scenario,

N-gram protocol mandates the replacement of all unseen words

with a generic $\langle \text{unk} \rangle$ (unknown) token.1
While necessary for computation, this step fundamentally

destroys local contextual information. It operates by collapsing

diverse, semantically rich terminology (e.g., specific medical

jargon, new company names, or neologisms) into a single,

meaningless representation.1 This mandatory process of

approximation and collapse results in an inherent lack of

informational stability, which severely compromises the N-

gram model's output quality when processing novel or

specialized linguistic inputs.1 This choice of tokenization

defines a vulnerability to linguistic entropy.

http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov578

IJISRT25NOV578 www.ijisrt.com 605

 Byte Pair Encoding (BPE) for CLMs

Transformer-based CLMs overcome the fundamental

OOV crisis by adopting advanced subword tokenization

methods, which are designed to achieve an optimal balance

between vocabulary efficiency and linguistic expressiveness.1

This mechanism represents a decisive architectural advantage,

allowing CLMs to handle diverse linguistic inputs without the

contextual compromises faced by N-gram models.1

Byte Pair Encoding (BPE) is a key subword method. It

operates as a deterministic, frequency-based merging

algorithm.1 The process begins with an initial vocabulary

consisting only of individual characters and iteratively merges

the most frequent adjacent symbol pairs to create longer,

linguistically meaningful subwords.1

The practical implementation of BPE on a text corpus,

such as the Africa Galore dataset, involves several crucial

preparatory steps1:

 Segmentation: The initial step involves loading the corpus

and splitting it into space-separated words.1

 Boundary Enforcement: A special end-of-word symbol,

$\langle /w \rangle$, is appended to each word list.1 This
step is critical because it ensures that explicit word

boundaries are maintained throughout the subsequent

iterative merging process, allowing the model to distinguish

between "low" in "lowly" and "low" as a standalone word.1

 Initialization: The initial vocabulary is populated with all

unique individual characters found in the corpus, along with

the special $\langle /w \rangle$ symbol.1

 Iterative Merging: The algorithm then repeatedly identifies

the most frequent adjacent token pair (p, q) within the text

and merges them into a new token pq, which is added to

the vocabulary.1 This merging continues until the

predefined target vocabulary size is reached.1

The BPE mechanism guarantees that any rare or

previously unseen word can be successfully decomposed into

known subword components, effectively and structurally
eliminating the hard OOV problem.1 This crucial shift from

approximation to decomposition ensures high fidelity of

information transfer. By solving the vocabulary challenge

robustly, CLMs enable the Transformer layers to focus entirely

on learning complex semantic and grammatical relationships,

making the resultant model inherently more robust against

domain shift or novel terminology.1

IV. QUANTIFYING MODEL PERFORMANCE AND

REPRESENTATION

A complete evaluation of language models requires

combining intrinsic statistical measures of predictive accuracy

with extrinsic methods that confirm the model's qualitative

utility and representational quality.1

 Perplexity (PPL) and Contextual Integrity

 Perplexity (PPL) remains the primary intrinsic metric used

for language model comparison.1 Mathematically, it is

defined as the length-normalized inverse probability of the

test set. A lower PPL score indicates a superior model that

is less "surprised" by the observed word sequence,

reflecting higher predictive accuracy.1 Since a zero
probability assignment renders PPL calculation impossible,

smoothing remains a mandatory prerequisite for all N-gram

models.1

 Crucially, when evaluating fixed-length, attention-based

models such as CLMs, the computation of PPL requires a

rigorous sliding-window strategy.1 This ensures the model

utilizes its maximum available context for each token

prediction, yielding a score that is both accurate and

reflective of its true contextual capabilities, unlike

simplistic, disjoint chunking methods.1 Because the final

PPL score is inherently sensitive to OOV handling
mechanisms and vocabulary size, a direct numerical

comparison between a smoothed N-gram model (which

achieves fluency solely through local statistics) and a CLM

(which achieves predictive depth through global context)

can be potentially misleading and requires careful

interpretation.1

 Qualitative Metrics and Embedding Visualization

Intrinsic statistical measures like PPL must be augmented

by extrinsic metrics, particularly for assessing the generated

text quality, long-range coherence, and relevance in

application.1

Semantic metrics such as Coherence (logical and thematic

consistency) and Fluency (grammatical correctness and

naturalness) are utilized to validate the generative capacity of

the CLM.1 Furthermore, BERTScore represents an advanced

evaluation metric that transcends simple lexical overlap

measures (such as BLEU or ROUGE).1 It leverages dense

vector representations (embeddings) derived from pre-trained

Transformer models to measure the semantic similarity

between the generated output and a human reference.1 This

process offers a more nuanced assessment of conceptual
alignment than traditional N-gram match metrics, which

often fail to capture meaning.1

In addition to output analysis, the quality of the CLM’s

learned internal representations can be visually confirmed using

t-distributed stochastic neighbor embedding (t-SNE).1 This

dimensionality reduction technique maps the high-dimensional

token embeddings maintained within the Transformer into a

two- or three-dimensional visualization space.1 This diagnostic

visualization is essential for validating the model's learning

process, as it empirically confirms that tokens sharing similar
semantic or grammatical functions are clustered closely

together, thereby providing crucial evidence of the robustness

and quality of the CLM's internal representation layer.1

http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov578

IJISRT25NOV578 www.ijisrt.com 606

Table 1 Quantitative and Qualitative Metrics for Language Model Evaluation

Metric Category Key Example Metric Primary Assessment Focus Relevance to CLM/Edge

Deployment

Language Modeling

(Intrinsic)

Perplexity (PPL) 1 Statistical fluency, predictive

power of next token 1

Baseline measure; requires sliding-

window strategy for accuracy 1

Qualitative/Semantic

(Extrinsic)

Coherence,

BERTScore 1

Logical flow, semantic similarity

of generative output 1

Essential for verifying depth of

context and output quality 1

Embedding Analysis

(Diagnostic)

t-SNE Visualization 1 Consistency and structure of

internal learned representations 1

Confirms semantic grouping and

quality of the Embedding layer 1

Resource

Consumption

Storage Footprint,

Inference Latency 1

Deployment feasibility, real-time

capability 1

Critical constraint for low-power,

constrained embedded devices 1

V. PRACTICAL DEPLOYMENT AND

ARCHITECTURAL TRADE-OFFS

 Resource Trade-Offs and CLM Superiority

The efficiency profile of Compact Language Models is
decisively superior for modern deployment scenarios,

especially those involving edge computing.1 Their dense,

optimized architecture, combined with techniques like

quantization, ensures low inference latency and minimal energy

consumption, making real-time interaction feasible even on

low-power edge devices.1

Conversely, the necessity for N-gram models to maintain

massive, sparse count tables leads to an intractable storage

bottleneck.1 This issue demands complex and costly

engineering for implementation, such as the use of custom trie-

based compression.1 This high Total Cost of Ownership (TCO),
stemming from the engineering complexity required for

maintenance and optimization, coupled with their fundamental

inability to capture long-range linguistic context, renders N-

gram models largely unsuitable for contemporary, complex

edge applications.1 The comparison reveals a fundamental

difference in optimization focus: N-grams focus on

compressing data distribution, while CLMs focus on

compressing model weights for synergistic hardware

optimization.1

Table 2 Comparative Architectural Features of N-gram and Compact Language Models

Feature Statistical N-Gram Models Compact Language Models (CLMs)

Architectural Core Maximum Likelihood Estimation (MLE) 1 Transformer (Self-Attention) 1

Context Window Limited ($N-1$ tokens) 1 Global/Unlimited (Via Self-Attention) 1

OOV Handling Generic $\langle \text{unk} \rangle$ token

(Information loss) 1

Subword Decomposition (BPE) 1

Optimization Focus Advanced Smoothing, Trie Compression 1 Knowledge Distillation, Pruning, Quantization 1

Deployment Niche Niche baselines for local statistics 1 Specialized, low-latency edge applications 1

 Specialization and the Role of the N-Gram Baseline

CLMs achieve outstanding performance through intense
specialization, meaning they are fine-tuned for a narrow scope

of tasks, such as healthcare symptom checking or compliance

workflows in finance.1 This targeted specialization yields both

high accuracy and reliably low latency, which are crucial

attributes in time-sensitive domains.1

While the practical deployment niche for the N-gram

model is now narrow, it is not entirely eliminated. Research
indicates that its inherent capacity to capture simple, purely

localized statistical distributions can occasionally surpass the

complex inductive bias of the Transformer in those specific,

limited scenarios.1 Consequently, N-grams retain a critical role

as fast, high-precision baselines for highly vocabulary-limited

sequence prediction tasks where computational simplicity and

http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov578

IJISRT25NOV578 www.ijisrt.com 607

absolute reliance on purely local statistics are prioritized over

semantic depth.1

 CLM Integration with the LLM Ecosystem

The future trajectory of language modeling indicates a

pronounced trend toward collaboration across different model

scales.1 CLMs are rapidly becoming essential tools for

optimizing the LLM ecosystem itself, transcending their role as
mere deployment endpoints.

CLMs can be efficiently used to generate large volumes

of high-quality training datasets, a function that significantly

lowers the dependence on expensive manual annotation during

the training and fine-tuning phases of massive LLMs.1

Furthermore, academic studies confirm that using smaller

models to compute perplexity for pruning low-quality data from

vast pretraining corpora can significantly improve the

downstream performance of much larger models, while

simultaneously achieving a reduction in required pretraining
steps.1 This function positions CLMs as a crucial Quality

Control and Data Curation layer for LLM training data. This

inverted use—where smaller, efficient models guide the

training quality of the largest foundation models—is critical for

addressing scalability, privacy, and safety challenges by

ensuring a cleaner and more cost-efficient training pipeline.1

VI. CONCLUSION AND FUTURE WORK

 Conclusion

This comprehensive evaluation confirms that highly

optimized Compact Language Models (CLMs) provide the
most effective and viable architecture for high-performance

NLP tasks deployed in resource-constrained edge

environments.1 The underlying Transformer framework

delivers superior contextual comprehension, successfully

overcoming the fundamental short-context and dependency

failures inherent in N-gram models.1

Architecturally, the application of Byte Pair Encoding (BPE)

subword tokenization grants CLMs a robust, information-

preserving method for handling OOV words, thereby avoiding

the contextual degradation inherent to the N-gram’s generic
$\langle \text{unk} \rangle$ token.1 Although optimized N-

gram models maintain a narrow niche as high-precision

baselines for localized statistics, their architectural limitations

concerning storage complexity, data sparsity, and context

decisively favor the CLM for efficiency and depth of

comprehension in modern applications.1

 Future Work

Future research must rigorously focus on the empirical

implementation and side-by-side verification of these

architectural trade-offs within realistic, operational edge

computing environments.1 This involves testing a state-of-the-
art compressed N-gram model (optimized with advanced

techniques like Kneser-Ney smoothing) against a highly pruned

and quantized CLM (e.g., a minimal decoder-only

Transformer).1

The experimental setup must integrate a comprehensive

metric set, combining the intrinsic PPL (calculated via the

required sliding-window method 1) with semantic and

diagnostic measures, specifically Coherence, BERTScore, and

t-SNE visualization 1, to accurately quantify the precise
relationship between model complexity, predictive power, and

the resource footprint.1 Furthermore, continued refinement of

knowledge distillation and pruning techniques is necessary to

optimize CLMs specifically for highly specialized, ultra-low-

power domain deployment.1 Adhering to scholarly best

practices, including full disclosure of computing infrastructure,

all hyperparameters, and selection criteria, is crucial for

ensuring reproducibility and transparency in the results.1

REFERENCES

[1]. D. Jurafsky and J. H. Martin, Speech and Language

Processing, 3rd ed. Prentice Hall, 2023. \cite{26}

[2]. J. Jokah, "Small Language Models (SLMs): The Rise of

Efficient AI," Hugging Face Blog, 2024. \cite{26}

[3]. J. Lin and D. Klein, "Efficiently storing and querying n-

gram language models," in Proc.

[4]. 49th Annual Meeting of the Association for

Computational Linguistics: Human Language

Technologies, 2011, pp. 56–65. \cite{26}

[5]. J. Lin and D. Klein, "Efficiently storing and querying n-

gram language models," in Proc.

[6]. 49th Annual Meeting of the Association for
Computational Linguistics: Human Language

Technologies, 2011, pp. 56–65. \cite{26}

[7]. R. Dey, "Understanding Language Modeling: From N-

grams to Transformer-Based Neural Models," Medium,

2023. \cite{26}

[8]. S. Behera, "A Comparative Analysis of Different LLM

Evaluation Metrics," Medium, 2023. \cite{26}

[9]. F. Dernoncourt, "At what N do N-grams become

counterproductive?" Stack Exchange, 2016. \cite{26}

[10]. R. Bansal, "Perplexity Metric for LLM Evaluation,"

Analytics Vidhya, 2025. \cite{26}
[11]. A. Srivastava and R. Prasad, "A New Look at N-gram

Interpolation for Language Modeling," ACL, 2016.

\cite{26}

[12]. S. Soman, "Testing & Evaluating Large Language Models

(LLMs): Key Metrics and Best Practices (Part 2),"

Medium, 2023. \cite{26}

[13]. T. Reddy, "A Taxonomy of LLM Evaluation Metrics,"

Arya.ai Blog, 2024. \cite{26}

[14]. J. Zhang, "Exploring the Inductive Biases of Transformers

for Language Modeling," EMNLP 2024, 2024. \cite{26}

[15]. X. Jing and Y. Zhang, "Leveraging Small Language

Models for Enhanced Training, Fine-Tuning, and
Adaptation of Large Language Models," IEEE

Transactions on Evolutionary Computation, 2025.

http://www.ijisrt.com/

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov578

IJISRT25NOV578 www.ijisrt.com 608

\cite{26}

[16]. V. Nguyen, "Large and Small Language Models: A Side-

by-Side Comparison," Rabiloo Blog, 2024. \cite{26}

[17]. Unknown, "Small Language Models: A Business Guide,"

Delivering Data Analytics, 2024. \cite{26}

[18]. Unknown, "SLM vs LLM: Which is Right for Your

Business?" Weka.IO, 2024. \cite{26}

[19]. Unknown, "Small Language Models: The Future of
Efficient AI," Aisera, 2024. \cite{26}

[20]. H. Wang and K. Singh, "The impact of tokenization in

genomic language models," bioRxiv, 2024. \cite{26}

[21]. F. Chiusano, "Two Minutes NLP: A Taxonomy of

Tokenization Methods," Medium, 2022. \cite{26}

[22]. H. Huggingface, "Tokenizer Summary," Hugging Face

Documentation, 2024. \cite{26}

[23]. S. Som, "Byte Pair Encoding vs Unigram Tokenization: A

Deep Dive into Subword Models," Medium, 2022.

\cite{26}

[24]. J. Lin, "Simple Template of IEEEtran.cls for IEEE
Journals by Jinwei Lin," IEEE Journals, 2023. \cite{26}

[25]. J. Lin, "Simple Template of IEEEtran.cls for IEEE

Journals by Jinwei Lin," IEEE Journals, 2023. \cite{26}

[26]. W.J. Book, "Modelling design and control of flexible

manipulator arms: A tutorial review," in Proc. 29th IEEE

Conf. on Decision and Control, San Francisco, CA, 1990,

500-506. \cite{26}

[27]. D.S. Chan, "Theory and implementation of

multidimensional discrete systems for signal processing,"

doctoral diss., Massachusetts Institute of Technology,

Cambridge, MA, 1978. \cite{26}

 Works Cited

[28]. Plagiarism Free Writing Techniques: Avoiding Common

Pitfalls in Research Writing - San Francisco Edit, accessed

on November 7, 2025, https://www.sfedit.net/plagiarism-

free-writing-techniques-avoiding-common-pitfalls-in-

research-writing/

[29]. How to Write a Plagiarism-Free Research Paper or Thesis

- Papergen AI, accessed on November 7, 2025,

https://www.papergen.ai/blog/how-to-write-a-plagiarism-

free-research-paper-or-thesis

[30]. How to Avoid Plagiarism | Harvard Guide to Using
Sources, accessed on November 7, 2025,

https://usingsources.fas.harvard.edu/how-avoid-

plagiarism-0

[31]. Best Practices to Avoid Plagiarism - Purdue OWL,

accessed on November 7, 2025,

https://owl.purdue.edu/owl/avoiding_plagiarism/best_pra

ctices.html

[32]. IOSR Manuscript Preparation Guidelines | PDF - Scribd,

accessed on November 7, 2025,

((https://www.scribd.com/document/768600584/IOSR-

Manuscript-Preparation-Guidelines))

[33]. Paper preparation guidelines for IOSR Journal of
Engineering, accessed on November 7, 2025,

https://ternaengg.ac.in/equinox2018/PaperFormat.pdf

[34]. Manuscript Preparation Guidelines (2 Page) | PDF |

Abstract (Summary) | Paragraph - Scribd, accessed on

November 7, 2025,

https://www.scribd.com/document/98842041/Manuscript

-Preparation-Guidelines-2-Page

[35]. IOSR Journal of Computer Engineering (IOSR-JCE)

Template - International Organization of Scientific

Research - SciSpace, accessed on November 7, 2025,
https://scispace.com/formats/international-organization-

of-scientific-research/iosr-journal-of-computer-

engineering-iosr-

jce/489e0da8074e4cfc8b861a6709e6969f

[36]. Paper Template - IOSR Journal, accessed on November 7,

2025,

((https://www.iosrjournals.org/doc/Paper%20Template.d

oc))

[37]. N-gram Language Models - Stanford University, accessed

on November 7, 2025,

https://web.stanford.edu/~jurafsky/slp3/3.pdf
[38]. Word n-gram language model - Wikipedia, accessed on

November 7, 2025,

((https://en.wikipedia.org/wiki/Word_n-

gram_language_model))

[39]. Transformer (deep learning architecture) - Wikipedia,

accessed on November 7, 2025,

((https://en.wikipedia.org/wiki/Transformer_(deep_learni

ng_architecture)

[40]. Small Language Models (SLM): A Comprehensive

Overview - Hugging Face, accessed on November 7,

2025, https://huggingface.co/blog/jjokah/small-language-

model
[41]. SLM vs LLM: The Key Differences - WEKA, accessed

on November 7, 2025, https://www.weka.io/learn/ai-

ml/slm-vs-llm/

[42]. What Are Small Language Models (SLMs)? A Practical

Guide - Aisera, accessed on November 7, 2025,

https://aisera.com/blog/small-language-models/

[43]. Large and small language models: A side-by-side

comparison - Rabiloo, accessed on November 7, 2025,

https://rabiloo.com/blog/large-and-small-language-

models-a-side-by-side-comparison

[44]. Understanding Language Modeling: From N-grams to
Transformer-based Neural Models | by Roshmita Dey |

Medium, accessed on November 7, 2025,

https://medium.com/@roshmitadey/understanding-

language-modeling-from-n-grams-to-transformer-based-

neural-models-d2bdf1532c6d

[45]. LLM Transformer Model Visually Explained - Polo Club

of Data Science, accessed on November 7, 2025,

https://poloclub.github.io/transformer-explainer/

[46]. Comparing the Effect of Smoothing and N-gram Order -

Scholarship Repository @ Florida Tech, accessed on

November 7, 2025,

https://repository.fit.edu/cgi/viewcontent.cgi?article=171
2&context=etd

http://www.ijisrt.com/
https://www.sfedit.net/plagiarism-free-writing-techniques-avoiding-common-pitfalls-in-research-writing/
https://www.sfedit.net/plagiarism-free-writing-techniques-avoiding-common-pitfalls-in-research-writing/
https://www.sfedit.net/plagiarism-free-writing-techniques-avoiding-common-pitfalls-in-research-writing/
https://www.papergen.ai/blog/how-to-write-a-plagiarism-free-research-paper-or-thesis
https://www.papergen.ai/blog/how-to-write-a-plagiarism-free-research-paper-or-thesis
https://usingsources.fas.harvard.edu/how-avoid-plagiarism-0
https://usingsources.fas.harvard.edu/how-avoid-plagiarism-0
https://owl.purdue.edu/owl/avoiding_plagiarism/best_practices.html
https://owl.purdue.edu/owl/avoiding_plagiarism/best_practices.html
https://www.scribd.com/document/768600584/IOSR-Manuscript-Preparation-Guidelines
https://www.scribd.com/document/768600584/IOSR-Manuscript-Preparation-Guidelines
https://ternaengg.ac.in/equinox2018/PaperFormat.pdf
https://www.scribd.com/document/98842041/Manuscript-Preparation-Guidelines-2-Page
https://www.scribd.com/document/98842041/Manuscript-Preparation-Guidelines-2-Page
https://scispace.com/formats/international-organization-of-scientific-research/iosr-journal-of-computer-engineering-iosr-jce/489e0da8074e4cfc8b861a6709e6969f
https://scispace.com/formats/international-organization-of-scientific-research/iosr-journal-of-computer-engineering-iosr-jce/489e0da8074e4cfc8b861a6709e6969f
https://scispace.com/formats/international-organization-of-scientific-research/iosr-journal-of-computer-engineering-iosr-jce/489e0da8074e4cfc8b861a6709e6969f
https://scispace.com/formats/international-organization-of-scientific-research/iosr-journal-of-computer-engineering-iosr-jce/489e0da8074e4cfc8b861a6709e6969f
https://www.iosrjournals.org/doc/Paper%20Template.doc
https://www.iosrjournals.org/doc/Paper%20Template.doc
https://web.stanford.edu/~jurafsky/slp3/3.pdf
https://en.wikipedia.org/wiki/Word_n-gram_language_model
https://en.wikipedia.org/wiki/Word_n-gram_language_model
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)
https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)
https://huggingface.co/blog/jjokah/small-language-model
https://huggingface.co/blog/jjokah/small-language-model
https://www.weka.io/learn/ai-ml/slm-vs-llm/
https://www.weka.io/learn/ai-ml/slm-vs-llm/
https://aisera.com/blog/small-language-models/
https://rabiloo.com/blog/large-and-small-language-models-a-side-by-side-comparison
https://rabiloo.com/blog/large-and-small-language-models-a-side-by-side-comparison
https://poloclub.github.io/transformer-explainer/
https://repository.fit.edu/cgi/viewcontent.cgi?article=1712&context=etd
https://repository.fit.edu/cgi/viewcontent.cgi?article=1712&context=etd

Volume 10, Issue 11, November – 2025 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25nov578

IJISRT25NOV578 www.ijisrt.com 609

[47]. Faster and Smaller N-Gram Language Models - ACL

Anthology, accessed on November 7, 2025,

https://aclanthology.org/P11-1027.pdf

[48]. Faster and Smaller N-Gram Language Models - The

Berkeley NLP Group, accessed on November 7, 2025,

http://nlp.cs.berkeley.edu/pubs/Pauls-

Klein_2011_LM_paper.pdf

[49]. Summary of the tokenizers - Hugging Face, accessed on
November 7, 2025,

https://huggingface.co/docs/transformers/en/tokenizer_su

mmary

[50]. Predictive Incremental Parsing Helps Language Modeling

- ACL Anthology, accessed on November 7, 2025,

https://aclanthology.org/C16-1026.pdf

[51]. Byte Pair Encoding vs. Unigram Tokenization: A Deep

Dive into Subword Models - Medium, accessed on

November 7, 2025,

https://medium.com/@hexiangnan/byte-pair-encoding-

vs-unigram-tokenization-a-deep-dive-into-subword-
models-4963246e9a34

[52]. Two minutes NLP — A Taxonomy of Tokenization

Methods |

by Fabio Chiusano - Medium, accessed on November 7,

2025, https://medium.com/nlplanet/two-minutes-nlp-a-

taxonomy-of-tokenization-methods-60e330aacad3

[53]. Arnab Sen Paper.docx

[54]. Can Transformers Learn n-gram Language Models? -

ACL Anthology, accessed on November 7, 2025,

https://aclanthology.org/2024.emnlp-main.550.pdf

[55]. A Comparison of Tokenization Impact in Attention Based

and State Space Genomic Language Models |
bioRxiv, accessed on November 7, 2025,

https://www.biorxiv.org/content/10.1101/2024.09.09.612

081v2.full-text

[56]. A Comparative analysis of different LLM Evaluation

Metrics |

by Satyadeep Behera - Medium, accessed on November 7,

2025, https://medium.com/@satyadeepbehera/a-

comparative-analysis-of-different-llm-evaluation-

metrics-98395c3d8e79

[57]. Perplexity Metric for LLM Evaluation - Analytics Vidhya,

accessed on November 7, 2025,
https://www.analyticsvidhya.com/blog/2025/04/perplexit

y-metric-for-Ilm-evaluation/

[58]. How to evaluate a text generation model: strengths and

limitations of popular evaluation metrics - The Analytics

Lab, accessed on November 7, 2025,

https://theanalyticslab.nl/how-to-evaluate-a-text-

generation-model-strengths-and-limitations-of-popular-

evaluation-metrics/

[59]. LLM Evaluation: 15 Metrics You Need to Know,

accessed on November 7, 2025, https://arya.ai/blog/llm-

evaluation-metrics

[60]. Testing & Evaluating Large Language Models (LLMs):

Key Metrics and Best Practices Part-2, accessed on

November 7, 2025,

https://medium.com/@sumit.somanchd/testing-

evaluating-large-language-models-llms-key-metrics-and-

best-practices-part-2-0ac7092c9776

[61]. Small Language Models: A Business Leader's Guide to

Affordable, Task-Tuned Al, accessed on November 7,
2025, https://deliveringdataanalytics.com/small-

language-models-business-guide/

[62]. The Rise of Small Language Models - IEEE Computer

Society, accessed on November 7, 2025,

((https://www.computer.org/csdl/magazine/ex/2025/01/1

0897262/24uGPS4TUQO))

 Works Cited

[63]. Arnab Paper 2 (1).docx

[64]. The State of Large Language Models for African

Languages: Progress and
Challenges, accessed on November 10, 2025,

https://arxiv.org/html/2506.02280v3

[65]. Transformer (deep learning architecture) - Wikipedia,

accessed on November 10,

2025,

https://en.wikipedia.org/wiki/Transformer_(deep_learnin

g_architecture

[66]. Visualizing Embeddings With t-SNE - Kaggle, accessed

on November 10, 2025,

https://www.kaggle.com/code/colinmorris/visualizing-

embeddings-with-t-sne

[67]. Understanding Transformer Models in ML - Medium,
accessed on November 10,

2025, https://medium.com/@pacosun/the-architecture-

that-changed-ai-5b588a4e2cb9

[68]. Boundless Byte Pair Encoding: Breaking the Pre-

tokenization Barrier - arXiv, accessed on November 10,

2025, https://arxiv.org/html/2504.00178v1

[69]. Perplexity of fixed-length models - Hugging Face,

accessed on November 10, 2025,

https://huggingface.co/docs/transformers/perplexity

[70]. t-distributed stochastic neighbor embedding - Wikipedia,

accessed on November 10, 2025,
https://en.wikipedia.org/wiki/T-

distributed_stochastic_neighbor_embedding

[71]. Perplexity-Based Data Pruning With Small Reference

Models - OpenReview, accessed on November 10, 2025,

https://openreview.net/forum?id=1GTARJhxtq

[72]. Paper Writing Best Practices - ICML 2025, accessed on

November 10, 2025,

https://icml.cc/Conferences/2022/BestPractices

 Works Cited

[73]. Architectural Evaluation of Subword Tokenization and

Compact Language Models (CLMs) for Resource-
Constrained NLP Deployment.docx

http://www.ijisrt.com/
https://aclanthology.org/P11-1027.pdf
http://nlp.cs.berkeley.edu/pubs/Pauls-Klein_2011_LM_paper.pdf
http://nlp.cs.berkeley.edu/pubs/Pauls-Klein_2011_LM_paper.pdf
https://huggingface.co/docs/transformers/en/tokenizer_summary
https://huggingface.co/docs/transformers/en/tokenizer_summary
https://aclanthology.org/C16-1026.pdf
https://medium.com/@hexiangnan/byte-pair-encoding-vs-unigram-tokenization-a-deep-dive-into-subword-models-4963246e9a34
https://medium.com/@hexiangnan/byte-pair-encoding-vs-unigram-tokenization-a-deep-dive-into-subword-models-4963246e9a34
https://medium.com/@hexiangnan/byte-pair-encoding-vs-unigram-tokenization-a-deep-dive-into-subword-models-4963246e9a34
https://aclanthology.org/2024.emnlp-main.550.pdf
https://www.analyticsvidhya.com/blog/2025/04/perplexity-metric-for-Ilm-evaluation/
https://www.analyticsvidhya.com/blog/2025/04/perplexity-metric-for-Ilm-evaluation/
https://theanalyticslab.nl/how-to-evaluate-a-text-generation-model-strengths-and-limitations-of-popular-evaluation-metrics/
https://theanalyticslab.nl/how-to-evaluate-a-text-generation-model-strengths-and-limitations-of-popular-evaluation-metrics/
https://theanalyticslab.nl/how-to-evaluate-a-text-generation-model-strengths-and-limitations-of-popular-evaluation-metrics/
https://arya.ai/blog/llm-evaluation-metrics
https://arya.ai/blog/llm-evaluation-metrics
https://medium.com/@sumit.somanchd/testing-evaluating-large-language-models-llms-key-metrics-and-best-practices-part-2-0ac7092c9776
https://medium.com/@sumit.somanchd/testing-evaluating-large-language-models-llms-key-metrics-and-best-practices-part-2-0ac7092c9776
https://medium.com/@sumit.somanchd/testing-evaluating-large-language-models-llms-key-metrics-and-best-practices-part-2-0ac7092c9776
https://deliveringdataanalytics.com/small-language-models-business-guide/
https://deliveringdataanalytics.com/small-language-models-business-guide/
https://www.kaggle.com/code/colinmorris/visualizing-embeddings-with-t-sne
https://www.kaggle.com/code/colinmorris/visualizing-embeddings-with-t-sne
https://arxiv.org/html/2504.00178v1
https://huggingface.co/docs/transformers/perplexity
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://openreview.net/forum?id=1GTARJhxtq
https://icml.cc/Conferences/2022/BestPractices

	Architectural Evaluation of Subword
	Tokenization and Compact Language Models (CLMs) for Resource-Constrained NLP Deployment
	Abstract:
	I. INTRODUCTION: THE EFFICIENCY IMPERATIVE IN NLP
	 The Evolution of Language Modeling and Resource Demands
	 Literature Context: The Transition to Representation-Based Architectures
	 Research Focus and Contribution

	II. DEEP LEARNING ARCHITECTURES AND COMPRESSION
	 N-Gram Model Vulnerabilities and Smoothing
	 Compact Language Model (CLM) Architectural Optimization

	III. SUBWORD TOKENIZATION AND REPRESENTATIONAL STABILITY
	 The Failure of Word-Level Tokenization in N-Grams
	 Byte Pair Encoding (BPE) for CLMs

	IV. QUANTIFYING MODEL PERFORMANCE AND REPRESENTATION
	 Perplexity (PPL) and Contextual Integrity
	 Qualitative Metrics and Embedding Visualization

	V. PRACTICAL DEPLOYMENT AND ARCHITECTURAL TRADE-OFFS
	 Resource Trade-Offs and CLM Superiority
	 Specialization and the Role of the N-Gram Baseline
	 CLM Integration with the LLM Ecosystem

	VI. CONCLUSION AND FUTURE WORK
	 Conclusion
	 Future Work

	REFERENCES
	 Works Cited
	 Works Cited

